
28

Space Complexity

4

Definition: coNP = { L | �L � NP }

In NP algorithms, we can use a
“guess” instruction in pseudocode:
Guess string y of |x|k length…
and the machine accepts if some y
leads to an accept state

In coNP algorithms, we can use a
“try all” instruction:
Try all strings y of |x|k length…
and the machine accepts if every y
leads to an accept state

What does a coNP computation look like?

5

P
NP

coNP

6

Definition: A language B is coNP-complete if

1. B � coNP

2. For every A in coNP, there is a
polynomial-time reduction from A to B

(B is coNP-hard)

7

UNSAT = { I | I is a Boolean formula and no
variable assignment satisfies I }

Theorem: UNSAT is coNP-complete

Proof: UNSAT � coNP because �UNSAT SAT

(2) UNSAT is coNP-hard:

Let A � coNP. We show A dP UNSAT

On input w, transform w into a formula I using the
Cook-Levin Theorem and an NP machine N for �A

w � �A I � SAT

w � � A I � SAT

w � A I � UNSAT

w � A I � UNSAT

8

TAUTOLOGY = { I | I is a Boolean formula and
every variable assignment satisfies I }

= {I | �I � UNSAT}

Theorem: TAUTOLOGY is coNP-complete

(1) TAUTOLOGY � coNP (already shown)

(2) TAUTOLOGY is coNP-hard:
UNSAT dP TAUTOLOGY:

Given formula I, output �I

UNSAT = { I | I is a Boolean formula and no
variable assignment satisfies I }

Theorem: UNSAT is coNP-complete

9

NP-complete problems:
SAT, 3SAT, CLIQUE, VC, SUBSET-SUM, …

coNP-complete problems:
UNSAT, TAUTOLOGY, NOCLIQUE, …

Every NP-complete problem has a
coNP-complete counterpart

10

P
NP

coNP

???

11

Is P = NP � coNP?

THIS IS AN OPEN QUESTION!

12

FACTORING
= { (m, n) | m > n > 1 are integers,

there is a prime factor p of m where n ≤ p < m }

If FACTORING � P, then we could break most
public-key cryptography currently in use!

Theorem: FACTORING 2 NP � coNP

An Interesting Problem in NP � coNP

13

PRIMES = {n| n is a prime integer}

PRIMES is in P
Manindra Agrawal, Neeraj Kayal and Nitin Saxena
Ann. of Math. Volume 160, Number 2 (2004), 781-793.
Abstract
We present an unconditional deterministic polynomial-
time algorithm that determines whether an input
number is prime or composite.

To show that FACTORING 2 NP � coNP, we’ll use

14

Theorem: FACTORING � NP � coNP

Proof:

The prime factorization p1e1 … pkek of m can be used to
efficiently prove that either (m,n) is in FACTORING

or (m,n) is not in FACTORING:

First verify each pi is prime and p1e1 … pkek = m
If there is a pi ≥ n then (m,n) is in FACTORING
If for all i, pi < n then (m,n) is not in FACTORING

FACTORING
= { (m, n) | m, n > 1 are integers,

there is a prime factor p of m where n ≤ p < m }

15

P
NP

coNP

FACTORING

TAUTOLOGY

SAT

17

Think in terms of Turing Machine pseudocode!

An oracle Turing machine M with oracle B � Γ* lets you
include the following kind of branching instructions:

“if (z in B) then <do something>
else <do something else>”

where z is some string defined earlier in pseudocode.
By definition, the oracle TM can always check the
condition (z in B) in one step

This notion makes sense even if B is not decidable!

How to Think about Oracles?

18

Some Complexity Classes With Oracles

PB = { L | L can be decided by some
polynomial-time TM with an oracle for B }

PSAT = the class of languages decidable in
polynomial time with an oracle for SAT

PNP = the class of languages decidable by
some polynomial-time oracle TM with an
oracle for some B in NP

19

Is PSAT � PNP?
Yes! By definition…

Every NP language can be reduced to SAT!

For every poly-time TM M with oracle B � NP,
we can simulate every query z to oracle B by
reducing z to a formula in poly-time,
then asking an oracle for SAT instead

Is PNP � PSAT?
Yes!

20

For every poly-time TM M with oracle B � P,
we can simulate every query z to oracle B by
simply running a polynomial-time decider for B.

Is PB � P?
Yes!

