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PREFACE

Every mathematician agrees that every mathematician must know some

set theory; the disagreement begins in trying to decide how much is some.

This book contains my answer to that question. The purpose of the book

is to tell the beginning student of advanced mathematics the basic set-

theoretic facts of life, and to do so with the minimum of philosophical

discourse and logical formalism. The point of view throughout is that
of a prospective mathematician anxious to study groups, or integrals, or

manifolds. From this point of view the concepts and methods of this

book are merely some of the standard mathematical tools; the expert

specialist will find nothing new here.

Scholarly bibliographical credits and references are out of place in a

purely expository book such as this one. The student who gets interested

in set theory for its own sake should know, however, that there is much

more to the subject than there is in this book. One of the most beautiful

sources of set-theoretic wisdom is still Hausdorff's Set theory. A recent

and highly readable addition to the literature, with an extensive and

up-to-date bibliography, is Axiomatic set theory by Suppes.

In set theory "naive" and "axiomatic" are contrasting words. The
present treatment might best be described as axiomatic set theory from

the naive point of view. It is axiomatic in that some axioms for set theory

are stated and used as the basis of all subsequent proofs. It is naive in
that the language and notation are those of ordinary informal (but for-

malizable) mathematics. A more important way in which the naive point
of view predominates is that set theory is regarded as a body of facts, of

which the axioms are a brief and convenient summary; in the orthodox

axiomatic view the logical relations among various axioms are the central

objects of study. Analogously, a study of geometry might be regarded

as purely naive if it proceeded on the paper-folding kind of intuition alone;

the other extreme, the purely axiomatic one, is the one in which axioms

for the various non-Euclidean geometries are studied with the same amount

of attention as Euclid's. The analogue of the point of view of this book
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is the study of just one sane set of axioms with the intention of describing
Euclidean geometry only.

Instead of Naive set theory a more honest title for the book would have

been An outline of the elements of naive set theory. "Elements" would warn

the reader that not everything is here; "outline" would warn him that
even what is here needs filling in. The style is usually informal to the

point of being conversational. There are very few displayed theorems;

most of the facts are just stated and followed by a sketch of a proof, very
much as they might be in a general descriptive lecture. There are only a

few exercises, officially so labelled, but, in fact, most of the book is nothing
but a long chain of exercises with hints. The reader should continually
ask himself whether he knows how to jump from one hint to the next, and,

accordingly, he should not be discouraged if he finds that his reading rate

is considerably slower than normal.

This is not to say that the contents of this book are unusually difficult
or profound. What is true is that the concepts are very general and very

abstract, and that, therefore, they may take some getting used to. It is a

mathematical truism, however, that the more generally a theorem applies,

the less deep it is. The student's task in learning set theory is to steep

himself in unfamiliar but essentially shallow generalities till they become

so familiar that they can be used with almost no conscious effort. In
other words, general set theory is pretty trivial stuff really, but, if you

want to be a mathematician, you need some, and here it is; read it
,

absorb

it
,

and forget it.
P. R. H.
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SECTION 1

THE AXIOM OF EXTENSION

A pack of wolves, a bunch of grapes, or a flock of pigeons are all examples

of sets of things. The mathematical concept of a set can be used as the

foundation for all known mathematics. The purpose of this little book is

to develop the basic properties of sets. Incidentally, to avoid terminologi

cal monotony, we shall sometimes say collection instead of set. The word

"class" is also used in this context, but there is a slight danger in doing so.

The reason is that in some approaches to set theory "class" has a special

technical meaning. We shall have occasion to refer to this again a little
later.

One thing that the development will not include is a definition of sets.

The situation is analogous to the familiar axiomatic approach to elemen

tary geometry. That approach does not offer a definition of points and

lines; instead it describes what it is that one can do with those objects.

The semi-axiomatic point of view adopted here assumes that the reader

has the ordinary, human, intuitive (and frequently erroneous) understand

ing of what sets are; the purpose of the exposition is to delineate some of

the many things that one can correctly do with them.

