Large Scale Hierarchical Classification: Foundations, Algorithms and Applications

Huzefa Rangwala

Department of Computer Science MLBio+ Laboratory Fairfax, Virginia, USA

CS 584, Fall 2016

11/14/2016

Huzefa Rangwala

George Mason University

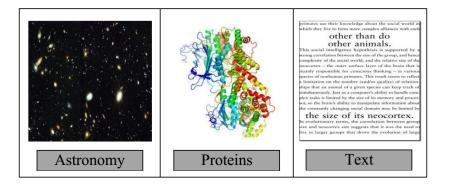
11/14/2016 1 / 66

Roadmap

1 Introduction and Background

- Motivation
- Hierarchical Classification (HC) problem description
- Challenges
- Methods for solving HC
- 2 State-of-the-Art HC Approaches
 - Parent-child regularization
 - Cost-sensitive learning
- 3 Learning from Multiple Hierarchies
- 4 Inconsistent Hierarchy
- 5 Conclusion

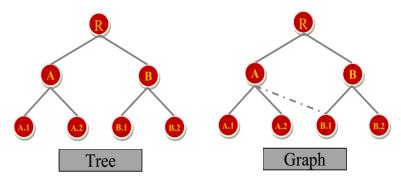
- Exponential growth in data (image, text, video) over time
 - Big data era megabytes & gigabytes to terabytes & petabytes
 - growth in almost all fields astronomical, biological, web content



(日) (同) (日) (日)

Data Organization

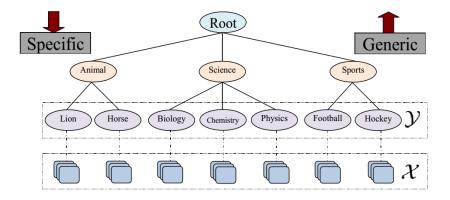
- Organize data into structure
 - tree, graph [LSHTC, BioASQ and ILSVRC challenge]



- Useful in various applications
 - query search, browsing and categorizing products

Hierarchical Structure

- Classes organized into the hierarchical structure
- Generic (\uparrow) to specific (\downarrow) categories in top-down order



< ∃ ►

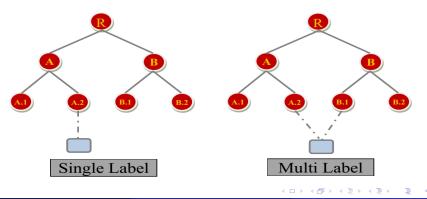
Goal

Given hierarchy of classes exploit the hierarchical structure to learn models and classify unlabeled test examples (instances) to one or more nodes in the hierarchy

Challenges - I

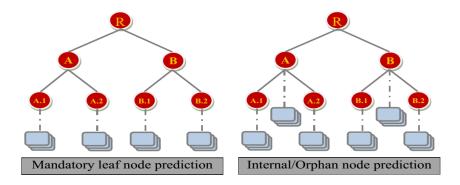
Single label vs. multi-label

- Single label classification each example belongs exclusively to one class only
- Multi-label classification example may belong to more than one class



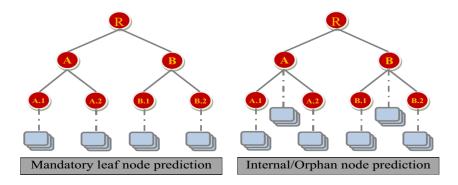
Mandatory leaf node vs. internal node prediction

• Example may be assigned to internal nodes



Mandatory leaf node vs. internal node prediction

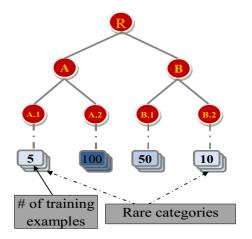
- Example may be assigned to internal nodes
- Orphan node detection problem



Challenges - III

Rare categories

• Many classes with very few labeled examples

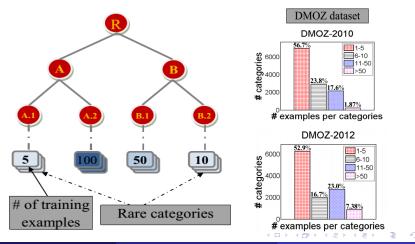


Huzefa Rangwala

Challenges - III

Rare categories

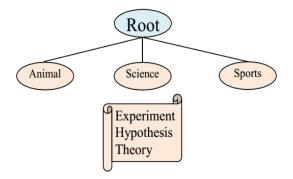
- Many classes with very few labeled examples
- More prevalent in large scale datasets \geq 70% have \leq 10 examples



Huzefa Rangwala

Feature selection

- All features are **not essential** to **discriminate** between classes
- Identify features to improve classification performance

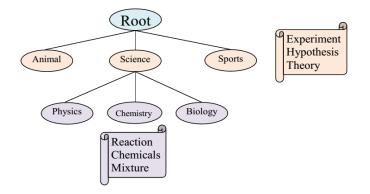


Huzefa	Rangwala
--------	----------

Challenges - IV

Feature selection

- All features are not essential to discriminate between classes
- Identify features to improve classification performance



