
Complex Network Mining for Decision Making. (Specific Project)

Huzefa Rangwala, Ph.D.

BigData with Structure: Large Graphs

social graph

social graph

follow-graph

consumerproducts graph

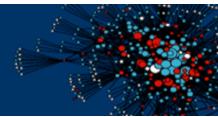
user-movie ratings graph



DNA interaction graph

WWW link graph

Social Networks


".. defined between persons or groups of persons with some pattern of interactions or connections amongst them."

EXAMPLES:

- Friend-to-friend Networks
- Actor-to-actor Networks
- Email Networks
- Blogger Networks
- Reply Networks

Explicit Relationship Networks

Explicit relationships (friends, enemies, followers, professional colleagues) are defined between the entities (nodes/people) within the network.

Nodes can belong to multiple communities or have different properties.

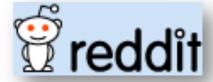
Edges can be labeled, or have weights or just binary.

DBLP Co-participation Networks

The DBLP server provides bibliographic information on major computer science journals and proceedings.

Several papers analyze the co-authorship network as well as the citation network derived from DBLP database.

Social Bookmarking websites



"A Web-based service where users can create and store links. It is an increasingly popular way to locate, classify, rank, and share internet resources" – FDLP

Digg Definitions

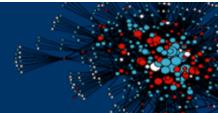
+11 diggs 🐶 🔠

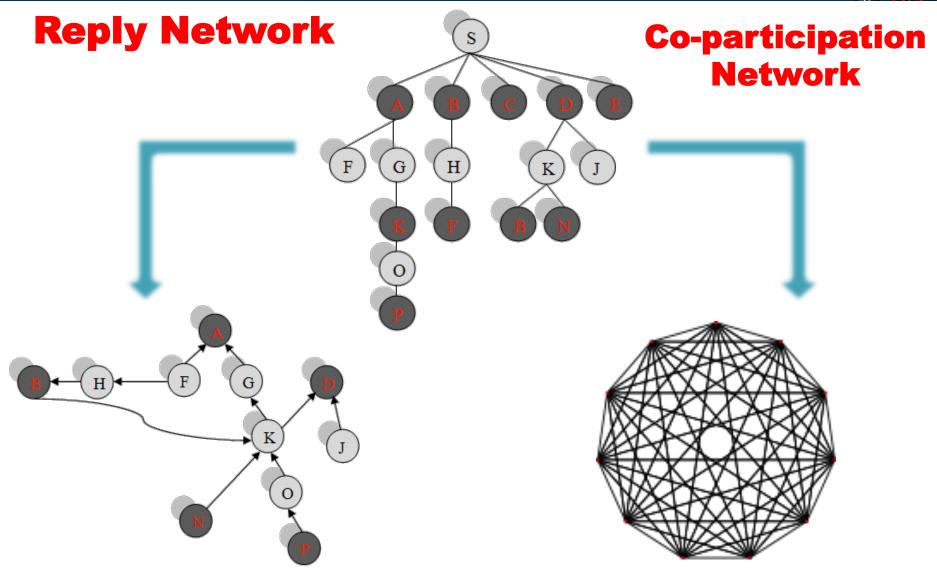
325 diggs

9 Places Where You Can Retire and Live Like a King

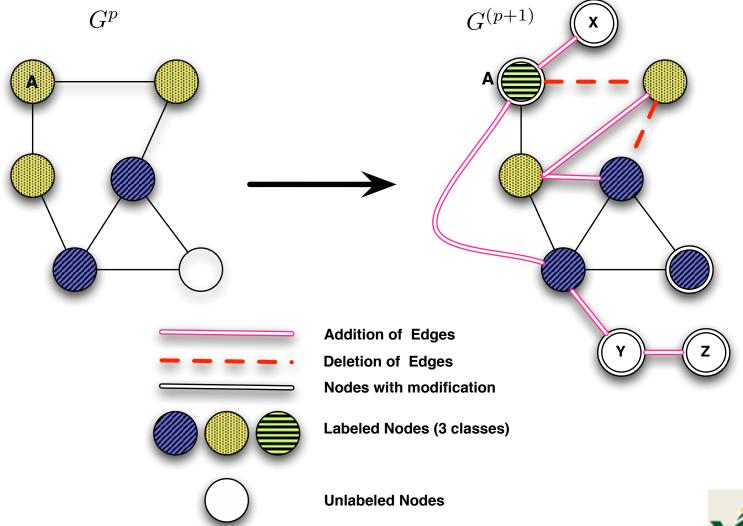
mint.com — From changes in scenery to endless recreation, business tax number of international locations are well-worth consideration as retireme retire, they make good vacation getaways as well. (Submitted by oboy)