Sets, as they are usually conceived, have elements or members. An
element of a set may be a wolf, a grape, or a pigeon. It is important to

know that a set itself may also be an element of some other set. Mathemat
ics is full of examples of sets of sets. A line, for instance, is a set of points;

the set of all lines in the plane is a natural example of a set of sets (of points).

What may be surprising is not so much that sets may occur as elements,

but that for mathematical purposes no other elements need ever be con

sidered. In this book, in particular, we shall study sets, and sets of sets,

and similar towers of sometimes frightening height and complexity —and

nothing else. By way of examples we might occasionally speak of sets of
1
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cabbages, and kings, and the like, but such usage is always to be construed

as an illuminating parable only, and not as a part of the theory that is being

developed.

The principal concept of set theory, the one that in completely axiomatic

studies is the principal primitive (undefined) concept, is that of belonging.

If x belongs to A (x is an element of A, x is contained in A), we shall write

x « A.

This version of the Greek letter epsilon is so often used to denote belonging

that its use to denote anything else is almost prohibited. Most authors

relegate « to its set-theoretic use forever and use s when they need the

fifth letter of the Greek alphabet.

Perhaps a brief digression on alphabetic etiquette in set theory might be

helpful. There is no compelling reason for using small and capital letters

as in the preceding paragraph; we might have written, and often will write,
things like x e y and A e B. Whenever possible, however, we shall infor
mally indicate the status of a set in a particular hierarchy under considera

tion by means of the convention that letters at the beginning of the alpha

bet denote elements, and letters at the end denote sets containing them;
similarly letters of a relatively simple kind denote elements, and letters of
the larger and gaudier fonts denote sets containing them. Examples:
x e A, A e X, X e 6.

A possible relation between sets, more elementary than belonging, is

equality. The equality of two sets A and B is universally denoted by the
familiar symbol

A = B;

the fact that A and B are not equal is expressed by writing

The most basic property of belonging is its relation to equality, which can

be formulated as follows.

Axiom of extension. Two sets are equal if and only if they have the same

elements.

With greater pretentiousness and less clarity: a set is determined by its

extension.

It is valuable to understand that the axiom of extension is not just a

logically necessary property of equality but a non-trivial statement about

belonging. One way to come to understand the point is to consider a par

tially analogous situation in which the analogue of the axiom of extension
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does not hold. Suppose, for instance, that we consider human beings in
stead of sets, and that, if x and A are human beings, we write x e A when

ever x is an ancestor of A. (The ancestors of a human being are his par

ents, his parents' parents, their parents, etc., etc.) The analogue of the

axiom of extension would say here that if two human beings are equal,

then they have the same ancestors (this is the "only if" part, and it is

true), and also that if two human beings have the same ancestors, then

they are equal (this is the "if" part, and it is false).
If A and B are sets and if every element of A is an element of B, we say

that A is a subset of B, or B includes A, and we write

AcB
or

B=> A.

The wording of the definition implies that each set must be considered to
be included in itself (A C A); this fact is described by saying that set in

clusion is reflexive. (Note that, in the same sense of the word, equality also

is reflexive.) If A and B are sets such that A C B and A 7* B, the word
proper is used (proper subset, proper inclusion). If A, B, and C are sets

such that A C B and B C C, then A C C; this fact is described by saying

that set inclusion is transitive. (This property is also shared by equality.)
If A and B are sets such that A C B and B C A, then A and B have the

same elements and therefore, by the axiom of extension, A = B. This fact

is described by saying that set inclusion is antisymmetric. (In this respect

set inclusion behaves differently from equality. Equality is symmetric, in
the sense that if A = B, then necessarily B = A.) The axiom of extension

can, in fact, be reformulated in these terms: if A and B are sets, then a

necessary and sufficient condition that A = B is that both A d .B and

B C A. Correspondingly, almost all proofs of equalities between two sets

A and B are split into two parts; first show that A C B, and then show

that B C A.
Observe that belonging («) and inclusion (C) are conceptually very

different things indeed. One important difference has already manifested

itself above : inclusion is always reflexive, whereas it is not at all clear that

belonging is ever reflexive. That is: A C A is always true; is A « A ever

true? It is certainly not true of any reasonable set that anyone has ever

seen. Observe, along the same lines, that inclusion is transitive, whereas

belonging is not. Everyday examples, involving, for instance, super-organ

izations whose members are organizations, will readily occur to the inter

ested reader.
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THE AXIOM OF SPECIFICATION

All the basic principles of set theory, except only the axiom of extension,
are designed to make new sets out of old ones. The first and most impor
tant of these basic principles of set manufacture says, roughly speaking,

that anything intelligent one can assert about the elements of a set specifies

a subset, namely, the subset of those elements about which the assertion is

true.