• Parameter optimization

• incorporate relationships (parent-child, silings) information

- < A

Parameter optimization

• incorporate relationships (parent-child, silings) information

Scalability

• large # of classes, features and examples require **distributed computation**

Dataset	#Training examples	#Leaf node (classes)	#Features	#Parameters	Parameter size (approx)
DMOZ-2010	128,710	12,294	381,580	4,652,986,520	18.5 GB
DMOZ-2012	383,408	11,947	348,548	4,164,102,956	16.5 GB

• Parameter optimization

• incorporate relationships (parent-child, silings) information

Scalability

• large # of classes, features and examples require **distributed computation**

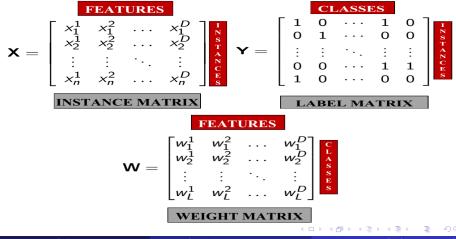
Dataset	#Training examples	#Leaf node (classes)	#Features	#Parameters	Parameter size (approx)
DMOZ-2010	128,710	12,294	381,580	4,652,986,520	18.5 GB
DMOZ-2012	383,408	11,947	348,548	4,164,102,956	16.5 GB

Inconsistent hierarchy

• not suitable for classification (more details later)

Notation

n = # of training examples (instances)	D = dimension of each instance
$\mathcal{N}=set$ of nodes in the hierarchy	L = set of leaf node (classes)
C(t) = children of node t	$\pi(t) = {\sf parent} \ {\sf of} \ {\sf node} \ t$



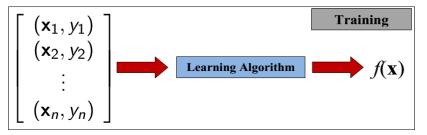
Huzefa Rangwala

George Mason University

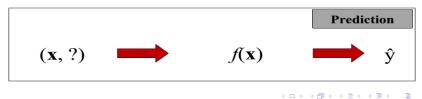
11/14/2016 13 / 66

Hι

Training - Learn mapping function using training data



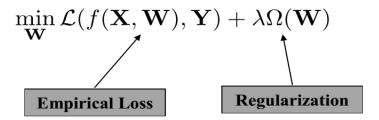
Testing - Predict the label of test example



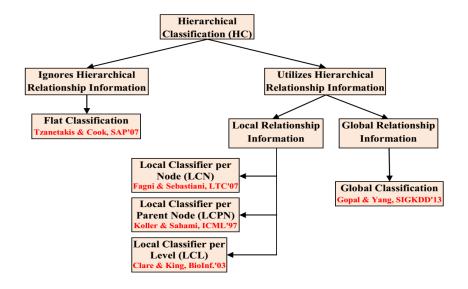
ızefa Rangwala	George Mason University
----------------	-------------------------

Combination of two terms:

- 1 Empirical loss controls how well the learnt models fits the training data
- 2 **Regularization** prevent models from over-fitting and encodes additional information such as hierarchical relationships



Different Approaches for Solving HC Problem

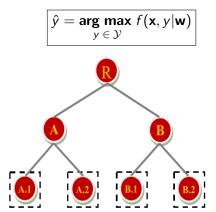


▶ < 불 ▶ 불 ∽ ९ ୯ 11/14/2016 16 / 66

(日) (同) (三) (三)

Flat Classification Approach

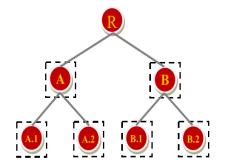
- Simplest method (ignores hierarchy)
- Learn discriminant classifiers for each leaf node in the hierarchy
- Unlabeled test example classified using the rule:



Local Classification Approach - I

Local Classifier per Node (LCN)

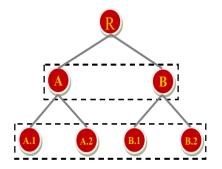
- Learn binary classifiers for all non-root nodes
- Goal is to effectively discriminate between the siblings
- Top-down approach is followed for classifying unlabeled test examples



Local Classification Approach - II

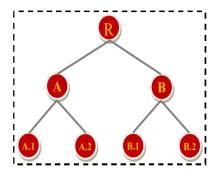
Local Classifier per Level (LCL)

- Learn multi-class classifiers for all levels in the hierarchy
- Least popular among local approaches
- Prediction inconsistency may occur and hence post-processing step is required



Global Classification Approach

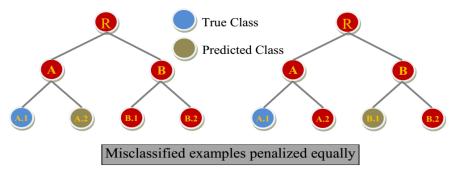
- Learn global function considering all hierarchical relationships
- Often referred as Big-Bang approach
- Unlabeled test instance is classified using an approach similar to flat or local methods



Evaluation Metrics - I

Flat evaluation measures

• Misclassifications treated equally



- Common evaluation metrics:
 - Micro-F1 gives equal weightage to all examples, dominated by common class
 - Macro-F1 gives equal weightage to each class