PB = { L | L can be decided by a
polynomial-time TM with an oracle for B }

Suppose B is in P.

The resulting machine runs in polynomial time!

21

Is NP � PNP?
Yes!

Just ask the oracle for the answer!

For every L � NP define an oracle TM ML which
asks the oracle if the input is in L.

22

Is coNP � PNP?
Yes!

Again, just ask the oracle for the answer!

For every L � coNP we know ¬L � NP

Define an oracle TM M¬L which asks the
oracle if the input is in ¬L

accept if the answer is no,
reject if the answer is yes

In general, we have PNP = PcoNP

23

PNP = the class of languages decidable by
some polynomial-time oracle TM MB for
some B in NP

Informally: PNP is the class of
problems you can solve in polynomial

time, assuming SAT solvers work

24

Is NP = NPNP?

It is believed that the answers are NO

NPB = { L | L can be decided by a polynomial-time
nondeterministic TM with an oracle for B }

coNPB = { L | L can be decided by a poly-time
co-nondeterministic TM with an oracle for B }

Is coNPNP = NPNP?
THESE ARE OPEN QUESTIONS!

25

Two Boolean formulas I and \ over the variables
x1,…,xn are equivalent if they have the same value
on every assignment to the variables

Are x and x � x equivalent?

Are (x � �y) � �(�x � y) and x � �y equivalent?

Are x and x � �x equivalent?

Yes

No

A Boolean formula I is minimal if no smaller
formula is equivalent to I

MIN-FORMULA = { I | I is minimal }

Logic Minimization is in coNPNP

Yes

26

Theorem: MIN-FORMULA � coNPNP

Proof:

Define NEQUIV = { (I, \) | I and \ are not equivalent }

Observation: NEQUIV � NP (Why?)

Here is a coNPNEQUIV machine for MIN-FORMULA:

Given a formula I,
Try all formulas \ smaller than I:

If (I, \) � NEQUIV then accept else reject

MIN-FORMULA is not known to be in coNP!

27

P

Decidable

FACTORING

coNP
TAUT

NP

SAT NPNP

coNPNP

MIN-FORMULA

PNP

Undecidable

29

Measuring Space Complexity

We measure space complexity by looking at the
largest tape index reached during the computation

FINITE
STATE
CONTROL

1 2 3 4 5 6 7 8 9 10 …

I N P U T …

30

Let M be a deterministic TM.

Definition: The space complexity of M is the
function : o , where is the largest tape
index reached by M on any input of length .

{ L | L is decided by a Turing machine with
O() space complexity}

Definition: SPACE() =

31

Theorem: 3SAT � SPACE(n)

“Proof”: Try all possible assignments to the
(at most n) variables in a formula of length n.
This can be done in O(n) space.

Theorem: NTIME(t(n)) is in SPACE(t(n))

“Proof”: Try all possible computation paths
of t(n) steps for an NTM on length-n input.
This can be done in O(t(n)) space.

32

The class SPACE(s(n)) formalizes the class of problems
solvable by computers with bounded memory.

Fundamental (Unanswered) Question:
How does time relate to space, in computing?

SPACE(n2) problems could potentially take much
longer than n2 steps to solve!

Intuition: You can always re-use space,
but how can you re-use time?

34

Let M be a halting TM that on input x, uses S space

How many time steps can M(x) possibly take?
Is there an upper bound?

The number of time steps is at most
the total number of possible configurations!

(If a configuration repeats, the machine is looping.)

S |Q| |Γ|S = 2O(S)

A configuration of M specifies a head position, state, and
S cells of tape content. The total number of configurations
is at most:

Time Complexity of SPACE(S(n))

35

Corollary:
Space S(n) computations can be

decided in 2O(S(n)) time

SPACE(s(n)) � TIME(2c ¢ s(n))

Idea: After 2O(s(n)) time steps, a s(n)-space bounded
computation must have repeated a configuration, so

then it will never halt…

c � N

36

EXPTIME = TIME(2)
k � N

nk

PSPACE � EXPTIME

PSPACE = SPACE(nk)
k � N

37

Is P � PSPACE?
YES

38

Is NP � PSPACE?
YES

39

Is NPNP � PSPACE?
YES

40

P

PSPACE

FACTORING

coNP
TAUT

NP

SAT NPNP

coNPNP

MIN-FORMULA

PNP

EXPTIME

Thank you!

For being a great class!