Before formulating this principle in exact terms, we look at a heuristic
example. Let A be the set of all men. The sentence "x is married" is true
for some of the elements x of A and false for others. The principle we are

illustrating is the one that justifies the passage from the given set A to the
subset (namely, the set of all married men) specified by the given sentence.

To indicate the generation of the subset, it is usually denoted by

{x e A : x is married}.
Similarly

{x e A : x is not married]

is the set of all bachelors;

{x « A : the father of x is Adam}

is the set that contains Cain and Abel and nothing else; and

{x e A : x is the father of Abel}

is the set that contains Adam and nothing else. Warning: a box that con

tains a hat and nothing else is not the same thing as a hat, and, in the
same way, the last set in this list of examples is not to be confused with

4
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Adam. The analogy between sets and boxes has many weak points, but
sometimes it gives a helpful picture of the facts.

All that is lacking for the precise general formulation that underlies the

examples above is a definition of sentence. Here is a quick and informal
one. There are two basic types of sentences, namely, assertions of be

longing,
x e A,

and assertions of equality,
A = B;

all other sentences are obtained from such atomic sentences by repeated

applications of the usual logical operators, subject only to the minimal
courtesies of grammar and unambiguity. To make the definition more

explicit (and longer) it is necessary to append to it a list of the "usual logi

cal operators" and the rules of syntax. An adequate (and, in fact, redun

dant) list of the former contains seven items:

and,

or (in the sense of "either—or—or both"),

not,

if—then— (or implies),

if and only if
,

for some (or there exists),

for all.

As for the rules of sentence construction, they can be described as follows.

(i
) Put "not" before a sentence and enclose the result between parentheses.

(The reason for parentheses, here and below, is to guarantee unambiguity.
Note, incidentally, that they make all other punctuation marks unneces

sary. The complete parenthetical equipment that the definition of sen

tences calls for is rarely needed. We shall always omit as many parentheses

as it seems safe to omit without leading to confusion. In normal mathe

matical practice, to be followed in this book, several different sizes and

shapes of parentheses are used, but that is for visual convenience only.)

(ii) Put "and" or "or" or "if and only if" between two sentences and en

close the result between parentheses. (iii) Replace the dashes in "if—then
—" by sentences and enclose the result in parentheses. (iv) Replace the

dash in "for some —" or in "for all—" by a letter, follow the result by a

sentence, and enclose the whole in parentheses. (If the letter used does

not occur in the sentence, no harm is done. According to the usual and

natural convention "for some y (x t A)" just means "x e A". It is equally
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harmless if the letter used has already been used with "for some—" or
"for all— ." Recall that "for some x (x e A)" means the same as "for
some y (y e A)"; it follows that a judicious change of notation will always
avert alphabetic collisions.)

We are now ready to formulate the major principle of set theory, often

referred to by its German name Aussonderungsaxiom.

Axiom of specification. To every set A and to every condition S(x)
there corresponds a set B whose elements are exactly those elements x of A
for which S(x) holds.

A "condition" here is just a sentence. The symbolism is intended to indi
cate that the letter x is free in the sentence S(x) ; that means that x occurs in

S(x) at least once without being introduced by one of the phrases "for some
x" or "for all x." It is an immediate consequence of the axiom of extension

that the axiom of specification determines the set B uniquely. To indicate

the way B is obtained from A and from S(x) it is customary to write

B = {xeA:S(x)}.

To obtain an amusing and instructive application of the axiom of specifi

cation, consider, in the role of S(x), the sentence

not (x ex).

