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Why are networks interesting to study?

- Know your thoughts!

- What is meant by social network analysis ? What are the
end results of such analysis ? and why do we care ?



xample: Internet

Source: Bill Cheswick http://www.cheswick.com/ches/map/gallery/index.html
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Early Social Network Analysis

- 1933 Moreno displays first sociogram at meeting of the
Medical Society of the state of New York
- article in NYT
- interests: effect of networks on e.g. disease propagation
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Examples: early social network

analysis
- School kids — favorite (and captive) subjects of study

- These days much more difficult because need parental
consent to gather social network data

/A boys

O girls

. /R

Source: An Attraction Network in a Fourth Grade Class (Moreno, ‘Who shall survive?’, 1934).



Today Social Networks

Facebook social graph
4-degrees of separation [Backstrom-Boldi-Rosa-Ugander-Vigna, 2011]




What are networks?

- Networks are collections of

points joined by lines.

“Network” = “Graph”
- node
. — edge
points lines
vertices | edges, arcs math
nodes links computer science
sites bonds physics
actors ties, relations | sociology




examples: Political/Financial

Networks

- Mark Lombardi: tracked and mapped global financial fiascos in the

1980s and 1990s (committed suicide 2000)
- searched public sources such as news articles
- drew networks by hand (some drawings as wide as 10ft)

- Book: Hobbs, Robert. Mark Lombardi :global networks /Robert
Hobbs.. New York : Independent Curators International, c2003..
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Understanding through visualization

- “| happened to be in the Drawing Center when the
Lombardi show was being installed and several
consultants to the Department of Homeland Security
came in to take a look. They said they found the work
revelatory, not because the financial and political
connections he mapped were new to them, but because
Lombardi showed them an elegant way to array disparate
information and make sense of things, which they thought
might be useful to their security efforts. | didn't know
whether to find that response comforting or alarming, but |
saw exactly what they meant.”

Michael Kimmelman
Webs Connecting the Power Brokers, the Money and the World
NY Times November 14, 2003
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Valdis Krebs
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Citation Networks

overlap
with
right side

Chemistry

¢ overlap
with
left side

/ , Specialties
/Infectious P

Diseases

O———=0-gyp

|
o ‘Wg-—ﬂ
\'{“ &

"u-—— = Humanities

_—

w

Earth Sciences

0

Citation networks and Maps of science
[Borner et al., 2012]



o-Authorship Networks
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examples: Networks of personal
homepages

Stanford MIT

homophily: what attributes are predictive of friendship?
group cohesion

Source: Lada A. Adamic and Eytan Adar, ‘Friends and neighbors on the web’, Social Networks, 25(3):211-230, July
2003.



examples: airline networks
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examples: railway networks
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other examples, e.g. natural language processing

- Wordnet

Source: http://wordnet.princeton.edu/man/wnlicens.7WN



examples: gene regulatory

networks

- gene regulatory networks
- humans have only 30,000 genes, 98% shared with chimps
- the complexity is in the interaction of genes
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Source: http://www.zaik.uni-koeln.de/bioinformatik/regulatorynets.html.en



examples: metabolic networks

- Citric acid cycle

- Metabolites participate
In chemical reactions

Source: undetermined
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Source: Roche Applied Science, http://www.expasy.org/cgi-bin/show_thumbnails.pl




Food Web of Smallmouth Bass
Little Rock Lake (Cannibal)
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Brain Networks
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Social Network Impact
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PREVIEW OF SNA




modeling networks: random

networks

- Nodes connected at random

- Number of edges incident on each node is Poisson

distributed Poisson distribution

P(k)




modeling networks: small worl

- Small worlds

- a friend of a friend is also
frequently a friend

- but only six hops separate any
two people in the world

Arnold S. — thomashawk, Flickr;
http://creativecommons.org/licenses/by-nc/2.0/deed.en




Small world models

Duncan Watts and Steven Strogatz

a few random links in an otherwise structured graph make the
network a small world: the average shortest path is short

Bnew
A g E ;;ﬁ %A
B B

regular lattice: small world: random graph:

my friend’ s friend is mostly structured all connections

always my friend with a few random random
connections

Source: Watts, D.J., Strogatz, S.H.(1998) Collective dynamics of ‘small-world’' networks. Nature 393:440-442.



Watts Strogatz Small World
Model

As you rewire more and more of the links and random,
what happens to the clustering coefficient and average
shortest path relative to their values for the regular lattice?

http://projects.si.umich.edu/netlearn/NetLogo4/SmallWorldWS.html
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What is the role of random shortcuts in diffusion?
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http://projects.si.umich.edu/netlearn/NetLogo4/SmallWorldWS.html




modeling networks: power law
networks

- Many real world networks contain hubs: highly connected
nodes

sually the distribution of edges is extremely skewed
.— many nodes with few edges

°
)

number of nodes with so many ed@s

fat tail: a few nodes with a very large number

/ of edges

n
>

number of edges

no “typical” number of edges



B
But is it really a power-law?

- A power-law will appear as a straight line on a log-log plot:

log(# nodes)

n
»

log(# edges)

- A deviation from a straight line could indicate a different distribution:
- exponential
- lognormal



network growth & resulting

structure

random attachment: new node picks any existing node to
attach to

preferential attachment: new node picks from existing
nodes according to their degrees

http://projects.si.umich.edu/netlearn/NetLogo4/RAndPrefAttachment.html




What implications does this

have?
- Robustness
- Search
- Spread of disease
- Opinion formation
- Spread of computer viruses

- Gossip



How do we search?

Who could
introduce me tQ
Richard Gere?

Bob

A
Richard Gere — spaceodissey, Flickr; http://creativecommons.org/licenses/by/2.0/deed.en

Friends collage — luc, Flickr; http://creativecommons.org/licenses/by/2.0/deed.en




power-law graph




Poisson graph







But are especially-vulnerable to targetec attack

- Targeting and removing hubs can quickly break up the network



In social networks, it' s nice to be a hub




( But it depends on what you' re sharing...




The role of hubs in epidemics

- In a power-law network, a virus can persist no matter how
low its infectiousness

- Many real world networks do exhibit power-laws:
- needle sharing
- sexual contacts
- email networks



Spread of computer viruses
can be affected by the
underlying network




S| models & network structure

Will random or preferential attachment lead to faster
diffusion?

random growth preferential growth



sprea
Urban legends

Word of mouth
(movies, products)

(dis) information cascades_

Web is self-
correcting:

Satellite image hoax is
first passed around,
then exposed, hoax fact
Is blogged about, then

GeoStar 45

written up on 23:15 EST 14 Aug. 2003
urbanlegends.about.com

Source: undetermined



IR applications: online info

retrieval

- It’ s in the links:

- links to URLs can be interpreted as endorsements or
recommendations

- the more links a URL receives, the more likely it is to be a good/
entertaining/provocative/authoritative/interesting information source

- but not all link sources are created equal
- a link from a respected information source
- a link from a page created by a spammer

an important page, e.g. slashdot

/ O<—O<\O > Many webpages scattered

across the web
if a web page is
slashdotted, it gains attention ~




- Ranking pages by trackinga =
drunk

- Arandom walker following edges in a network for a very
long time will spend a proportion of time at each node
which can be used as a measure of <
Importance

Various eigenvalue metrics
yield variations of

Importance measures



Summary

- networks are everywhere and can be used to describe
many, many systems

- by modeling networks we can start to understand their
properties and the implications those properties have for
processes occurring on the network



