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Space Complexity
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Definition: coNP = { L | �L � NP }

In NP algorithms, we can use a 
“guess” instruction in pseudocode:
Guess string y of |x|k length…
and the machine accepts if some y 
leads to an accept state

In coNP algorithms, we can use a 
“try all” instruction:
Try all strings y of |x|k length…
and the machine accepts if every y 
leads to an accept state

What does a coNP computation look like?
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Definition: A language B is coNP-complete if

1. B � coNP

2. For every A in coNP, there is a 
polynomial-time reduction from A to B

(B is coNP-hard)
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UNSAT = { I | I is a Boolean formula and no
variable assignment satisfies I }

Theorem: UNSAT is coNP-complete

Proof: UNSAT � coNP because �UNSAT SAT

(2) UNSAT is coNP-hard:

Let A � coNP. We show A dP UNSAT

On input w, transform w into a formula I using the 
Cook-Levin Theorem and an NP machine N for �A

w � �A  I � SAT

w � � A I � SAT

w � A I � UNSAT

w � A I � UNSAT
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TAUTOLOGY = { I | I is a Boolean formula and 
every variable assignment satisfies I }  

= {I | �I � UNSAT}

Theorem: TAUTOLOGY is coNP-complete

(1) TAUTOLOGY � coNP (already shown)

(2) TAUTOLOGY is coNP-hard:
UNSAT dP TAUTOLOGY:

Given formula I, output �I

UNSAT = { I | I is a Boolean formula and no
variable assignment satisfies I }

Theorem: UNSAT is coNP-complete
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NP-complete problems:
SAT, 3SAT, CLIQUE, VC, SUBSET-SUM, …

coNP-complete problems:
UNSAT, TAUTOLOGY, NOCLIQUE, …

Every NP-complete problem has a 
coNP-complete counterpart
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Is P = NP � coNP?

THIS IS AN OPEN QUESTION!
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FACTORING
=  { (m, n) | m > n > 1 are integers, 

there is a prime factor p of m where n ≤ p < m }

If FACTORING � P, then we could break most 
public-key cryptography currently in use!

Theorem: FACTORING 2 NP � coNP

An Interesting Problem in NP � coNP
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PRIMES = {n| n is a prime integer}

PRIMES is in P
Manindra Agrawal, Neeraj Kayal and Nitin Saxena
Ann. of Math. Volume 160, Number 2 (2004), 781-793. 
Abstract 
We present an unconditional deterministic polynomial-
time algorithm that determines whether an input 
number is prime or composite.

To show that FACTORING 2 NP � coNP, we’ll use
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Theorem: FACTORING � NP � coNP

Proof:

The prime factorization p1e1 … pkek of m can be used to 
efficiently prove that either (m,n) is in FACTORING

or (m,n) is not in FACTORING:

First verify each pi is prime and p1e1 … pkek = m
If there is a pi ≥ n then (m,n) is in FACTORING
If for all i, pi < n then (m,n) is not in FACTORING

FACTORING
=  { (m, n) | m, n > 1 are integers, 

there is a prime factor p of m where n ≤ p < m }
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Think in terms of Turing Machine pseudocode!

An oracle Turing machine M with oracle B � Γ* lets you 
include the following kind of branching instructions:

“if (z in B) then <do something> 
else <do something else>”

where z is some string defined earlier in pseudocode. 
By definition, the oracle TM can always check the 
condition (z in B) in one step

This notion makes sense even if B is not decidable!

How to Think about Oracles?
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Some Complexity Classes With Oracles

PB = { L | L can be decided by some 
polynomial-time TM with an oracle for B }

PSAT = the class of languages decidable in 
polynomial time with an oracle for SAT

PNP = the class of languages decidable by 
some polynomial-time oracle TM with an 
oracle for some B in NP
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Is PSAT � PNP?
Yes! By definition…

Every NP language can be reduced to SAT!

For every poly-time TM M with oracle B � NP, 
we can simulate every query z to oracle B by 
reducing z to a formula in poly-time,
then asking an oracle for SAT instead

Is PNP � PSAT?
Yes! 
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For every poly-time TM M with oracle B � P, 
we can simulate every query z to oracle B by 
simply running a polynomial-time decider for B. 