It will be convenient, here and throughout, to write "x «' A" (alternatively
"x i A"} instead of "not (x « A)"; in this notation, the role of S(x) is now

played by
x «' x.

It follows that, whatever the set A may be, if B = {x e A: x «' x}, then,

for all y,

(*) y e B if and only if (y e A and y «' y).

Can it be that B e A? We proceed to prove that the answer is no. In
deed, if B £ A, then either B e B also (unlikely, but not obviously impos

sible), or else B «' B. If B « B, then, by (*), the assumption B « A yields

B e' B—a contradiction. If B e' B, then, by (*) again, the assumption

B e A yields B e B—a contradiction again. This completes the proof that
B e A is impossible, so that we must have B e' A. The most interesting

part of this conclusion is that there exists something (namely B) that does

not belong to A. The set A in this argument was quite arbitrary. We
have proved, in other words, that

nothing contains everything,
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or, more spectacularly,

there is no universe.

"Universe" here is used in the sense of "universe of discourse," meaning,
in any particular discussion, a set that contains all the objects that enter

into that discussion.

In older (pre-axiomatic) approaches to set theory, the existence of a

universe was taken for granted, and the argument in the preceding para

graph was known as the Russell paradox. The moral is that it is impossi

ble, especially in mathematics, to get something for nothing. To specify

a set, it is not enough to pronounce some magic words (which may form a

sentence such as "x e' x") ; it is necessary also to have at hand a set to

whose elements the magic words apply.



SECTION 3

UNORDERED PAIRS

For all that has been said so far, we might have been operating in a

vacuum. To give the discussion some substance, let us now officially as

sume that
there exists a set.

Since later on we shall formulate a deeper and more useful existential

assumption, this assumption plays a temporary role only. One conse

quence of this innocuous seeming assumption is that there exists a set

without any elements at all. Indeed, if A is a set, apply the axiom of

specification to A with the sentence "x T± x" (or, for that matter, with
any other universally false sentence). The result is the set {x « A : x 7* x] ,

and that set, clearly, has no elements. The axiom of extension implies

that there can be only one set with no elements. The usual symbol for
that set is

0;

the set is called the empty set.

The empty set is a subset of every set, or, in other words, 0 c A for
every A. To establish this, we might argue as follows. It is to be proved

that every element in 0 belongs to A ; since there are no elements in 0,
the condition is automatically fulfilled. The reasoning is correct but per

haps unsatisfying. Since it is a typical example of a frequent phenomenon,

a condition holding in the "vacuous" sense, a word of advice to the inex

perienced reader might be in order. To prove that something is true about

the empty set, prove that it cannot be false. How, for instance, could it
be false that 0 C A? It could be false only if 0 had an element that did
not belong to A. Since 0 has no elements at all, this is absurd. Conclu
sion: 0 a A is not false, and therefore 0 c A for every A.

8
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The set theory developed so far is still a pretty poor thing; for all we

know there is only one set and that one is empty. Are there enough sets

to ensure that every set is an element of some set? Is it true that for any
two sets there is a third one that they both belong to? What about three

sets, or four, or any number? We need a new principle of set construction

to resolve such questions. The following principle is a good beginning.

Axiom of pairing. For any two sets there exists a set that they both be

long to.

Note that this is just the affirmative answer to the second question above.

To reassure worriers, let us hasten to observe that words such as "two,"
"three," and "four," used above, do not refer to the mathematical concepts

bearing those names, which will be defined later; at present such words are

merely the ordinary linguistic abbreviations for "something and then some

thing else" repeated an appropriate number of times. Thus, for instance,
the axiom of pairing, in unabbreviated form, says that if a and 6 are sets,

then there exists a set A such that a « A and b e A.
One consequence (in fact an equivalent formulation) of the axiom of

pairing is that for any two sets there exists a set that contains both of

them and nothing else. Indeed, if a and b are sets, and if A is a set such
that a « A and b E A, then we can apply the axiom of specification to A
with the sentence "x = a or x = b." The result is the set

{x e A: x = a or x = b},

and that set, clearly, contains just a and b. The axiom of extension im
plies that there can be only one set with this property. The usual symbol

for that set is

{};
the set is called the pair (or, by way of emphatic comparison with a sub

sequent concept, the unordered pair) formed by a and 6.

