
I2C

Prof.	Yan	Luo

UMass	Lowell	16.480/552

[references:	Philips	AN10216-1,	AN97055,	PIC18F45K20	DS]

What	is	I2C	(inter-IC)
• Originally	designed	by	Philips	to	enable	inter-IC	communication	

using	a	minimum	number	of	pins
• Build	a	simple	universal	bus	for	IC	compatibility	from	different	

vendors
– Simple	hardware	spec
– Simple	software	protocol
– Speed	at	100kbps	->	400kbps	->	3.4Mbps

• Features
– No	special	wiring	or	connector	needed
– A	serial	data	line	(SDA)	and	a	serial	clock	line	(SCL)
– Each	device	has	unique	address,	is	software	addressable
– Master/slave	relationship,	can	have	multiple	masters
– Serial,	8-bit,	bi-directional	data	transfer
– Max	bus	capacity	of	400pF	

1

Serial	Bus	Comparison
[reference:	Philips	AN10216]

UART CAN USB SPI I2C

• Well	known
• Cost	

effective
• Simple

• Secure
• Fast

• Fast
• Plug&Play

HW
• Simple
• Low	cost

• Fast
• Universally	

accepted
• Low	cost
• Large	

portfolio

• Simple
• Well known
• Universally	

accepted
• Plug&play
• Large	

portfolio
• Cost	

effective
• Limited

functionality
• Point	to	

point

• Complex
• Automotive	

oriented
• Limited	

portfolio
• Expensive	

firmware	

• Require	
powerful	
master

• No	
plug&play
software	–
drivers	
needed

• No	
plug&play
HW

• No	fixed	
standard

• Limited	
speed

2

Software	and	Communication	
Procedure

• Software
– Simple	message	format	generated	by	microcontrollers
– Devices	have	complete	interfaces	(built-in	I2C)

• Procedure	for	communication
– Wait	until	I2C	bus	is	free:	both	SDA	and	SCL	are	high.
– Put	a	“START”	message	on	bus	to	claim	bus	(all	other	ICs	will	then	

listen)	
– Put	a	clock	signal	on	SCL	line	for	other	ICs	as	reference	time	(the	data	

on	SDA	wire	must	be	valid	when	SCL	switching	from	low	to	high)
– Put	binary	address	in	series	to	identify	target	IC
– Put	one	bit	to	identify	direction	(SEND	or	RECEIVE)
– Ask	other	IC	to	acknowledge	the	address	and	readiness	to	transfer
– Transfer	(many)	8-bit	data	after	receiving	ack
– The	master	send	“STOP”	message	to	free	up	the	bus

3

Identify	a	Device
• Master	device	polls	using	a	specific	unique	ID	or	
“address”
– If	it	knows	the	other	ICs	by	design,	it	can	talk	directly
– A	master	can	also	check	the	presence	of	other	ICs	at	
runtime	(query/response)	

• Devices	with	Master	capability	can	identify	
themselves	to	other	masters
– Enable	plug	and	play
– Bus	speed	can	be	different

• Only	one	pair	of	devices	can	have	a	data	transfer	
session	at	a	time

4

I2C	Hardware	Architecture

• Philips	AN10216-01	I2C	manual
5

START	and	STOP

• Data	on	SDA	must	be	stable	when	SCL	is	high
• Exceptions	are	the	START	and	STOP	conditions

6

SCL
SDA

Micro-
controller
(master)

EEPROM
(servant)

Temp.	
Sensor
(servant)

LCD-
controller
(servant) <	400	pF

Addr=0x01					Addr=0x02								Addr=0x03

D
C

S
T

A
R
T

A
6

A
5

A
0

R
/
w

A
C
K

D
8

D
7

D
0

A
C
K

S
T

O
P

From	
Servant

From	
receiver

Typical	read/write	cycle

SDA

SCL

SDA

SCL

SDA

SCL

SDA

SCL

Start	condition Sending	0 Sending	1 Stop	condition

I2C	Addresses

d
7

• d

8

Bus	Communication
• Data	transfer	is	8-bit	bytes,
• Each	byte	of	transfer	is	acknowledged	with	a	9th
data	bit	generated	by	the	receiver