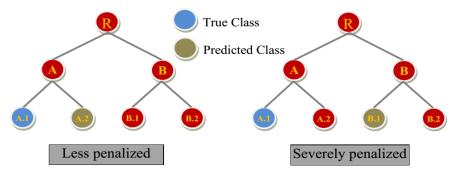
Huzefa Rangwala

George Mason University

Evaluation Metrics - II

Hierarchical evaluation measures

• Hierarchical distance between the true and predicted class taken into consideration for performance evaluation



- Common evaluation metrics:
 - Hierarchical-F1 common ancestors between true and predicted class
 - Tree Error average hierarchical distance b/w true and predicted class

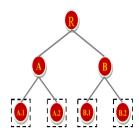
Image: A math a math

11/14/2016 22 / 66

- Involves joint training of multiple related tasks to improve generalization performance
- Independent learning problems can utilize the shared knowledge
- Exploits inductive biases that are helpful to all the related tasks
 - similar set of parameters
 - common feature space

Parent-child Regularization, Gopal and Yang, SIGKDD'13

Motivation



• Traditional approach learn classifiers for each leaf node (task) to discriminate one class from other

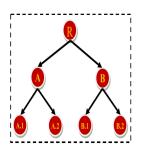
$$\min_{\mathbf{w}_t} \frac{1}{2} ||\mathbf{w}_t||_2^2 + C \sum_{i=1}^n \left[1 - \mathbf{Y}_{it} \mathbf{w}_t^T \mathbf{x}_i \right]_+$$

- Works well if:
 - Dataset is small
 - Balanced
 - Sufficient positive examples per class to learn generalized discriminant function

Drawbacks

- Real world datasets suffers from rare categories issue Remember: 70% classes have less than 10 examples per class
- Large number of classes (scalability issue)

Motivation - II



- Can we improve the performance of data sparse leaf nodes by taking advantage of data rich nodes at higher levels?
- Incorporate inter-class dependencies to improve classification
 - examples belonging to <u>Soccer</u> category is less likely to belong to <u>Software</u> category

$$\min_{\mathbf{w}_t} \frac{1}{2} ||\mathbf{w}_t - \mathbf{w}_{\pi(t)}||_2^2 + C \sum_{k \in \mathcal{C}(t)} \sum_{i=1}^n \left[1 - \mathbf{Y}_{ik} \mathbf{w}_t^T \mathbf{x}_i \right]_+$$

Objective

- How to effectively incorporate the hierarchical relationships into the objective function to improve generalization performance
- Make it scalable for larger datasets

Proposed Formulation

- Enforces model parameters (weights) to be similar to the parent in regularization
- Proposed state-of-the-art: HR-SVM and HR-LR global formulation

HR-SVM

$$\min_{\mathbf{W}} \sum_{t \in \mathcal{N}} \frac{1}{2} ||\mathbf{w}_t - \mathbf{w}_{\pi(t)}||_2^2 + C \sum_{k \in L} \sum_{i=1}^n \left[1 - \mathbf{Y}_{ik} \mathbf{w}_k^T \mathbf{x}_i \right]_+$$

Internal Node

$$\min_{\mathbf{w}_{t}}^{1} \frac{1}{2} ||\mathbf{w}_{t} - \mathbf{w}_{\pi(t)}||_{2}^{2} + \frac{1}{2} \sum_{c \in \mathcal{C}(t)} ||\mathbf{w}_{c} - \mathbf{w}_{t}||_{2}^{2}$$

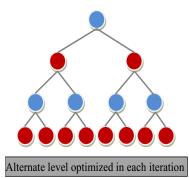
Leaf Node

$$\min_{\mathbf{w}_{t}} \frac{1}{2} ||\mathbf{w}_{t} - \mathbf{w}_{\pi(t)}||_{2}^{2} + \frac{1}{2} \sum_{i=1}^{n} \left[1 - \mathbf{Y}_{it} \mathbf{w}_{t}^{\mathsf{T}} \mathbf{x}_{i} \right]_{-}$$

Huzefa Rangwala

Proposed Parallel Implementation

- Each node is independent of all other nodes except its neighbours
- Objective function is block separable. Therefore, Parallel Block Coordinate Descent (CD) can be used for optimization



- 1 Fix odd-levels parameters, optimize even-levels in parallel
- 2 Fix even-levels parameters, optimize odd-levels in parallel
 - 3 Repeat untill convergence

• Extended to graph by first finding the minimum graph coloring [Np-hard] and repeatedly optimizing nodes with the same color in parallel during each iteration

Huzefa Rangwala

George Mason University

11/14/2016 27 / 66

Dataset description

• Wide range of single and multi-label dataset with varying number of features and categories were used for model evaluation

Datasets	# Features	# Categories	Туре	Avg # labels (per instance)
CLEF	89	87	Single-label	1
RCV1	48,734	137	Multi-label	3.18
IPC	541,869	552	Single-label	1
DMOZ-SMALL	51,033	1,563	Single-label	1
DMOZ-2010	381,580	15,358	Single-label	1
DMOZ-2012	348,548	13,347	Single-label	1
DMOZ-2011	594,158	27,875	Multi-label	1.03
SWIKI-2011	346,299	50,312	Multi-label	1.85
LWIKI	1,617,899	614,428	Multi-label	3.26