Is PB � P?
Yes! 

PB = { L | L can be decided by a 
polynomial-time TM with an oracle for B }

Suppose B is in P.

The resulting machine runs in polynomial time!
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Is NP � PNP?
Yes!

Just ask the oracle for the answer!

For every L � NP define an oracle TM ML which 
asks the oracle if the input is in L. 
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Is coNP � PNP?
Yes!

Again, just ask the oracle for the answer! 

For every L � coNP we know ¬L � NP

Define an oracle TM M¬L which asks the 
oracle if the input is in ¬L

accept if the answer is no,
reject if the answer is yes

In general, we have PNP = PcoNP
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PNP =  the class of languages decidable by 
some polynomial-time oracle TM MB for  
some B in NP

Informally: PNP is the class of 
problems you can solve in polynomial 

time, assuming SAT solvers work
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Is NP = NPNP?

It is believed that the answers are NO

NPB = { L | L can be decided by a polynomial-time
nondeterministic TM with an oracle for B }

coNPB = { L | L can be decided by a poly-time
co-nondeterministic TM with an oracle for B }

Is coNPNP = NPNP?
THESE ARE OPEN QUESTIONS!
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Two Boolean formulas I and \ over the variables 
x1,…,xn are equivalent if they have the same value 
on every assignment to the variables

Are x and x � x equivalent?

Are (x � �y) � �(�x � y) and x � �y equivalent?

Are x and x � �x equivalent?

Yes

No

A Boolean formula I is minimal if no smaller 
formula is equivalent to I

MIN-FORMULA = { I | I is minimal }

Logic Minimization is in coNPNP

Yes
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Theorem: MIN-FORMULA � coNPNP

Proof:

Define NEQUIV = { (I, \) | I and \ are not equivalent }

Observation: NEQUIV � NP   (Why?)

Here is a coNPNEQUIV machine for MIN-FORMULA:

Given a formula I,
Try all formulas \ smaller than I:

If (I, \) � NEQUIV then accept else reject

MIN-FORMULA is not known to be in coNP!
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Measuring Space Complexity

We measure space complexity by looking at the 
largest tape index reached during the computation

FINITE 
STATE 
CONTROL

1     2     3     4     5     6     7     8     9    10   … 

I N P U T … 
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Let M be a deterministic TM.

Definition: The space complexity of M is the 
function : o , where is the largest tape 
index reached by M on any input of length .

{ L | L is decided by a Turing machine with 
O( ) space complexity}

Definition: SPACE( ) =
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Theorem: 3SAT � SPACE(n)

“Proof”: Try all possible assignments to the 
(at most n) variables in a formula of length n. 
This can be done in O(n) space.

Theorem: NTIME(t(n)) is in SPACE(t(n))

“Proof”: Try all possible computation paths 
of t(n) steps for an NTM on length-n input.
This can be done in O(t(n)) space.
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The class SPACE(s(n)) formalizes the class of problems 
solvable by computers with bounded memory.

Fundamental (Unanswered) Question:
How does time relate to space, in computing?

SPACE(n2) problems could potentially take much 
longer than n2 steps to solve!

Intuition: You can always re-use space, 
but how can you re-use time?
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Let M be a halting TM that on input x, uses S space

How many time steps can M(x) possibly take?
Is there an upper bound?

The number of time steps is at most 
the total number of possible configurations! 

(If a configuration repeats, the machine is looping.)

S |Q| |Γ|S = 2O(S)

A configuration of M specifies a head position, state, and
S cells of tape content. The total number of configurations
is at most:

Time Complexity of SPACE(S(n))
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Corollary:
Space S(n) computations can be 

decided in 2O(S(n)) time

SPACE(s(n)) � TIME(2c ¢ s(n))

Idea: After 2O(s(n)) time steps, a s(n)-space bounded 
computation must have repeated a configuration, so 

then it will never halt…

c � N
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EXPTIME =         TIME(2   )
k � N

nk

PSPACE � EXPTIME

PSPACE =         SPACE(nk)
k � N
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Is P � PSPACE?
YES
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Is NP � PSPACE?
YES
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Is NPNP � PSPACE?
YES
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Thank you!

For being a great class!


