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Motivation

Exponential growth in data (image, text, video) over time

Big data era - megabytes & gigabytes to terabytes & petabytes
growth in almost all fields - astronomical, biological, web content

Huzefa Rangwala George Mason University 11/14/2016 3 / 66



Data Organization

Organize data into structure

tree, graph [LSHTC, BioASQ and ILSVRC challenge]

Useful in various applications

query search, browsing and categorizing products
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Hierarchical Structure

Classes organized into the hierarchical structure

Generic (↑) to specific (↓) categories in top-down order
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Hierarchical Classification

Goal

Given hierarchy of classes exploit the hierarchical
structure to learn models and classify unlabeled test

examples (instances) to one or more nodes in the
hierarchy
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Challenges - I

Single label vs. multi-label

Single label classification - each example belongs exclusively to one
class only

Multi-label classification - example may belong to more than one
class
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Challenges - II

Mandatory leaf node vs. internal node prediction

Example may be assigned to internal nodes

Orphan node detection problem
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Challenges - III

Rare categories

Many classes with very few labeled examples

More prevalent in large scale datasets - ≥70% have ≤10 examples
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Challenges - IV

Feature selection

All features are not essential to discriminate between classes

Identify features to improve classification performance
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Other Challenges

Parameter optimization
incorporate relationships (parent-child, silings) information

Scalability
large # of classes, features and examples require distributed
computation

Dataset
#Training #Leaf node

#Features #Parameters
Parameter

examples (classes) size (approx)
DMOZ-2010 128,710 12,294 381,580 4,652,986,520 18.5 GB
DMOZ-2012 383,408 11,947 348,548 4,164,102,956 16.5 GB

Inconsistent hierarchy
not suitable for classification (more details later)
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Notation

n = # of training examples (instances) D = dimension of each instance
N = set of nodes in the hierarchy L = set of leaf node (classes)
C(t) = children of node t π(t) = parent of node t

Huzefa Rangwala George Mason University 11/14/2016 13 / 66



Classification

Training - Learn mapping function using training data

Testing - Predict the label of test example
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Learning Algorithm: General Formulation

Combination of two terms:

1 Empirical loss - controls how well the learnt models fits the training
data

2 Regularization - prevent models from over-fitting and encodes
additional information such as hierarchical relationships
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Different Approaches for Solving HC Problem

Huzefa Rangwala George Mason University 11/14/2016 16 / 66



Flat Classification Approach

Simplest method (ignores hierarchy)

Learn discriminant classifiers for each leaf node in the hierarchy

Unlabeled test example classified using the rule:

ŷ = arg max
y ∈ Y

f (x, y |w)
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Local Classification Approach - I

Local Classifier per Node (LCN)

Learn binary classifiers for all non-root nodes

Goal is to effectively discriminate between the siblings

Top-down approach is followed for classifying unlabeled test examples
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Local Classification Approach - II

Local Classifier per Level (LCL)

Learn multi-class classifiers for all levels in the hierarchy

Least popular among local approaches

Prediction inconsistency may occur and hence post-processing step is
required

Huzefa Rangwala George Mason University 11/14/2016 19 / 66



Global Classification Approach

Learn global function considering all hierarchical relationships

Often referred as Big-Bang approach

Unlabeled test instance is classified using an approach similar to flat
or local methods
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Evaluation Metrics - I

Flat evaluation measures

Misclassifications treated equally

Common evaluation metrics:

Micro-F1 - gives equal weightage to all examples, dominated by
common class
Macro-F1 - gives equal weightage to each class
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Evaluation Metrics - II

Hierarchical evaluation measures

Hierarchical distance between the true and predicted class taken into
consideration for performance evaluation

Common evaluation metrics:

Hierarchical-F1 - common ancestors between true and predicted class
Tree Error - average hierarchical distance b/w true and predicted class
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Multi-Task Learning (MTL)

Involves joint training of multiple related tasks to improve
generalization performance

Independent learning problems can utilize the shared knowledge

Exploits inductive biases that are helpful to all the related tasks

similar set of parameters
common feature space
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Parent-child Regularization, Gopal and Yang, SIGKDD’13

Motivation

Traditional approach learn classifiers for each leaf
node (task) to discriminate one class from other

min
wt

1

2
||wt ||22 + C

n∑
i=1

[
1− Yitw

T
t xi

]
+

Works well if:

Dataset is small
Balanced
Sufficient positive examples per class to learn
generalized discriminant function

Drawbacks

Real world datasets suffers from rare categories issue
Remember: 70% classes have less than 10 examples per class

Large number of classes (scalability issue)
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Motivation - II

Can we improve the performance of data sparse
leaf nodes by taking advantage of data rich nodes
at higher levels?