53 Comments Share Share Made popular 3 hr 30 min ago

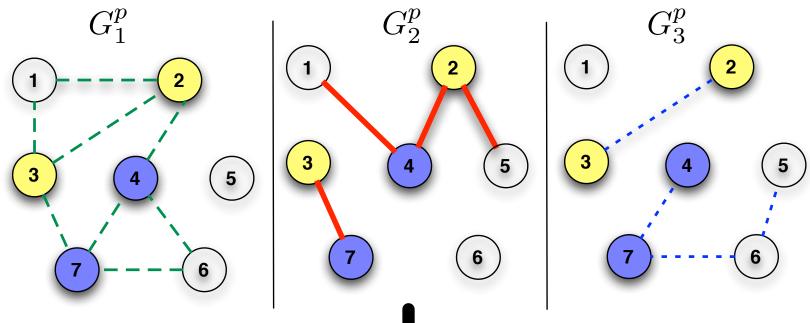



Okay, but there are other places in Costa Rica that are.

- story a social bookmark
- •user contributor and/or commenter
- digg positive rating
- bury negative rating
- category main topics
 - Sports, Business, Science, etc.
- •topic sub topics
 - •Linux, Elections, Golf, etc.

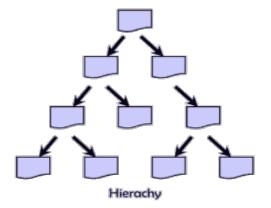


Digg Implicit Network



Defining Complex Networks

Complex Multi-Relational


Infer Latent Edges using EM

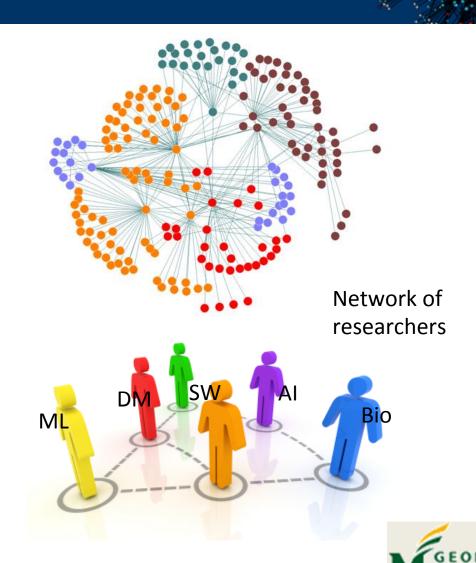
$$\Pi^{p} = \begin{bmatrix} \pi_{1,1}^{p} & \dots & \dots & \pi_{1,7}^{p} \\ \dots & \dots & \dots & \dots \\ \pi_{7,1}^{p} & \dots & \dots & \pi_{7,7}^{p} \end{bmatrix}_{7 \times 7}$$

Output can be ``Structured''

- Not 0/1 classification or regression
 - But relationship between output classes/ variables.
- Examples:
 - Multi-labeled
 - Hierarchical
 - Partially Labeled

	f1	f2	f3	f4
p1	?	1	0	0
р2	0	1	?	0
рЗ	1	?	0	?
р4	0	?	1	0
р5	?	0	0	1
р6	0	?	1	0

Other Challenge: Several Thousands of Classes


Determining a Node (Collective Classification)

Input: A graph G = (V,E) with given percentage of labeled nodes for training, node features for all the nodes

Output: Predicted labels of the test nodes

Model:

- Relational features and node features are used for training local classifier using labeled nodes
- Test nodes labels are initialized with labels predicted by local classifier using node attributes
- Inference through iterative classification of test nodes until convergence criterion reached

Collective Classification

Multi-labeled collective classification (Kong et. al. 2011)

- Assume "K" possible labels.
- Initialization: Train "K" one-versus-rest classification models for the different labels.
 - Use only train nodes.
 - Features: Attributes, Self-Label Features (i.e., other labels)
- Repeat
 - Predict labels for test nodes.
 - Retrain ``baseline" models.
 - Features: Attributes, Self-Label Features, Cross-labeled features (from neighboring nodes).
- Until convergence (Labels do not change).