Table: Dataset statistics

Flat Baselines Comparison

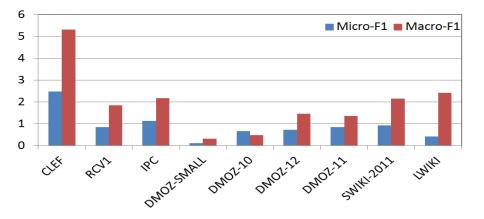


Figure: Performance improvement: HR-SVM vs. SVM

Huzefa Rangwala

George Mason University

11/14/2016 29 / 66

Datacata			TD		OT	
Datasets	HR-SVM	HR-LR		HSVM	01	HBLR
CLEF	80.02	80.12	70.11	79.72	73.84	81.41
RCV1	81.66	81.23	71.34	NA	NS	NA
IPC	54.26	55.37	50.34	NS	NS	56.02
DMOZ-SMALL	45.31	45.11	38.48	39.66	37.12	46.03
DMOZ-2010	46.02	45.84	38.64	NS	NS	NS
DMOZ-2012	57.17	53.18	55.14	NS	NS	NS
DMOZ-2011	43.73	42.27	35.91	NA	NS	NA
SWIKI-2011	41.79	40.99	36.65	NA	NA	NA
LWIKI	38.08	37.67	NA	NA	NA	NA
[

[NA - Not Applicable; NS - Not Scalable]

Table: Micro-F1 performance comparison

Datasets	HR-SVM	HR-LR	TD	HSVM	OT	HBLR
CLEF	0.42	1.02	0.13	3.19	1.31	3.05
RCV1	0.55	11.74	0.21	NA	NS	NA
IPC	6.81	15.91	2.21	NS	NS	31.20
DMOZ-SMALL	0.52	3.73	0.11	289.60	132.34	5.22
DMOZ-2010	8.23	123.22	3.97	NS	NS	NS
DMOZ-2012	36.66	229.73	12.49	NS	NS	NS
DMOZ-2011	58.31	248.07	16.39	NA	NS	NA
SWIKI-2011	89.23	296.87	21.34	NA	NA	NA
LWIKI	2230.54	7282.09	NA	NA	NA	NA
		nlicahlar N		+ Scalabl		

[NA - Not Applicable; NS - Not Scalable]

Table: Training runtime comparison (in mins) but on several nodes.

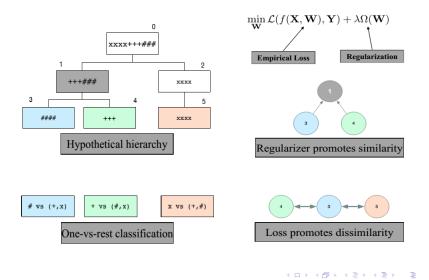
Motivation

- Drawbacks of Recursive Regularization
 - scalable, but more expensive to train than flat classification
 - requires specialized implementation and communication between processing node
 - Does not deal with class imbalance directly

Objective

- Decouple models so that they can be trained in parallel without dependencies between models
- Account for class imbalance in the optimization framework

Hierarchical Regularization Re-examination - I



- Opposing learning influences:
 - loss term model for a node is forced to be dissimilar to all other nodes
 - **regularization term** model is forced to be similar to its neighbors; greater similarity to nearer neighbors
- Resultant effect:
 - Mistakes on negative examples that come from near nodes is less severe than those coming from far nodes while still taking advantage of the hierarchy

- Consider the loss term for class "t" which is separable over examples $\sum_{i} loss(y_i, \mathbf{w}_i^T \mathbf{x}_i)$
- Each loss value is multiplied by importance of the example for this class

$$\sum_{i} loss(y_i, \mathbf{w}_i^T \mathbf{x}_i) \times \phi(t, y_i)$$

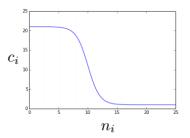
• This is an example of "instance-based" cost sensitive learning $c_i^t = \phi(t,y_1)$

How to define costs based on hierarchy?

- Tree Distance (TrD) undirected graph distance between between nodes
- Number Common Ancestors (NCA) the number of ancestors in common to target class and class label
- Exponentiated Tree Distance (ExTrD) squash tree distance into a suitable range using validation

- Using the same formulation of cost-sensitive learning, data imbalance can also be addressed
- Due to very large skew, inverse class size can result in extremely large weights. Fix using squashing function shown in Fig.
- Multiply to combine with Hierarchical costs

$$c_i = 1 + L/[1 + exp|n - n_0|]$$



 n_i = num examples n_0, L = user defined constants

Dataset

• For comparison purpose same dataset has been used as proposed in the paper [Gopal and Yang, SIGKDD'13]

Comparison Methods

Flat baseline

• LR - one-vs-rest binary logistic regression is used in the conventional flat classification setting

Hierarchical baselines

- **Top-down Logistic Regression (TD-LR)** one-vs-rest multi-class classifier trained at each internal node
- HR-LR [Gopal and Yang, SIGKDD'13] a recursive regularization approach based on hierarchical relationships

Results (Hierarchical Costs)