Incorporate inter-class dependencies to improve
classification

examples belonging to Soccer category is less
likely to belong to Software category

min
wt

1

2
||wt −wπ(t)||22 +C

∑
k∈C(t)

n∑
i=1

[
1−YikwT

t xi
]
+

Objective

How to effectively incorporate the hierarchical relationships into the
objective function to improve generalization performance

Make it scalable for larger datasets
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Proposed Formulation

Enforces model parameters (weights) to be similar to the parent in
regularization

Proposed state-of-the-art: HR-SVM and HR-LR global formulation

HR-SVM

min
W

∑
t∈N

1

2
||wt −wπ(t)||22 + C

∑
k∈L

n∑
i=1

[
1− YikwT

k xi
]
+

Internal Node

min
wt

1

2
||wt −wπ(t)||22 +

1

2

∑
c∈C(t)

||wc −wt ||22

Leaf Node

min
wt

1

2
||wt −wπ(t)||22 +

1

2

n∑
i=1

[
1− Yitw

T
t xi

]
+
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Proposed Parallel Implementation

Each node is independent of all other nodes except its neighbours
Objective function is block separable. Therefore, Parallel Block
Coordinate Descent (CD) can be used for optimization

1 Fix odd-levels parameters,
optimize even-levels in parallel

2 Fix even-levels parameters,
optimize odd-levels in parallel

3 Repeat untill convergence

Extended to graph by first finding the minimum graph coloring
[Np-hard] and repeatedly optimizing nodes with the same color in
parallel during each iteration
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Experiments

Dataset description

Wide range of single and multi-label dataset with varying number of
features and categories were used for model evaluation

Datasets # Features # Categories Type
Avg # labels
(per instance)

CLEF 89 87 Single-label 1
RCV1 48,734 137 Multi-label 3.18
IPC 541,869 552 Single-label 1
DMOZ-SMALL 51,033 1,563 Single-label 1
DMOZ-2010 381,580 15,358 Single-label 1
DMOZ-2012 348,548 13,347 Single-label 1
DMOZ-2011 594,158 27,875 Multi-label 1.03
SWIKI-2011 346,299 50,312 Multi-label 1.85
LWIKI 1,617,899 614,428 Multi-label 3.26

Table: Dataset statistics
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Flat Baselines Comparison

Figure: Performance improvement: HR-SVM vs. SVM
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Hierarchical Baselines Comparison

Datasets HR-SVM HR-LR TD HSVM OT HBLR

CLEF 80.02 80.12 70.11 79.72 73.84 81.41
RCV1 81.66 81.23 71.34 NA NS NA
IPC 54.26 55.37 50.34 NS NS 56.02
DMOZ-SMALL 45.31 45.11 38.48 39.66 37.12 46.03
DMOZ-2010 46.02 45.84 38.64 NS NS NS
DMOZ-2012 57.17 53.18 55.14 NS NS NS
DMOZ-2011 43.73 42.27 35.91 NA NS NA
SWIKI-2011 41.79 40.99 36.65 NA NA NA
LWIKI 38.08 37.67 NA NA NA NA

[NA - Not Applicable; NS - Not Scalable]

Table: Micro-F1 performance comparison
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Runtime Comparison - hierarchical baselines

Datasets HR-SVM HR-LR TD HSVM OT HBLR

CLEF 0.42 1.02 0.13 3.19 1.31 3.05
RCV1 0.55 11.74 0.21 NA NS NA
IPC 6.81 15.91 2.21 NS NS 31.20
DMOZ-SMALL 0.52 3.73 0.11 289.60 132.34 5.22
DMOZ-2010 8.23 123.22 3.97 NS NS NS
DMOZ-2012 36.66 229.73 12.49 NS NS NS
DMOZ-2011 58.31 248.07 16.39 NA NS NA
SWIKI-2011 89.23 296.87 21.34 NA NA NA
LWIKI 2230.54 7282.09 NA NA NA NA

[NA - Not Applicable; NS - Not Scalable]

Table: Training runtime comparison (in mins) but on several nodes.

