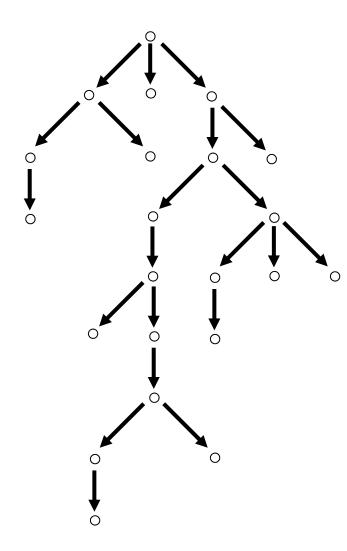
Space Complexity

Definition: $coNP = \{ L \mid \neg L \in NP \}$

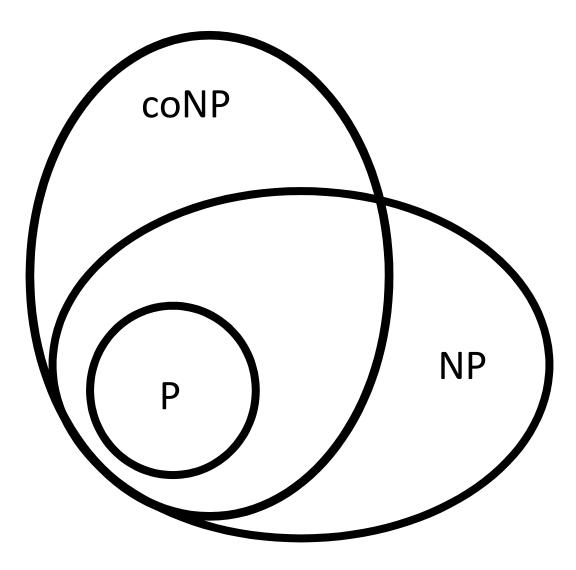
What does a coNP computation look like?



In NP algorithms, we can use a "guess" instruction in pseudocode: *Guess string y of |x|^k length...* and the machine accepts if some y leads to an accept state

In coNP algorithms, we can use a "try all" instruction: *Try all strings y of* $|x|^k$ *length...* and the machine accepts if every y

leads to an accept state



Definition: A language B is coNP-complete if

1. $B \in coNP$

2. For every A in coNP, there is a polynomial-time reduction from A to B (B is coNP-hard)

UNSAT = { ϕ | ϕ is a Boolean formula and *no* variable assignment satisfies ϕ }

Theorem: UNSAT is coNP-complete

Proof: UNSAT \in **coNP** because \neg **UNSAT** \approx **SAT**

(2) UNSAT is coNP-hard:

Let $A \in coNP$. We show $A \leq_P UNSAT$

On input w, transform w into a formula φ using the Cook-Levin Theorem and an NP machine N for $\neg A$

$$w \in \neg A \Rightarrow \phi \in SAT$$
 $w \notin A \Rightarrow \phi \notin UNSAT$ $w \notin \neg A \Rightarrow \phi \notin SAT$ $w \in A \Rightarrow \phi \in UNSAT$

UNSAT = { ϕ | ϕ is a Boolean formula and *no* variable assignment satisfies ϕ }

Theorem: UNSAT is coNP-complete

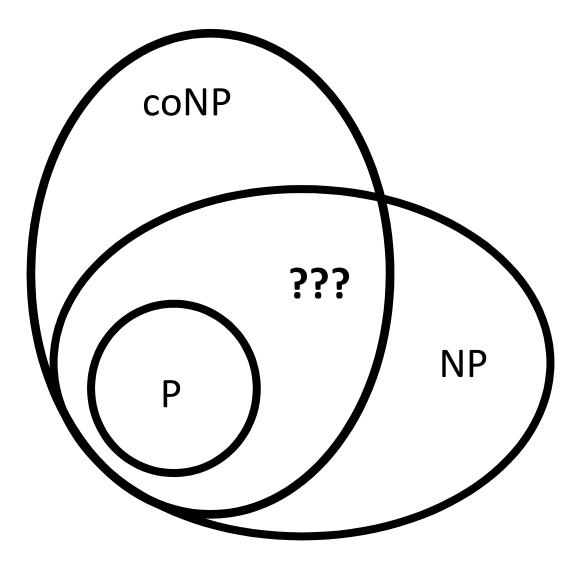
TAUTOLOGY = { $\phi \mid \phi$ is a Boolean formula and
every variable assignment satisfies ϕ }= { $\phi \mid \neg \phi \in \text{UNSAT}$ }