If, temporarily, we refer to the sentence "x = a or x = b" as S(x), we

may express the axiom of pairing by saying that there exists a set B such
that

(*) x e B if and only if S(x).

The axiom of specification, applied to a set A, asserts the existence of a
set B such that

(**) x e B if and only if (x « A and S(x)).
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The relation between (*) and (**) typifies something that occurs quite
frequently. All the remaining principles of set construction are pseudo-

special cases of the axiom of specification in the sense in which (*) is a

pseudo-special case of (**). They all assert the existence of a set specified

by a certain condition; if it were known in advance that there exists a set

containing all the specified elements, then the existence of a set containing
just them would indeed follow as a special case of the axiom of specification.

If a is a set, we may form the unordered pair {a, a}. That unordered

pair is denoted by

{a}

and is called the singleton of a; it is uniquely characterized by the state

ment that it has a as its only element. Thus, for instance, 0 and {0)
are very different sets; the former has no elements, whereas the latter has

the unique element 0. To say that a e A is equivalent to saying that

{a} C A.
The axiom of pairing ensures that every set is an element of some set

and that any two sets are simultaneously elements of some one and the

same set. (The corresponding questions for three and four and more sets

will be answered later.) Another pertinent comment is that from the as

sumptions we have made so far we can infer the existence of very many

sets indeed. For examples consider the sets 0, {0}, { {0} }, { { {0} } },

etc.; consider the pairs, such as {0, {0}}, formed by any two of them;

consider the pairs formed by any two such pairs, or else the mixed pairs

formed by any singleton and any pair; and proceed so on ad infinitum.

EXERCISE. Are all the sets obtained in this way distinct from one

another?

Before continuing our study of set theory, we pause for a moment to
discuss a notational matter. It seems natural to denote the set B described

in (*) by {x: S(x)} ; in the special case that was there considered

[x: x = a or x =
b}

= {a, &}.

We shall use this symbolism whenever it is convenient and permissible to

do so. If, that is
,

S(x) is a condition on x such that the x's that S(x) speci

fies constitute a set, then we may denote that set by

In case A is a set and<S(z) is (x e A), then it is permissible to form {x: S(x) } ;

in fact

{x:xeA} = A.
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If A is a set and S(x) is an arbitrary sentence, it is permissible to form

{x: x e A and S(x) } ; this set is the same as {x e A : S(x) } . As further ex

amples, we note that

[x:x^x] = 0
and

{x: x =
a} = {a}.

In case S(x) is (x e' x), or in case S(x) is (x = x), the specified x's do not
constitute a set.

Despite the maxim about never getting something for nothing, it seems

a little harsh to be told that certain sets are not really sets and even their
names must never be mentioned. Some approaches to set theory try to

soften the blow by making systematic use of such illegal sets but just not
calling them sets; the customary word is "class." A precise explanation

of what classes really are and how they are used is irrelevant in the present

approach. Roughly speaking, a class may be identified with a condition
(sentence), or, rather, with the "extension" of a condition.



SECTION 4

UNIONS AND INTERSECTIONS

If A and B are sets, it is sometimes natural to wish to unite their ele

ments into one comprehensive set. One way of describing such a com

prehensive set is to require it to contain all the elements that belong to at

least one of the two members of the pair {A, B}. This formulation sug

gests a sweeping generalization of itself; surely a similar construction

should apply to arbitrary collections of sets and not just to pairs of them.

What is wanted, in other words, is the following principle of set construc

tion.

Axiom of unions. For every collection of sets there exists a set that con

tains all the elements that belong to at least one set of the given collection.

Here it is again: for every collection 6 there exists a set U such that if
x e X for some X in 6, then x « U. (Note that "at least one" is the same

as "some.")
The comprehensive set U described above may be too comprehensive; it

may contain elements that belong to none of the sets X in the collection 6.

This is easy to remedy; just apply the axiom of specification to form the

set

{x eU:x eX for some X in 6} .