Huzefa Rangwala George Mason University 11/14/2016 31 / 66



Cost-sensitive Learning, Charuvaka & Rangwala, ECML’15

Motivation

Drawbacks of Recursive Regularization

scalable, but more expensive to train than flat classification
requires specialized implementation and communication between
processing node
Does not deal with class imbalance directly

Objective

Decouple models so that they can be trained in parallel without
dependencies between models

Account for class imbalance in the optimization framework
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Hierarchical Regularization Re-examination - I
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Hierarchical Regularization Re-examination - II

Opposing learning influences:

loss term - model for a node is forced to be dissimilar to all other
nodes
regularization term - model is forced to be similar to its neighbors;
greater similarity to nearer neighbors

Resultant effect:

Mistakes on negative examples that come from near nodes is less
severe than those coming from far nodes while still taking advantage of
the hierarchy
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Cost-sensitive Loss

Consider the loss term for class ”t” which is separable over examples∑
i
loss(yi ,w

T
i xi )

Each loss value is multiplied by importance of the example for this
class ∑

i
loss(yi ,w

T
i xi )× φ(t, yi )

This is an example of ”instance-based” cost sensitive learning

cti = φ(t, y1)
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Hierarchical Costs

How to define costs based on hierarchy?

Tree Distance (TrD) - undirected graph distance between between
nodes

Number Common Ancestors (NCA) - the number of ancestors in
common to target class and class label

Exponentiated Tree Distance (ExTrD) - squash tree distance into
a suitable range using validation
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Imbalance Costs

Using the same formulation of
cost-sensitive learning, data
imbalance can also be addressed

ci = 1 + L/[1 + exp|n − n0|]

Due to very large skew, inverse
class size can result in extremely
large weights. Fix using
squashing function shown in Fig.

Multiply to combine with
Hierarchical costs

ni = num examples
n0, L = user defined constants
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Experiments

Dataset

For comparison purpose same dataset has been used as proposed in
the paper [Gopal and Yang, SIGKDD’13]

Comparison Methods
Flat baseline

LR - one-vs-rest binary logistic regression is used in the conventional
flat classification setting

Hierarchical baselines

Top-down Logistic Regression (TD-LR) - one-vs-rest multi-class
classifier trained at each internal node

HR-LR [Gopal and Yang, SIGKDD’13] - a recursive regularization
approach based on hierarchical relationships
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Results (Hierarchical Costs)

Datasets Micro-F1 (↑) Macro-F1 (↑) hF1 (↑) TE (↓)

CLEF

LR 79.82 53.45 85.24 0.994
TrD 80.02 55.51 85.39 0.984
NCA 80.02 57.48 85.34 0.986
ExTrD 80.22 57.55† 85.34 0.982

DMOZ-SMALL

LR 46.39 30.20 67.00 3.569
TrD 47.52‡ 31.37‡ 68.26 3.449
NCA 47.36‡ 31.20‡ 68.12 3.460
ExTrD 47.36‡ 31.19‡ 68.20 3.456

IPC

LR 55.04 48.99 72.82 1.974
TrD 55.24‡ 50.20‡ 73.21 1.954
NCA 55.33‡ 50.29‡ 73.28 1.949
ExTrD 55.31‡ 50.29‡ 73.26 1.951

RCV1

LR 78.43 60.37 80.16 0.534
TrD 79.46‡ 60.61 82.83 0.451
NCA 79.74‡ 60.76 83.11 0.442
ExTrD 79.33‡ 61.74† 82.91 0.466

Table: Performance comparison of hierarchical costs
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Results (Imbalance Costs)

Datasets Micro-F1 (↑) Macro-F1 (↑) hF1 (↑) TE (↓)

CLEF

IMB + LR 79.52 53.11 85.19 1.002
IMB + TrD 79.92 52.84 85.59 0.978
IMB + NCA 79.62 51.89 85.34 0.994
IMB + ExTrD 80.32 58.45 85.69 0.966