Our Approach

Multi-labeled collective classification using ranked neighbors (Saha et. al. 2012, 2013)

Intuition:

- Are there influencing neighbors?
- Are some of the more important?
- Can we use a ranking based list?
- Can we speed up the computation by removal of edges that do not convey any information? – sparsification?
- Active-learning approach.

For Baseline Model Learning

Obtain,

$$f(x \mid w) \sim y$$

Objective Function,

$$\min_{w} \sum_{i=1}^{N} \mathcal{L}\left(x_{i}, y_{i}, w\right) + \lambda \mathcal{R}\left(w\right)$$

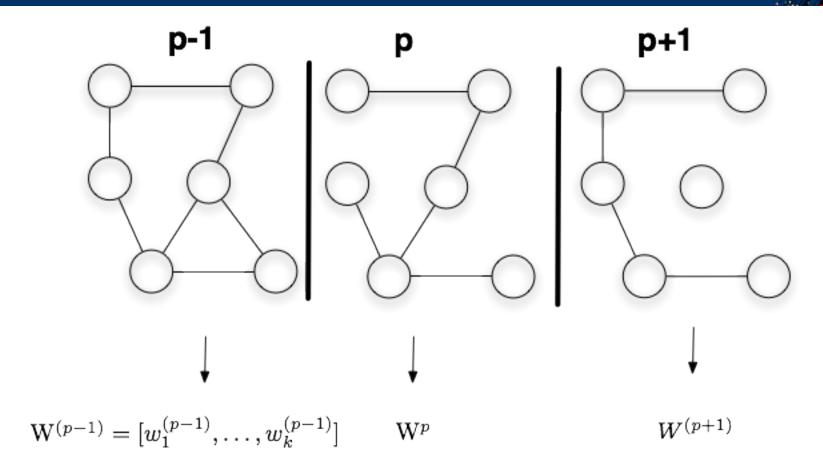
Loss Function (Hinge Loss, Least Squares, Logistic Loss)

Regularization Term (usually a norm of w)

Can we couple models across different time periods?

Obtain,

$$f_t(x \mid w) \sim y_t \quad \forall t \in \{1, 2, \dots, T\}$$


Objective Function,

$$\min_{W} \Sigma_{t=1}^{T} \Sigma_{i=1}^{n_{t}} \mathcal{L}\left(f\left(x_{i} \mid W_{t}\right), y_{i}\right) + \lambda \mathcal{R}\left(\left\{W_{t}\right\}_{t=1}^{T}\right)$$

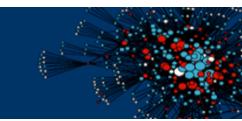
Loss (sums the misclassification error over all the examples from all the tasks)

Regularization term jointly regularizes the model parameters of all the tasks for

Jointly/Iteratively Learn Model Parameters

Different Regularization Penalties

Joint Feature Selection (Assume shared Features)


$$\mathcal{R}(\mathcal{W}) = \|W\|_{2,1}$$

Difference in two periods

$$\mathcal{R}(W) = \sum_{(p,q)\in\mathcal{E}} \|W_p - W_q\|_2^2$$

Advantages

- Better generalization of jointly trained parameters
 - Relationship across epochs.
- Need fewer labeled examples.
 - Scarcity in training data supply.

BIG Data presents BIG problems.

- Big Parameters. Extreme classes. Large Dimensions.
- Need iterative/concurrent formulations for standard optimization techniques.
- MPI/Hadoop/Distributed version.
- Need local network and time variant estimation properties of the algorithms.
- Other Questions?
 - Early Time Classification.
 - Human in the loop (Active Learning Approaches).
 - Detection of Dynamic Network Patterns.
 - No standard definitions.