Datasets		Micro-F1 (↑)	Macro-F1 (↑)	hF1 (↑)	TE (↓)
	LR	79.82	53.45	85.24	0.994
CLEF	TrD	80.02	55.51	85.39	0.984
CLEF	NCA	80.02	57.48	85.34	0.986
	ExTrD	80.22	57.55†	85.34	0.982
	LR	46.39	30.20	67.00	3.569
DMOZ-SMALL	TrD	47.52 ‡	31.37 ‡	68.26	3.449
DIVIOZ-SIVIALL	NCA	47.36‡	31.20‡	68.12	3.460
	ExTrD	47.36‡	31.19‡	68.20	3.456
IPC	LR	55.04	48.99	72.82	1.974
	TrD	55.24‡	50.20‡	73.21	1.954
	NCA	55.33 ‡	50.29 ‡	73.28	1.949
	ExTrD	55.31‡	50.29 ‡	73.26	1.951
RCV1	LR	78.43	60.37	80.16	0.534
	TrD	79.46‡	60.61	82.83	0.451
	NCA	79.74 ‡	60.76	83.11	0.442
	ExTrD	79.33 ‡	61.74 †	82.91	0.466

Table: Performance comparison of hierarchical costs

Huzefa Rangwala

George Mason University

Image: Image:

- ∢ ∃ ▶

Results (Imbalance Costs)

Datasets		Micro-F1 (↑)	Macro-F1 (†)	hF1 (↑)	TE (↓)
	IMB + LR	79.52	53.11	85.19	1.002
CLEF	IMB + TrD	79.92	52.84	85.59	0.978
CLEF	IMB + NCA	79.62	51.89	85.34	0.994
	IMB + ExTrD	80.32	58.45	85.69	0.966
	IMB + LR	48.55‡	32.72‡	68.62	3.406
DMOZ-SMALL	IMB + TrD	49.03 ‡	33.21‡	69.41	3.334
DIVIOZ-SIVIALL	IMB + NCA	48.87‡	33.27‡	69.37	3.335
	IMB + ExTrD	49.03 ‡	33.34 ‡	69.54	3.322
IPC	IMB + LR	55.04	49.00	72.82	1.974
	IMB + TrD	55.60‡	50.45†	73.56	1.933
	IMB + NCA	55.33	50.29	73.28	1.949
	IMB + ExTrD	55.67 ‡	50.42	73.58	1.931
	IMB + LR	78.59‡	60.77	81.27	0.511
RCV1	IMB + TrD	79.63 ‡	61.04	83.13	0.435
	IMB + NCA	79.61	61.04	82.65	0.458
	IMB + ExTrD	79.22	61.33	82.89	0.469

Table: Peformance comparison with imbalance cost included

Huzefa Rangwala

George Mason University

3 ×

Image: Image:

Results (our best with other methods)

Datasets		Micro-F1 (↑)	Macro-F1 (↑)	hF1 (†)	TE (↓)
	TD-LR	73.06	34.47	79.32	1.366
CLEF	LR	79.82	53.45	85.24	0.994
CLEF	HR-LR	80.12	55.83	NA	NA
	HierCost	80.32	58.45†	85.69	0.966
	TD-LR	40.90	24.15	69.99	3.147
DMOZ-SMALL	LR	46.39	30.20	67.00	3.569
DIVIOZ-SIVIALL	HR-LR	45.11	28.48	NA	NA
	HierCost	49.03 ‡	33.34 ‡	69.54	3.322
IPC	TD-LR	50.22	43.87	69.33	2.210
	LR	55.04	48.99	72.82	1.974
	HR-LR	55.37	49.60	NA	NA
	HierCost	55.67‡	50.42†	73.58	1.931
	TD-LR	77.85	57.80	88.78	0.524
RCV1	LR	78.43	60.37	80.16	0.534
	HR-LR	81.23	55.81	NA	NA
	HierCost	79.22‡	61.33	82.89	0.469

Table: Performance comparison of HierCost with other baseline methods

Datasets	TD-LR	LR	HierCost
CLEF	<1	<1	<1
DMOZ-SMALL	4	41	40
IPC	27	643	453
RCV1	20	29	48
DMOZ-2010	196	15191	20174
DMOZ-2012	384	46044	50253

Table: Total training runtimes (in mins)

Image: Image:

• Freely available for research and education purpose at:

https://cs.gmu.edu/~mlbio/HierCost/

- Software: implemented in python using **scikit-learn** machine learning and **svmlight-loader** package
- Other prerequisite package:
 - numpy
 - scipy
 - networkx
 - pandas

Learning using Multiple Hierarchies (MTL), Charuvaka and Rangwala, ICDM'12

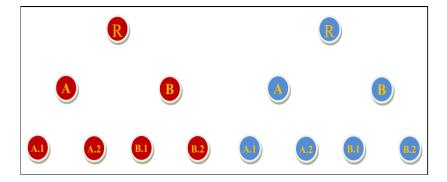
Motivation

- Hierarchies are so common that sometimes multiple hierarchies classify similar data
- Heterogenous label view provide additional knowledge which should be exploited by learners
- Examples
 - protein structure classification several hierarchical schemes for organizing proteins based on curation process or 3D structure
 - web-page classification several hierarchy exist for categorizing such as DMOZ and wikipedia datasets