DMOZ-SMALL

IMB + LR 48.55‡ 32.72‡ 68.62 3.406
IMB + TrD 49.03‡ 33.21‡ 69.41 3.334
IMB + NCA 48.87‡ 33.27‡ 69.37 3.335
IMB + ExTrD 49.03‡ 33.34‡ 69.54 3.322

IPC

IMB + LR 55.04 49.00 72.82 1.974
IMB + TrD 55.60‡ 50.45† 73.56 1.933
IMB + NCA 55.33 50.29 73.28 1.949
IMB + ExTrD 55.67‡ 50.42 73.58 1.931

RCV1

IMB + LR 78.59‡ 60.77 81.27 0.511
IMB + TrD 79.63‡ 61.04 83.13 0.435
IMB + NCA 79.61 61.04 82.65 0.458
IMB + ExTrD 79.22 61.33 82.89 0.469

Table: Peformance comparison with imbalance cost included
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Results (our best with other methods)

Datasets Micro-F1 (↑) Macro-F1 (↑) hF1 (↑) TE (↓)

CLEF

TD-LR 73.06 34.47 79.32 1.366
LR 79.82 53.45 85.24 0.994
HR-LR 80.12 55.83 NA NA
HierCost 80.32 58.45† 85.69 0.966

DMOZ-SMALL

TD-LR 40.90 24.15 69.99 3.147
LR 46.39 30.20 67.00 3.569
HR-LR 45.11 28.48 NA NA
HierCost 49.03‡ 33.34‡ 69.54 3.322

IPC

TD-LR 50.22 43.87 69.33 2.210
LR 55.04 48.99 72.82 1.974
HR-LR 55.37 49.60 NA NA
HierCost 55.67‡ 50.42† 73.58 1.931

RCV1

TD-LR 77.85 57.80 88.78 0.524
LR 78.43 60.37 80.16 0.534
HR-LR 81.23 55.81 NA NA
HierCost 79.22‡ 61.33 82.89 0.469

Table: Performance comparison of HierCost with other baseline methods
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Runtime comparison

Datasets TD-LR LR HierCost

CLEF <1 <1 <1
DMOZ-SMALL 4 41 40
IPC 27 643 453
RCV1 20 29 48
DMOZ-2010 196 15191 20174
DMOZ-2012 384 46044 50253

Table: Total training runtimes (in mins)
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Software

Freely available for research and education purpose at:

https://cs.gmu.edu/∼mlbio/HierCost/

Software: implemented in python using scikit-learn machine learning
and svmlight-loader package

Other prerequisite package:

numpy
scipy
networkx
pandas
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Learning using Multiple Hierarchies (MTL), Charuvaka and
Rangwala, ICDM’12

Motivation

Hierarchies are so common that sometimes multiple hierarchies
classify similar data

Heterogenous label view provide additional knowledge which should
be exploited by learners

Examples

protein structure classification - several hierarchical schemes for
organizing proteins based on curation process or 3D structure
web-page classification - several hierarchy exist for categorizing such
as DMOZ and wikipedia datasets

Objective

Utilize multiple hierarchical label views in multi-task learning context
to improve classification performance
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Three Different Learning Settings - I

(i) Single Task Learning (STL) - each task model parameters learned
independently
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Three Different Learning Settings - II

(ii) Single Hierarchy Multi-Task Learning (SHMTL) - relationship
between tasks within a hierarchy are combined individually
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Three Different Learning Settings - III

(iii) Multiple Hierarchy Multi-Task Learning (MHMTL) - relationship
between tasks from different hierarchies are extracted using common
examples
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MTL Formulations

General MTL formulation:

Different MTL formulation based on regularization:

Sparse - All tasks share a single set of useful features

Ω(W) = ||W||2,1
Graph Regularization - Related tasks have similar parameters

Ω(W) =
∑

(a,b)∈E ||Wa −Wb||22
Trace - Task parameters are drawn from a low dimensional sub-space

Ω(W) = ||W||∗ = TraceNorm(W)
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Performance: AUC Comparison
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STL, SHMTL and MHMTL Comparison
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Motivation

Predefined Hierarchy

Hierachy defined by the domain experts

Reflects human-view of the domain - may not be optimal for machine
learning classification algorithms
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Case Study

Question

Can we trust the predefined expert’s hierarchy for achieving the good
classification performance?
Can we tweak (adjust) the hierarchy to improve the performance?