(The condition here is a translation into idiomatic usage of the mathemati

cally more acceptable "for some X (x « X and X e 6).") It follows that, for

every x, a necessary and sufficient condition that x belong to this set is

that ,2: belong to X for some X in 6. If we change notation and call the

new set U again, then

U = {x:xeXfor some X in C}.

This set U is called the union of the collection 6 of sets; note that tne
12
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axiom of extension guarantees its uniqueness. The simplest symbol for U
that is in use at all is not very popular in mathematical circles; it is

U e.

Most mathematicians prefer something like

U [X:Xe 6}

or

Further alternatives are available in certain important special cases; they
will be described in due course.

For the time being we restrict our study of the theory of unions to the

simplest facts only. The simplest fact of all is that

U {X:X*0} = 0,

and the next simplest fact is that

U {A}} = A.

In the brutally simple notation mentioned above these facts are expressed

by

U0 = 0
and

U {A} = A.

The proofs are immediate from the definitions.

There is a little more substance in the union of pairs of sets (which is

what started this whole discussion anyway). In that case special notation

is used:

U {X:Xe{A,B}} = A U B.

The general definition of unions implies in the special case that x e A U B
if and only if x belongs to either A or B or both; it follows that

A U B = {x: x e A or x e B\.

Here are some easily proved facts about the unions of pairs :

A U 0 = A,

A U B = B U A (commutativity),

A U (B U C) = (A U B) U C (associativity),

A U A = A (idempotence),

AczBifand only if A U B = B.
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Every student of mathematics should prove these things for himself at

least once in his life. The proofs are based on the corresponding elemen

tary properties of the logical operator or.

An equally simple but quite suggestive fact is that

{a} U {b}
= {a, b}.

What this suggests is the way to generalize pairs. Specifically, we write

{a,b,c} = [a] U {b} U {c}.

The equation defines its left side. The right side should by rights have at

least one pair of parentheses in it
,

but, in view of the associative law, their
omission can lead to no misunderstanding. Since it is easy to prove that

{a, b
,

c}

= {x: x = a or x = b or x = c},

we know now that for every three sets there exists a set that contains them

and nothing else; it is natural to call that uniquely determined set the

(unordered) triple formed by them. The extension of the notation and

terminology thus introduced to more terms (quadruples, etc.) is obvious.

The formation of unions has many points of similarity with another set-

theoretic operation. If A and B are sets, the intersection of A and B is the

set

A 0 B

defined by

A D B = {xeA:xeB}.

The definition is symmetric in A and B even if it looks otherwise; we have

A 0 B = {xeB:xeA},

and, in fact, since x « A 0 B if and only if x belongs to both A and B, it
follows that

A 0 B = {x:xeAandxeB}.
The basic facts about intersections, as well as their proofs, are similar to
the basic facts about unions:

A 0 0 = 0,

A fl B = B 0 A,

An (B no = (A n B) nc,

A n A = A,

AdBifand only if A fl B = A.
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Pairs of sets with an empty intersection occur frequently enough to justify
the use of a special word: if A fl B = 0, the sets A and B are called

disjoint. The same word is sometimes applied to a collection of sets to

indicate that any two distinct sets of the collection are disjoint; alterna

tively we may speak in such a situation of a pairwise disjoint collection.

Two useful facts about unions and intersections involve both the opera

tions at the same time :

A n (B u o = (A n B) u (A n c),

A D" (B ft C) = (A U B) D (A U C).

These identities are called the distributive laws. By way of a sample of a

set-theoretic proof, we prove the second one. If x belongs to the left side,

then x belongs either to A or to both B and C; if x is in A, then x is in both

A U B and A U C, and if x is in both B and C, then, again, x is in both

A U B and A U C; it follows that, in any case, x belongs to the right side.

This proves that the right side includes the left. To prove the reverse in
clusion, just observe that if x belongs to both A U B and A U C, then x

belongs either to A or to both B and C.