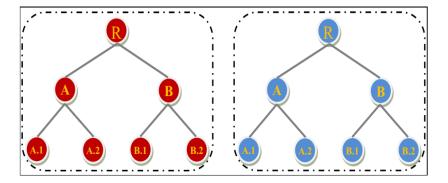
Objective

• Utilize multiple hierarchical label views in multi-task learning context to improve classification performance

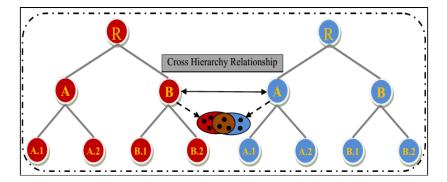
(i) **Single Task Learning (STL)** - each task model parameters learned independently



(ii) **Single Hierarchy Multi-Task Learning (SHMTL)** - relationship between tasks within a hierarchy are combined individually

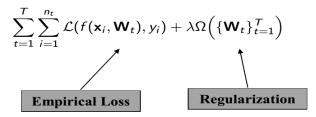


(iii) **Multiple Hierarchy Multi-Task Learning (MHMTL)** - relationship between tasks from different hierarchies are extracted using common examples



MTL Formulations

• General MTL formulation:



• Different MTL formulation based on regularization:

• Sparse - All tasks share a single set of useful features

$$\Omega(\boldsymbol{\mathsf{W}}) = ||\boldsymbol{\mathsf{W}}||_{2,1}$$

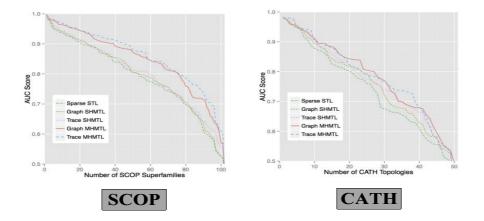
• Graph Regularization - Related tasks have similar parameters

$$\Omega(\mathbf{W}) = \sum_{(a,b)\in\mathcal{E}} ||\mathbf{W}_a - \mathbf{W}_b||_2^2$$

• Trace - Task parameters are drawn from a low dimensional sub-space

$$\Omega(\mathbf{W}) = ||\mathbf{W}||_* = \mathit{TraceNorm}(\mathbf{W})$$

Performance: AUC Comparison



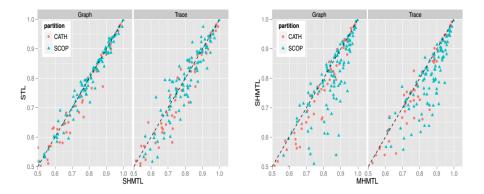
George Mason University

э 11/14/2016 49 / 66

э.

・ロト ・ 日 ト ・ 田 ト ・

STL, SHMTL and MHMTL Comparison

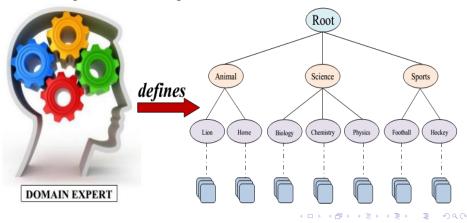


11/14/2016 50 / 66

Motivation

Predefined Hierarchy

- Hierachy defined by the domain experts
- Reflects human-view of the domain may not be optimal for machine learning classification algorithms



Huzefa Rangwala

George Mason University

11/14/2016 51 / 66

Case Study

Question

- Can we trust the predefined expert's hierarchy for achieving the good classification performance?
- Can we tweak (adjust) the hierarchy to improve the performance?

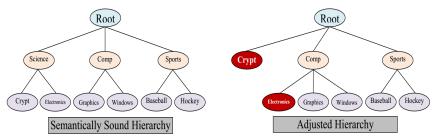
Case Study

Question

- Can we trust the predefined expert's hierarchy for achieving the good classification performance?
- Can we tweak (adjust) the hierarchy to improve the performance?

Answer

• Case study on subset of newsgroup dataset

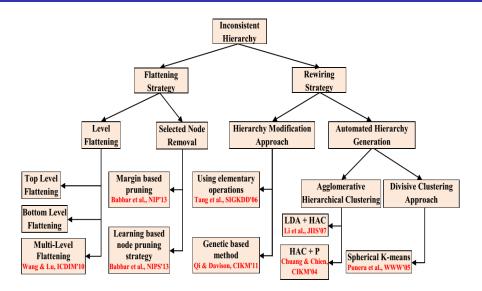


"Adjusted hierarchy classification performance comparatively better than semantically sound hierarchy"

52 / 66

Huzefa Rangwala	George Mason University	11/14/2016

Literature Overview



 ▶ < ≣ ▶</th>
 ≡
 <>
 <</th>
 <</th>

 11/14/2016
 53 / 66

イロト イポト イヨト イヨト

Motivation

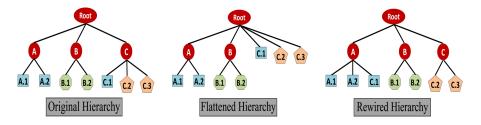
- For large scale datasets top-down (TD) hierarchical models are preferred over flat models due to computational benefit (training and prediction time)
- TD models performance suffers due to error propagation *i.e.* compounding of errors from misclassifications at higher levels which cannot be rectified at the lower levels

