Math 4107

Some more practice problems for Exam 3 (in addition to the old exam posted on Piazza).

- 1. Prove that groups of order 35 are cyclic.
- 2. Give an example of a non-commutative ring R and two elements $a, b \in R$ such that ab = 0 but $ba \neq 0$.
- 3. Find all maximal ideals in \mathbb{Z} . Justify your answer.
- 4. Let p be a prime integer. Prove that if $p \equiv 3 \pmod{4}$, then p is a prime element in $\mathbb{Z}[i]$.
- 5. Construct a field with 27 elements.
- 6. Let R be a ring and let I be an ideal in R. The annihilator of I is defined as $Ann(I) = \{x \in R : xa = 0 \text{ for all } a \in I\}.$
 - (a) Show that Ann(I) is an ideal.
 - (b) Let $R = \mathbb{Z}/12\mathbb{Z}$. Find Ann(I) where I is the ideal generated by [3] in R.
- 7. Compute a greatest common divisor of $f = x^2 + 2$ and $g = x^4 + 2x^3 + x^2 + 2$ in $\mathbb{Z}/3\mathbb{Z}[x]$.
- 8. Let R be a non-commutative ring, and let $I \subset R$ be an ideal such that $ab ba \in I$ for any $a, b \in R$. Show that R/I is a commutative ring.
- 9. In $\mathbb{Z}[i]$, factor 13 into prime elements.
- 10. Prove that for a polynomial f of degree n over a field F, there are at most n solutions to f(x) = 0 in \mathbb{F} .

Challenge problems:

- 1. Let \mathbb{F} be a field. Prove that every finite subgroup of \mathbb{F}^* is cyclic. (Hint: consider the roots of polynomials of the form $x^k 1$.)
- 2. Show that there is no commutative ring R such that $(R, +) \cong (\mathbb{Q}/\mathbb{Z}, +)$.