The formation of the intersection of two sets A and B, or, we might as

well say, the formation of the intersection of a pair {A, B} of sets, is a

special case of a much more general operation. (This is another respect in
which the theory of intersections imitates that of unions.) The existence

of the general operation of intersection depends on the fact that for each

non-empty collection of sets there exists a set that contains exactly those

elements that belong to every set of the given collection. In other words :

for each collection <
3

,

other than 0, there exists a set V such that x « V if
and only if x e X for every X in Q. To prove this assertion, let A be any

particular set in 6 (this step is justified by the fact that 6 7* 0) and

write

V = [x e A: x eX for every X in 6
} .

(The condition means "for all X (if X « 6
,

then x « X).") The dependence

of V on the arbitrary choice of A is illusory; in fact

V = {x: x « X for every X in Q}.

The set V is called the intersection of the collection 6 of sets; the axiom
of extension guarantees its uniqueness. The customary notation is similar

to the one for unions: instead of the unobjectionable but unpopular

H6,
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the set V is usually denoted by

or

EXERCISE. A necessary and sufficient condition that (A fl E) U C =

A 0 (B U C) is that C C A. Observe that the condition has nothing

to do with the set B.



SECTION 5

COMPLEMENTS AND POWERS

If A and B are sets, the difference between A and B, more often known
as the relative complement of B in A, is the set A — B denned by

A - B = {xeA:xe'B}.

Note that in this definition it is not necessary to assume that B C A. In
order to record the basic facts about complementation as simply as possi

ble,. we assume nevertheless (in this section only) that all the sets to be

mentioned are subsets of one and the same set E and that all complements

(unless otherwise specified) are formed relative to that E. In such situa

tions (and they are quite common) it is easier to remember the underlying
set E than to keep writing it down, and this makes it possible to simplify
the notation. An often used symbol for the temporarily absolute (as op

posed to relative) complement of A is A'. In terms of this symbol the

basic facts about complementation can be stated as follows:

(A'Y = A,

A 0 A' = 0, A U A' = E,

A C B if and only if B' C A'.

The most important statements about complements are the so-called De

Morgan laws:

(A U B)' = A' 0 B', (A D B)' - A' U B'.

(We shall see presently that the De Morgan laws hold for the unions and

intersections of larger collections of sets than just pairs.) These facts about
17
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complementation imply that the theorems of set theory usually come in
pairs. If in an inclusion or equation involving unions, intersections, and
complements of subsets of E we replace each set by its complement, inter
change unions and intersections, and reverse all inclusions, the result is
ai other theorem. This fact is sometimes referred to as the principle of
di ality for sets.

Here are some easy exercises on complementation.

A - B = A D B'.

A C B if and only if A — B = 0.

A - (A - B) = A D B.

A n (B - o = (A n B) - (A n Q.

A n B c (A n o u (B n co.

(A U C) n (B U C") <z A U B.

If A and B are sets, the symmetric difference (or Boolean sum) of A and B
is the set A + B denned by

A + B = (A - B) U (B - A).

This operation is commutative (A + B = B + A) and associative (A +
(B + C) = (A + B) + C), and is such that A + 0 = Aa,ndA + A
= 0.

This may be the right time to straighten out a trivial but occasionally

puzzling part of the theory of intersections. Recall, to begin with, that
intersections were denned for non-empty collections only. The reason is

that the same approach to the empty collection does not define a set.

Which x's are specified by the sentence

x e X for every X in 01

As usual for questions about 0 the answer is easier to see for the corre

sponding negative question. Which x's do not satisfy the stated condition?

If it is not true that x « X for every X in 0, then there must exist an X in

0 such that x e' X; since, however, there do not exist any X's in 0 at all,

this is absurd. Conclusion: no x fails to satisfy the stated condition, or,

equivalently, every x does satisfy it. In other words, the x's that the con

dition specifies exhaust the (nonexistent) universe. There is no profound

problem here; it is merely a nuisance to be forced always to be making
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qualifications and exceptions just because some set somewhere along some

construction might turn out to be empty. There is nothing to be done

about this; it is just a fact of life.