Theorem: TAUTOLOGY is coNP-complete

(1) TAUTOLOGY \in coNP (already shown) (2) TAUTOLOGY is coNP-hard: UNSAT \leq_{p} TAUTOLOGY: Given formula ϕ , output $\neg \phi$ Every NP-complete problem has a coNP-complete counterpart

NP-complete problems: SAT, 3SAT, CLIQUE, VC, SUBSET-SUM, ...

coNP-complete problems: UNSAT, TAUTOLOGY, NOCLIQUE, ...



Is $P = NP \cap coNP$?

THIS IS AN OPEN QUESTION!

An Interesting Problem in NP \cap coNP

FACTORING

= { (m, n) | m > n > 1 are integers, there is a prime factor p of m where n ≤ p < m }</pre>

If FACTORING ∈ P, then we could break most public-key cryptography currently in use!

Theorem: FACTORING \in NP \cap coNP

To show that FACTORING \in NP \cap coNP, we'll use

PRIMES = {n | n is a prime integer}

PRIMES is in P

Manindra Agrawal, Neeraj Kayal and Nitin Saxena <u>Ann. of Math.</u> Volume 160, Number 2 (2004), 781-793. **Abstract**

We present an unconditional deterministic polynomialtime algorithm that determines whether an input number is prime or composite.

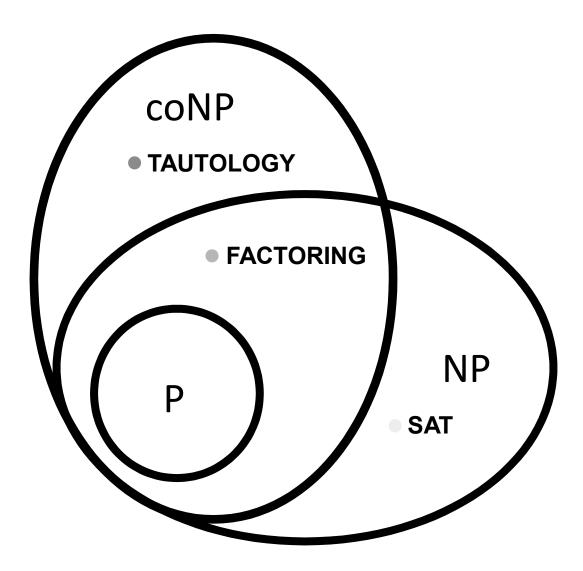
FACTORING = { (m, n) | m, n > 1 are integers, there is a prime factor p of m where n ≤ p < m }</pre>

Theorem: FACTORING \in NP \cap coNP

Proof:

The prime factorization p₁^{e1} ... p_k^{ek} of m can be used to efficiently prove that either (m,n) is in FACTORING or (m,n) is not in FACTORING:

First verify each p_i is prime and $p_1^{e^1} \dots p_k^{e^k} = m$ If there is a $p_i \ge n$ then (m,n) is in FACTORING If for all i, $p_i < n$ then (m,n) is not in FACTORING



How to Think about Oracles?

Think in terms of Turing Machine pseudocode!

An oracle Turing machine M with oracle $B \subseteq \Gamma^*$ lets you include the following kind of branching instructions:

"if (z in B) then <do something> else <do something else>"

where z is some string defined earlier in pseudocode. By definition, the oracle TM can always check the condition (z in B) in one step

This notion makes sense even if B is not decidable!

