Isomorphisms and homomorphisms

- 1. For each of the following groups, find a familiar group that it is isomorphic to and write down an isomorphism.
 - (a) $D_3/\{I, D, D^2\}$
 - (b) $(\mathbb{R}\setminus\{0\},\cdot)/\{-1,1\}$
 - (c) $GL_2(\mathbb{R})/SL_2(\mathbb{R})$ where $SL_2(\mathbb{R})$ denotes the subgroup consisting of 2×2 real matrices of determinant 1.
 - (d) $\left\{ \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix} : x \in \mathbb{R} \right\}$ under multiplication (First check that this is in fact a group.)
- 2. Find a non-trivial homomorphism from $(\mathbb{R},+)/\mathbb{Z}$ to $GL_2(\mathbb{R})$. Describe the image and the kernel. (Being non-trivial means that not everything is sent to the neutral element.)
- 3. Let n be an integer ≥ 2 . Find all homomorphisms from $(\mathbb{Z}/n\mathbb{Z},+)$ to $(\mathbb{R},+)/\mathbb{Z}$.
- 4. Find all homomorphisms from $(\mathbb{Z}, +)$ to $(\mathbb{R}, +)/\mathbb{Z}$.
- 5. Find a subgroup of $(\mathbb{R}, +)/\mathbb{Z}$ that is isomorphic to $(\mathbb{Z}, +)$?
- 6. Check that $\mathbb{Z} \times \mathbb{Z}$ is a group under addition defined by (a,b) + (c,d) = (a+c,b+d). Find a subgroup of $(\mathbb{R},+)/\mathbb{Z}$ that is isomorphic to $(\mathbb{Z} \times \mathbb{Z},+)$.
- 7. Find all homomorphisms from $(\mathbb{Z}/6\mathbb{Z}, +)$ to $(\mathbb{Z}/9\mathbb{Z}, +)$. Generalize this: describe all homomorphisms from $(\mathbb{Z}/m\mathbb{Z}, +)$ to $(\mathbb{Z}/n\mathbb{Z}, +)$.
- 8. Let G and K be groups with more than one element each. Prove or disprove: If there is a non-trivial homomorphism from G to K, then there is a non-trivial homomorphism from K to G.