Do all problems. The two starred questions will be marked in detail. The other problems will be graded out of 2 to give you an incentive to do them: partial solutions will receive 1/2, correct or almost correct solutions will receive full marks.

1. The fast top: Consider a heavy symmetry top of mass M, pinned at point P which is a distance ℓ from the centre of mass, as discussed in class. The principal moments of inertia about P are I_1 , I_1 and I_3 . The top is spun with initial conditions $\dot{\phi} = 0$ and $\theta = \theta_0$. Show that θ obeys the equation of motion

$$I_1\ddot{\theta} = -\frac{dV_{\text{eff}}(\theta)}{d\theta}$$

where

$$V_{\text{eff}}(\theta) = \frac{I_3^2 \Omega_3^2}{2I_1} \frac{(\cos \theta - \cos \theta_0)^2}{\sin^2 \theta} + Mg\ell \cos \theta.$$

Suppose the top is spinning very fast, so that $I_3\omega_3 \gg \sqrt{Mg\ell I_1}$. Show that θ_0 is close to the minimum of $V_{\rm eff}(\theta)$, and use this fact to deduce that the top nutates with frequency $\omega \simeq \Omega_3 I_3/I_1$ and draw the subsequent motion.

- 2. Landau & Lifschitz, pg. 113, Problem 2
- 3. A system with two degrees of freedom x and y has the Lagrangian

$$L = x\dot{y} + y\dot{x}^2 + \dot{x}\dot{y}.$$

Derive the Euler-Lagrange equations. Find the Hamiltonian $H(x, y, p_x, p_y)$. Derive Hamilton's equations and show that they are equivalent to Lagrange's equations.

4. The Lagrangian for the heavy symmetric top is

$$L = \frac{1}{2}I_1\left(\dot{\theta}^2 + \dot{\phi}^2\sin^2\theta\right) + \frac{1}{2}I_3\left(\dot{\psi} + \dot{\phi}\cos\theta\right)^2 - Mg\ell\cos\theta.$$

Obtain the momenta p_{θ} , p_{ϕ} and p_{ψ} , and the Hamiltonian $H(\theta, \phi, \psi, p_{\theta}, p_{\phi}, p_{\psi})$. Derive Hamilton's equations.

5. * A rigid lamina (i.e. a 2 dimensional object) has principal moments of inertia about the centre of mass of

$$I_1 = (\mu^2 - 1), I_2 = (\mu^2 + 1), I_3 = 2\mu^2.$$

- (a) Show, using Euler's equations, that in the body-fixed frame, the component of the angular velocity in the plane of the lamina (i.e. $\sqrt{\Omega_1^2 + \Omega_2^2}$) is constant in time.
- (b) Choose the initial angular velocity to be $\vec{\Omega} = \mu N \hat{x}_1 + N \hat{x}_3$. Define $\tan \alpha = \Omega_2/\Omega_1$, which is the angle the component of Ω in the plane of the lamina makes with \hat{x}_1 . Show that it satisfies

$$\ddot{\alpha} = \dot{\Omega}_3$$

and from this show that

$$\ddot{\alpha} = -\frac{1}{u^2} \left(\Omega_1^2 + \Omega_2^2 \right) \sin \alpha \cos \alpha = -N^2 \cos \alpha \sin \alpha.$$

Show that the solution to the motion is

$$\vec{\Omega}(t) = \mu N(\cosh Nt)^{-1}\hat{x}_1 + \mu N \tanh Nt\hat{x}_2 + N(\cosh Nt)^{-1}\hat{x}_3.$$

(NB It is enough to check that this is the solution; you do not need to solve the differential equation).

- 6. * A particle with mass m, position \vec{r} and momentum \vec{p} has angular momentum $\vec{M} = \vec{r} \times \vec{p}$.
 - (a) Evaluate $\{x_j,M_k\},\,\{p_j,M_k\},\,\{M_j,M_k\}$ and $\{M_i,\vec{M}^2\}.$
 - (b) Consider a particle moving of mass m moving in a central potential V(r)=-K/r. Recall the Runge-Lenz vector

$$\vec{A} = \vec{p} \times \vec{M} - mK\hat{r}.$$

Show that

$$\{M_i, A_j\} = -\epsilon_{ijk}A_k, \ \{A_i, A_j\} = 2Hm\epsilon_{ijk}M_k.$$

Prove using Poisson brackets that \vec{A} is conserved. (Also note that \vec{A} , \vec{M} and H form a closed algebra under the Poisson bracket.)