Some Complexity Classes With Oracles

- P^B = { L | L can be decided by some polynomial-time TM with an oracle for B }
- P^{SAT} = the class of languages decidable in polynomial time with an oracle for SAT
- P^{NP} = the class of languages decidable by some polynomial-time oracle TM with an oracle for some B in NP

Is $P^{SAT} \subseteq P^{NP}$?

Yes! By definition...

IS $P^{NP} \subseteq P^{SAT}$? Yes!

Every NP language can be reduced to SAT!

For every poly-time TM M with oracle $B \in NP$, we can simulate every query z to oracle B by reducing z to a formula ϕ in poly-time, then asking an oracle for SAT instead P^B = { L | L can be decided by a polynomial-time TM with an oracle for B }

Suppose B is in P.

Is $P^B \subseteq P$? Yes!

For every poly-time TM M with oracle $B \in P$, we can simulate every query z to oracle B by simply running a polynomial-time decider for B.

The resulting machine runs in polynomial time!

$\frac{|\mathsf{IS} \mathsf{NP} \subseteq \mathsf{P}^{\mathsf{NP}}|}{|\mathsf{Yes}|}$

Just ask the oracle for the answer!

For every $L \in NP$ define an oracle TM M^L which asks the oracle if the input is in L.

Is coNP \subseteq P^{NP}?

Again, just ask the oracle for the answer!

For every $L \in coNP$ we know $\neg L \in NP$

Define an oracle TM M^{¬L} which asks the oracle if the input is in ¬L *accept* if the answer is no, *reject* if the answer is yes

In general, we have $P^{NP} = P^{CONP}$

P^{NP} = the class of languages decidable by some polynomial-time oracle TM M^B for some B in NP

Informally: P^{NP} is the class of problems you can solve in polynomial time, assuming SAT solvers work

NP^B = { L | L can be decided by a polynomial-time nondeterministic TM with an oracle for B }

coNP^B = { L | L can be decided by a poly-time co-nondeterministic TM with an oracle for B }

IS NP = NP^{NP}? IS CONP^{NP} = NP^{NP}? THESE ARE OPEN QUESTIONS!

It is believed that the answers are NO

Logic Minimization is in coNP^{NP}

Two Boolean formulas ϕ and ψ over the variables $x_1, ..., x_n$ are equivalent if they have the same value on every assignment to the variables

Are x and $x \lor x$ equivalent? Yes

Are x and x $\vee \neg$ x equivalent? No

Are $(x \lor \neg y) \land \neg (\neg x \land y)$ and $x \lor \neg y$ equivalent? Yes

A Boolean formula φ is minimal if no smaller formula is equivalent to φ

MIN-FORMULA = { ϕ | ϕ is minimal }

Theorem: MIN-FORMULA \in coNP^{NP}

Proof:

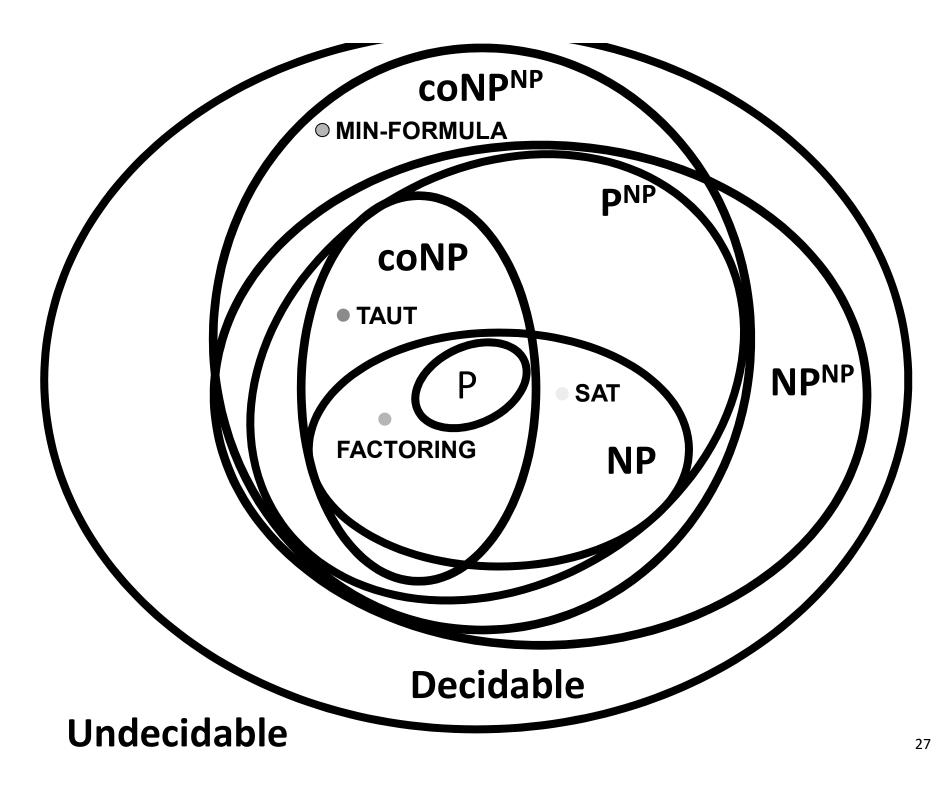
Define NEQUIV = { (ϕ , ψ) | ϕ and ψ are not equivalent }