Objective

- Modify predefined hierarchy by removing (flattening) or rewiring inconsistent nodes to improve the classification performance of TD models
- Reduces top-down error propagation due to less number of decisions for classifying unlabeled examples

Flattening and Rewiring Strategy

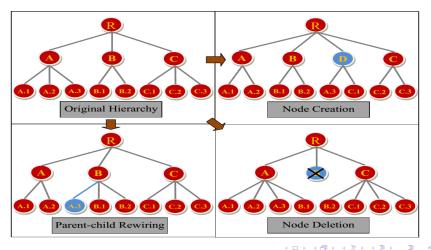
- Flattening strategy although useful upto certain extent has few limitations
 - Inability to deal with inconsistencies in different branches of the hierarchy



• Rewiring strategy can be used to resolve inconsistencies that occurs in different branch

Proposed Rewiring Strategy

• Elementary operation: node creation, parent-child rewiring, node deletion



11/14/2016 56 / 66

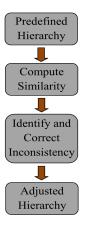
Proposed Rewiring Strategy Algorithm

• Filter based approach for hierarchy modification

Input: Predefined hierarchy (H_0) , Train data (\mathcal{D}_t)

- 1 Compute pairwise similarity between classes defined in H_0 on \mathcal{D}_t
- 2 Group together most similar classes
- 3 Identify inconsistencies within the hierarchy
- 4 Apply elementary operations: node creation or parent-child rewiring to correct inconsistencies and obtain new hierarchy *H*₁
- 5 Perform post-processing step (node deletion) on H_1 to obtain new hierarchy H_2

⁶ Train and evaluate hierarchical classification models on H_2



Performance Results

		Flattening	Rewiring		
Datasets		Best TD Model	Tang et al.	Proposed	
		(Flattening)		Filter Model	
	$\mu F_1(\uparrow)$	77.14 (0.01)	78.12 (0.16)	78.00 (0.22)	
CLEF	$MF_1(\uparrow)$	46.54 (0.06)	48.83 [‡] (0.08)	47.10 (0.03)	
	$hF_1(\uparrow)$	79.06 (0.01)	81.43 (0.03)	80.14 (0.02)	
	$\mu F_1(\uparrow)$	61.31 (0.53)	62.34 [‡] (0.28)	62.05 [‡] (0.10)	
DIATOMS	$MF_1(\uparrow)$	51.85 (0.23)	53.81 [‡] (0.11)	52.14 [‡] (0.14)	
	$hF_1(\uparrow)$	62.80 (0.04)	64.28 (0.22)	63.24 (0.13)	
	$\mu F_1(\uparrow)$	52.30 (0.12)	53.94 [†] (0.24)	54.28 [†] (0.18)	
IPC	$MF_1(\uparrow)$	45.65 (0.11)	46.10 [†] (0.21)	46.04 [†] (0.22)	
	$hF_1(\uparrow)$	64.73 (0.12)	67.23 (0.24)	68.34 (0.18)	
	$\mu F_1(\uparrow)$	46.61 (0.28)		48.25 [‡] (0.13)	
DMOZ-SMALL	$MF_1(\uparrow)$	31.26 (0.64)	NS	33.92 [‡] (0.22)	
	$hF_1(\uparrow)$	63.37 (0.44)		66.18 (0.15)	
DMOZ-2010	$\mu F_1(\uparrow)$	42.37 (0.27)	NS	43.10 (0.28)	
DIVIOZ-2010	$MF_1(\uparrow)$	30.11 (0.64)	113	31.21 (0.34)	
	$\mu F_1(\uparrow)$	50.64 (0.22)		51.82 (0.02)	
DMOZ-2012	$MF_1(\uparrow)$	30.58 (0.28)	NS	31.24 (0.12)	
	$hF_1(\uparrow)$	73.19 (0.02)		74.21 (0.03)	

Huzefa Rangwala

 ▶
 ₹
 ₽
 ♀
 ♀

 11/14/2016
 58 / 60

イロン イヨン イヨン イ

	Flattening	Rewiring		
Datasets	Best TD Model	Tang et al.	Proposed	
	(Flattening)		Filter Model	
CLEF	3.5	59	7.5	
DIATOMS	10	268	24	
IPC	830	26432	1284	
DMOZ-SMALL	65	NS	168	
DMOZ-2010	25600	NS	42000	
DMOZ-2012	63000	NS	94800	

Table: Total training runtimes (in mins)

- Large scale hierarchical classification is an important research problem in machine learning community due to its wide applicability across several domains
- Discussed various challenges associated with the hierarchical classification
- Discussed various state-of-the-art existing approaches;
- Discussed Multiple Hierarchy MTL and Approaches for Resolving Inconsistencies
- Emerging topics:
 - Large-scale classification with deep hierarchies
 - Orphan node prediction