Answer

Case study on subset of newsgroup dataset

”Adjusted hierarchy classification performance comparatively better than
semantically sound hierarchy”
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Literature Overview
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Hierarchy Modification Strategy

Motivation

For large scale datasets top-down (TD) hierarchical models are
preferred over flat models due to computational benefit (training and
prediction time)

TD models performance suffers due to error propagation i .e.
compounding of errors from misclassifications at higher levels which
cannot be rectified at the lower levels

Objective

Modify predefined hierarchy by removing (flattening) or rewiring
inconsistent nodes to improve the classification performance of TD
models

Reduces top-down error propagation due to less number of decisions
for classifying unlabeled examples
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Flattening and Rewiring Strategy

Flattening strategy although useful upto certain extent has few
limitations

Inability to deal with inconsistencies in different branches of the
hierarchy

Rewiring strategy can be used to resolve inconsistencies that occurs in
different branch
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Proposed Rewiring Strategy

Elementary operation: node creation, parent-child rewiring, node
deletion
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Proposed Rewiring Strategy Algorithm

Filter based approach for hierarchy modification

Input: Predefined hierarchy (H0), Train data
(Dt)

1 Compute pairwise similarity between classes
defined in H0 on Dt

2 Group together most similar classes

3 Identify inconsistencies within the hierarchy

4 Apply elementary operations: node creation
or parent-child rewiring to correct
inconsistencies and obtain new hierarchy H1

5 Perform post-processing step (node deletion)
on H1 to obtain new hierarchy H2

6 Train and evaluate hierarchical classification
models on H2
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Performance Results

Datasets
Flattening Rewiring

Best TD Model Tang et al. Proposed
(Flattening) Filter Model

CLEF
µF1(↑) 77.14 (0.01) 78.12 (0.16) 78.00 (0.22)
MF1(↑) 46.54 (0.06) 48.83‡ (0.08) 47.10 (0.03)
hF1(↑) 79.06 (0.01) 81.43 (0.03) 80.14 (0.02)

DIATOMS
µF1(↑) 61.31 (0.53) 62.34‡ (0.28) 62.05‡ (0.10)
MF1(↑) 51.85 (0.23) 53.81‡ (0.11) 52.14‡ (0.14)
hF1(↑) 62.80 (0.04) 64.28 (0.22) 63.24 (0.13)

IPC
µF1(↑) 52.30 (0.12) 53.94† (0.24) 54.28† (0.18)
MF1(↑) 45.65 (0.11) 46.10† (0.21) 46.04† (0.22)
hF1(↑) 64.73 (0.12) 67.23 (0.24) 68.34 (0.18)

DMOZ-SMALL
µF1(↑) 46.61 (0.28)

NS
48.25‡ (0.13)

MF1(↑) 31.26 (0.64) 33.92‡ (0.22)
hF1(↑) 63.37 (0.44) 66.18 (0.15)

DMOZ-2010
µF1(↑) 42.37 (0.27)

NS
43.10 (0.28)

MF1(↑) 30.11 (0.64) 31.21 (0.34)

DMOZ-2012
µF1(↑) 50.64 (0.22)

NS
51.82 (0.02)

MF1(↑) 30.58 (0.28) 31.24 (0.12)
hF1(↑) 73.19 (0.02) 74.21 (0.03)
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Runtime Comparison

Datasets
Flattening Rewiring

Best TD Model Tang et al. Proposed
(Flattening) Filter Model

CLEF 3.5 59 7.5
DIATOMS 10 268 24
IPC 830 26432 1284
DMOZ-SMALL 65 NS 168
DMOZ-2010 25600 NS 42000
DMOZ-2012 63000 NS 94800

Table: Total training runtimes (in mins)
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Conclusion

Large scale hierarchical classification is an important research problem
in machine learning community due to its wide applicability across
several domains

Discussed various challenges associated with the hierarchical
classification

Discussed various state-of-the-art existing approaches;

Discussed Multiple Hierarchy MTL and Approaches for Resolving
Inconsistencies

Emerging topics:

Large-scale classification with deep hierarchies
Orphan node prediction
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