Observation: NEQUIV \in NP (Why?)

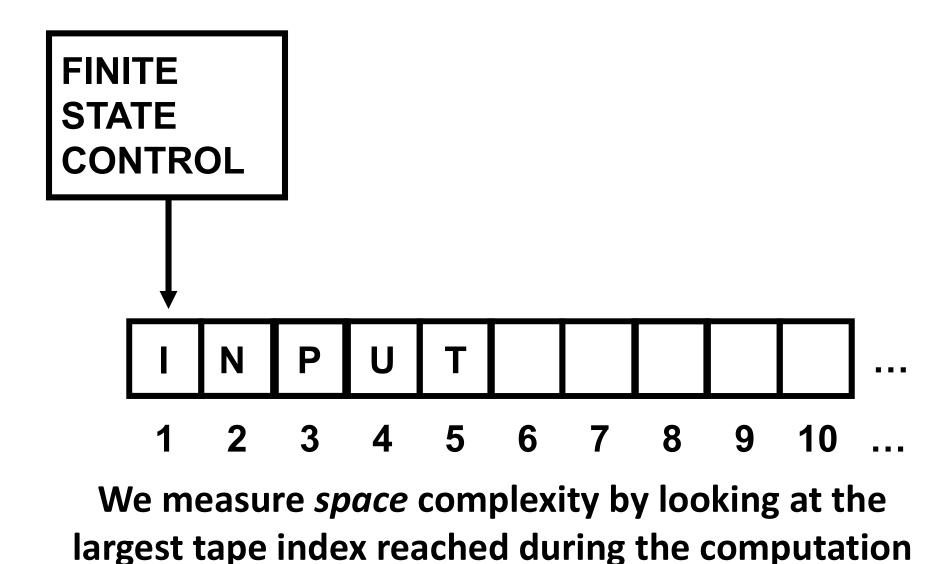
Here is a coNP^{NEQUIV} machine for MIN-FORMULA:

Given a formula ϕ , *Try all formulas* ψ smaller than ϕ : If $(\phi, \psi) \in NEQUIV$ then *accept* else *reject*

MIN-FORMULA is not known to be in coNP!



Measuring Space Complexity



Let M be a deterministic TM.

Definition: The space complexity of M is the function $S : \mathbb{N} \to \mathbb{N}$, where S(n) is the largest tape index reached by M on any input of length n.

Definition: SPACE(S(n)) = { L | L is decided by a Turing machine with O(S(n)) space complexity}

Theorem: 3SAT ∈ SPACE(n)

"Proof": Try all possible assignments to the (at most n) variables in a formula of length n. This can be done in O(n) space.

Theorem: NTIME(t(n)) is in SPACE(t(n))

"Proof": Try all possible computation paths of t(n) steps for an NTM on length-n input. This can be done in O(t(n)) space. The class SPACE(s(n)) formalizes the class of problems solvable by computers with *bounded memory*.