References - I

- Gopal, Siddharth, and Yiming Yang. "Recursive regularization for large-scale classification with hierarchical and graphical dependencies." SIGKDD, 2013.
- Charuvaka, Anveshi, and Huzefa Rangwala. "HierCost: Improving Large Scale Hierarchical Classification with Cost Sensitive Learning." ECML, 2015.
- Tang, Lei, Jianping Zhang, and Huan Liu. "Acclimatizing taxonomic semantics for hierarchical content classification." SIGKDD, 2006.
- Li, Tao, Shenghuo Zhu, and Mitsunori Ogihara. "Hierarchical document classification using automatically generated hierarchy." Journal of Intelligent Information Systems 29.2 (2007): 211-230.
- Charuvaka, Anveshi, and Huzefa Rangwala. "Multi-task learning for classifying proteins using dual hierarchies." ICDM, 2012.
- Punera, Kunal, Suju Rajan, and Joydeep Ghosh. "Automatically learning document taxonomies for hierarchical classification." WWW, 2005.
- Qi, Xiaoguang, and Brian D. Davison. "Hierarchy evolution for improved classification." CIKM, 2011.
- Bennett, Paul N., and Nam Nguyen. "Refined experts: improving classification in large taxonomies." SIGIR, 2009.

Huzefa Rangwala

References - II

- Silla Jr, Carlos N., and Alex A. Freitas. "A survey of hierarchical classification across different application domains." DMKD, 2011.
- Naik, Azad, A. Charuvaka, and H. Rangwala. "Classifying documents within multiple hierarchical datasets using multi-task learning." ICTAI, 2013.
- Babbar, Rohit, et al. "On flat versus hierarchical classification in large-scale taxonomies." NIPS, 2013.
- Wang, Xiao-Lin, and Bao-Liang Lu. "Flatten hierarchies for large-scale hierarchical text categorization." ICDIM, 2010.
- Chuang, Shui-Lung, and Lee-Feng Chien. "A practical web-based approach to generating topic hierarchy for text segments." CIKM, 2004.
- Fagni, Tiziano, and Fabrizio Sebastiani. "On the selection of negative examples for hierarchical text categorization." LTC, 2007.
- Clare, Amanda, and Ross D. King. "Predicting gene function in Saccharomyces cerevisiae." Bioinformatics, 2003.
- Koller, Daphne, and Mehran Sahami. "Hierarchically Classifying Documents Using Very Few Words." ICML, 1997.

(日) (同) (三) (三)

References - III

- Xue et al. "Deep classification in large-scale text hierarchies." SIGIR, 2008.
- Tzanetakis, G., and P. Cook. "Musical genre classification of audio signals." IEEE transactions on Speech and Audio Processing, 2007.
- Gopal, Siddharth, et al. "Bayesian models for large-scale hierarchical classification." NIPS, 2012.
- Xiao, Lin, Dengyong Zhou, and Mingrui Wu. "Hierarchical classification via orthogonal transfer." ICML, 2011.
- Naik, Azad, and Huzefa Rangwala. "A ranking-based approach for hierarchical classification." DSAA, 2015.
- Tsochantaridis, Ioannis, et al. "Large margin methods for structured and interdependent output variables." JMLR, 2005.
- Liu, Tie-Yan, et al. "Support vector machines classification with a very large-scale taxonomy." SIGKDD, 2005.
- Caruana, Rich. "Multitask learning." Machine learning, 1997.
- Anveshi Charuvaka and Huzefa Rangwala. "Approximate block coordinate descent for large scale hierarchical classification." SAC, 2015.

- Dumais, Susan, and Hao Chen. "Hierarchical classification of Web content." SIGIR, 2000.
- Mineiro, Paul, and Karampatziakis, Nikos. "A Hierarchical Spectral Method for Extreme Classification." eprint arXiv:1511.03260 (NIPS workshop), 2015.
- Choromanska, Anna, et al. "Extreme Multi Class Classification." NIPS Workshop: eXtreme Classification, 2013.
- McCallum, Andrew, et al. "Improving Text Classification by Shrinkage in a Hierarchy of Classes." ICML, 1998.
- Babbar, Rohit, et al. "Maximum-margin framework for training data synchronization in large-scale hierarchical classification." NIP, 2013.
- Choromanska, Anna E., and John Langford. "Logarithmic time online multiclass prediction." NIPS, 2015.
- Prabhu, Yashoteja, and Manik Varma. "FastXML: a fast, accurate and stable tree-classifier for extreme multi-label learning." SIGKDD, 2014.
- Bhatia, Kush, et al. "Sparse Local Embeddings for Extreme Multi-label Classification." NIPS, 2015.

• • • • • • • • • • • •

- Naik, A., and Rangwala, H. "Filter based taxonomy modification for improving hierarchical classification." http://arxiv.org/abs/1603.00772, 2016.
- Peng, Hanchuan, Fuhui Long, and Chris Ding. "Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy." PAMI, 2005.
- Ding, Chris, and Hanchuan Peng. "Minimum redundancy feature selection from microarray gene expression data." Journal of bioinformatics and computational biology, 2005.

Thanks

Ph.D. Students:

Anveshi Charuvaka

Azad Naik

Slides available for download at:

https://cs.gmu.edu/~mlbio/sdm2016tutorial.html