• Apart	from	START	and	STOP,	no	device	is	allowed	
to	change	the	state	of	the	SDA	bus	line

• Multiple	masters	“compete”	but	only	one	wins	
the	bus

• No	minimum	clock	speed:	masters	allow	the	
slower	ICs	to	hold	the	SCL	low	until	finish	the	
transaction	(i.e.	clock	stretching)

9

Single	Read/Write

• d

10

Combined	Read	and	Write

• d
11

Acknowledge	and	Clock	Stretching

• d

12

Voltage	Level	Translation
• Traditionally	I2C	devices	are	5V,	but	new	devices	are	3.3V	

and	becoming	lower
– Requires	expensive	5V-tolerate	devices
– Devices	with	<2V	supply	voltage	do	not	meet	the	0.1Vdd	noise	

margin,	causing	mismatch	logic	levels
• Voltage	(Logic)	level	shifter

– MOSFET	based
– Bi-directional	level	shifting	without	a	direction	control	signal
– Isolating	a	powered-down	bus	section	from	the	rest
– Protect	low	voltage	side	against	voltage	spikes	at	high	voltage	

side

[ref:	Philips	AN97055]

13

I2C	devices	with	different	logic	levels

• Each	voltage	section	has	pull-up	resistors
• Each	voltage	section	has	I/Os with	supply	voltage	related	logic	input	levels
• Each	bus	line	(SDA	and	SCL)	has	identical	level	shifter	(N-channel	enhancement	MOS-FET)
• Gates(g)	connected	to	low	supply	voltage,	source	(s)	to	bus	lines	of	low	voltage	section,	drains	(d)	to	

the	bus	line	of	high	voltage	section
– Case	1:	no	device	is	pulling	down,	g=s=3.3V,	MOSFET	not	conducting,	high	voltage	section	pulled	up	to	5V
– Case	2:	a	3.3V	device	pulls	down	the	bus	to	LOW,	s=LOW,	g=3.3V,	MOSFET	conducting,	high	voltage	section	

pulled	down	as	well
– Case	3:	a	5V	device	pulls	down	the	bus	to	LOW,	drain-substrate	diode	cause	Vgs pass	threshold,	MOSFET	

conducting,	low	voltage	section	pulled	down

14

I2C	with	PIC18F45K20
• MSSP	module	in	I2C	
mode	fully	implements	
master	and	slave	
functions

• Supports	both	7-bit	
and	10-bit	addressing

• Must	configure	SCL	
and	SDA	pins	as	inputs	
with	the	
corresponding	TRIS	
bits

15

• register
16

• d
17

• d

18

• d

19

• d

20

I2C	Master	Mode	Operation
• Master	device	generates	all	the	serial	clock	pulses	
and	START	and	STOP	conditions

• A	transfer	is	ended	with	a	STOP	(releasing	the	
bus),	or	a	Repeated	START	(not	releasing	the	bus)

• First	byte	transmitted	=	slave	address	(7bit)	and	
R/W*	bit	(‘0’	for	transmit,	‘1’	for	receive)

• Data	are	8-bits,	followed	by	a	ACK	bit
• Baud	Rate	Generator	use	to	set	SCL	clock	
frequency	for	100KHz,	400KHz,	or	1MHz.	(check	
datasheet	section	17.4.7)

21

• d

22

I2C	Master	Mode	Transmission	Waveform

• d

23

I2C	on	Intel	Galileo
• Intel	Galileo	Development	board	supports	I2C	
as	Quark	has	built-in	I2C	controller	(master)

24

I2C	Jumper	on	Galileo

• I2C*	Address	Jumper	
– To	prevent	a	clash	between	the	I2C*	Slave	address	of	
the	on	board	I/O	expander	and	EEPROM	with	any	
external	I2C	Slave	devices,	jumper	J2	can	be	used	to	
vary	the	I2C*	address	of	the	on-board	devices.	