Fundamental (Unanswered) Question: How does time relate to space, in computing?

SPACE(n²) problems could potentially take much longer than n² steps to solve!

Intuition: You can always re-use space, but how can you re-use time?

Time Complexity of SPACE(S(n))

Let M be a halting TM that on input x, uses S space

How many time steps can M(x) possibly take? Is there an upper bound?

The number of time steps is at most the total number of possible *configurations*!

(If a configuration repeats, the machine is looping.)

A configuration of M specifies a head position, state, and S cells of tape content. The total number of configurations is at most: $S |Q| |\Gamma|^{S} = 2^{O(S)}$

Corollary: Space S(n) computations can be decided in 2^{O(S(n))} time

$\begin{array}{l} \text{SPACE}(s(n)) \subseteq \bigcup \\ c \in N \end{array} \text{TIME}(2^{c \cdot s(n)}) \end{array}$

Idea: After 2^{O(s(n))} time steps, a s(n)-space bounded computation must have repeated a configuration, so then it will never halt...

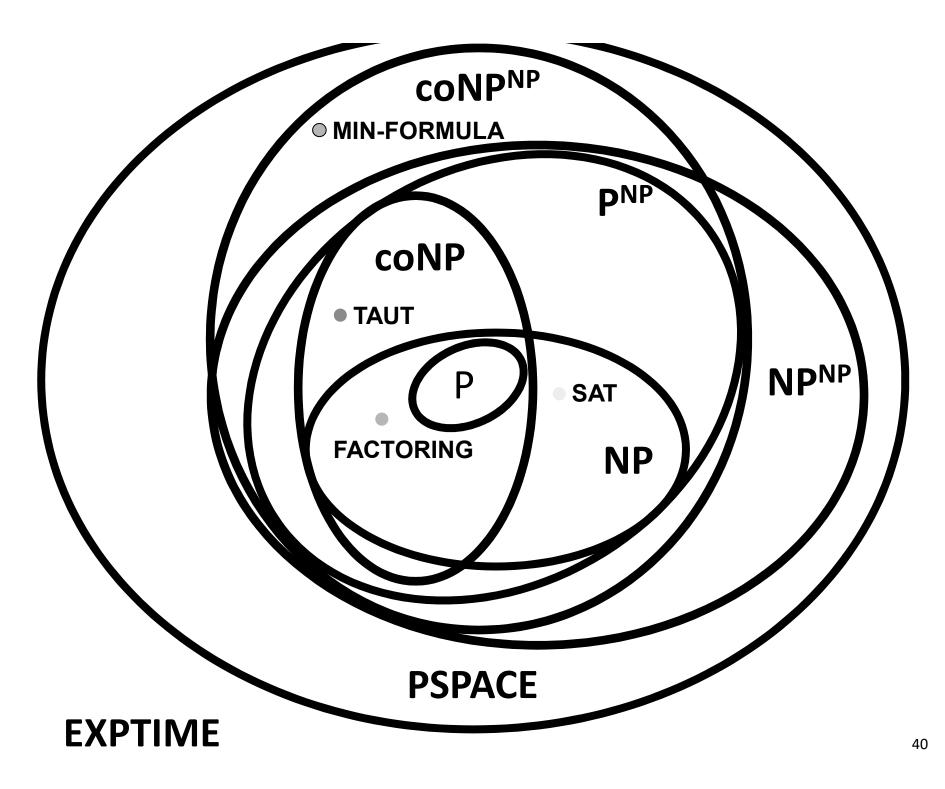
$\begin{array}{l} \textbf{EXPTIME} = \bigcup_{k \in \mathbb{N}} \textbf{TIME(2^{n^k})} \end{array}$

$\mathsf{PSPACE} \subseteq \mathsf{EXPTIME}$

Is $P \subseteq PSPACE$? YES

Is NP \subseteq PSPACE? YES

Is $NP^{NP} \subseteq PSPACE$? YES



Thank you!

For being a great class!