– With	J2	connected	to	pin	1	(marked	with	white	
triangle),	the	7-bit	I/O	Expander	address	is	0100001	
and	the	7- bit	EEPROM	address	is	1010001.	Changing	
the	jumper	position	changes	the	I/O	Expander	address	
to	0100000	and	the	EEPROM	address	to	1010000.	

25

I2C	on	Linux	(Intel	Galileo)
• Quark’s	I2C	is	supported	with	standard	Linux	i2c	driver	
• Its	I2C	register	interface	is	100%	compatible	with	the	
upstream	i2c-designware-core driver

• Load	the	driver	(modprobe i2c-dev),	and	the	
interface	is	/dev/i2c-0

• communicate	with	downstream	i2c	devices	using	
standard	Linux	API	(e.g.	i2cdetect)

• To	load	I2C	driver	in	isolation	from	GPIO,	use
modprobe intel_qrk_gip gpio=0
modprobe intel_qrk_gip gpio=0 enable_msi=0

26

User	space	Interface	for	I2C/SMBus
• Documented	in	Documentation/i2c/dev-interface
• Source	code	of	I2C	master	drivers	are	under	
drives/i2c/busses/	(i2c-designware.c)

• Load	the	i2c-dev	kernel	module	to	create	device	nodes
• Each	I2C	master	gets	a	character	device	node	at	
/dev/i2c-N,	where	N	is	the	master	ID	number

• Programming	interfaces
– read()	and	write()	can	do	single	direction	transfer,	
– ioctl()	does	combined	transfers	(read	and	write	in	one	
transfer)

– include	the	i2c-dev.h

27

An	Example	I2C	device:	
Real-Time	Clock	1307

28

Introduction

• What is DS1307?
– A real-time clock
– Full binary-coded decimal clock/calendar
– Transferred through an I2C serial interface
– Automatically switch between external power and

backup supply.
– The end of month data is automatically adjusted.

Operating Circuit

• The RTC module only has 5 pins, the other 3
pins are interconnected.
– VCC, GND are power and ground pin;
– SCL, SDA are clock and data pin;
– SQW/OUT is square wave output.

Timekeeper Registers

Control Register

– OUT : Control the output level of SQW/OUT pin when SQWE is 0.
The logic level on SQW/OUT pin is 1 when OUT is 1, and vice versa.

– SQWE : Enables the oscillator output when 1. The frequency of OUT is
depends upon RS1 and RS0.

– RS1, RS0 : Control the frequency of square-wave output.

Timing Diagram
• Bus free : both SDA and SCL remains HIGH.
• START : SDA is on its falling edge, while SCL is HIGH.
• STOP : SDA is on its rising edge, while SCL is HIGH.
• Transfer : After a START condition, the data line should be stable for the

duration of the HIGH period of SCL.
• Acknowledge: Each receiving device should generate an acknowledge after

the reception of each byte on the extra 9 clock.

Transfer Mode

• Slave Receive Mode

• Slave Transmitter Mode

Backup	Slides

35

Check	list	for	a	working	I2C	in	Lab	1

• Pull-up	resistors
• Logic	level	shifter
• PIC	registers	related	to	I2C
– Set	SCL,	SDA	pins	as	input
–MSSP	registers

36

Pull-up	resistors

• I2C	specification
37

Logic	Level	Shifter

• We	need	to	use	it	as	we	have	both	a	5V	(RTC)	
and	a	3.3V	(PIC)	device

38

PIC	registers

• PIC’s	oscillator	configuration
– OSCCON	and	OSCTUNE:	to	configure	the	PIC	to	
run	at	16MHz.

• TRISx (A,B,C,	or	D)	registers	to	set	the	ports	as	
inputs.	
– This	is	required	by	PIC’s	Master	Synchronous	
Serial	Port	(MSSP)

–MSSP	supports	both	SPI	and	I2C

39

PIC	registers
• SSPCON1

– SSPEN
– SSPM

• SSPCON2
– ACKSTAT
– ACKDT
– ACKEN
– RCEN
– PEN
– SEN

• SSPSTAT
• SSPBUF
• SSPADD

40