If we restrict our attention to subsets of a particular set E, as we have

temporarily agreed to do, then the unpleasantness described in the pre

ceding paragraph appears to go away. The point is that in that case we

can define the intersection of a collection 6 (of subsets of E) to be the set

{x e E: x e X for every X in 6} .

This is nothing revolutionary; for each non-empty collection, the new def

inition agrees with the old one. The difference is in the way the old and

the new definitions treat the empty collection; according to the new denni

tion C\x,0 ^ is equal to E. (For which elements x of E can it be false

that x e X for every X in 0?) The difference is just a matter of language.

A little reflection reveals that the "new" definition offered for the inter
section of a collection 6 of subsets of E is really the same as the old defini

tion of the intersection of the collection 6 U {E}, and the latter is never

empty.

We have been considering the subsets of a set E; do those subsets them

selves constitute a set? The following principle guarantees that the answer

is yes.

Axiom of powers. For each set there exists a collection of sets that con

tains among its elements all the subsets of the given set.

In other words, if E is a set, then there exists a set (collection) <P such that
if X C E, then X « (P.

The set (P described above may be larger than wanted; it may contain

elements other than the subsets of E. This is easy to remedy; just apply
the axiom of specification to form the set {X « (P: X C E}. (Recall that
"X C E" says the same thing as "for all x (if x e X then x e E).") Since,

for every X, a necessary and sufficient condition that X belong to this set

is that X be a subset of E, it follows that if we change notation and call

this set (P again, then

(P = {X:XdE}.
The set (P is called the power set of E; the axiom of extension guarantees its

uniqueness. The dependence of (P on E is denoted by writing <P(E) in
stead of just (P.

Because the set <P(E) is very big in comparison with E, it is not easy to

give examples. If E = 0, the situation is clear enough; the set (P(0) is
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the singleton {0}. The power sets of singletons and pairs are also easily

describable; we have

<P({ = {0, {a}}= {0, {a}}

and

<P({a,&}) = 10, {a}, [b], {0,&}}.

The power set of a triple has eight elements. The reader can probably
guess (and is hereby challenged to prove) the generalization that includes

all these statements: the power set of a finite set with, say, n elements has

2" elements. (Of course concepts like "finite" and "2n" have no official

standing for us yet; this should not prevent them from being unofficially

understood.) The occurrence of n as an exponent' (the ?i-th power of 2)
has something to do with the reason why a power' set bears its name.

If G is a collection of subsets of a set E (that is
, 6 is a subcollection of

<P(E)), then write
3D = {Xe<y(E):X'eG}.

(To be certain that the condition used in the definition of 30 is a sentence

in the precise technical sense, it must be rewritten in something like the

form

for some Y [Y e 6 and for all x (x e X if and only if (x eE and x e
'

7))].

Similar comments often apply when we wish .to use defined abbreviations

instead of logical and set-theoretic primitives only. The translation rarely
requires any ingenuity and we shall usually omit it.) It is customary to
denote the union and the intersection of the collection 33 by the symbols

\Jx.eX' and Dx.e*'.
In this notation the general forms of the De Morgan laws become

and

(rix.c*)'=Ux.eX'.
The proofs of these equations are immediate consequences of the appro
priate definitions.

EXERCISE. Prove that (E) fl 6>(F ) = <P(E 0 F) and (P(ff) U <P(F) C
<F(E U F). These assertions can be generalized to

and



SEC. 5 COMPLEMENTS AND POWERS 21

find a reasonable interpretation of the notation in which these generaliza

tions were here expressed and then prove them. Further elementary

facts:

r\x,G>(B> X = 0,
and

ifEc.F, then S>(E) C (P(F).

A curious question concerns the commutativity of the operators (P and

U. Show that E is always equal to Uxt<P(E) X (that is E = U <P(E)),

but that the result of applying <P and U to E in the other order is a set

that includes E as a subset, typically a proper subset.



SECTION 6

ORDERED PAIRS

What does it mean to arrange the elements of a set A in some order?

Suppose, for instance, that the set A is the quadruple {a, b, c, d} of distinct
elements, and suppose that we want to consider its elements in the order

c b d a.

Even without a precise definition of what this means, we can do something

set-theoretically intelligent with it. We can, namely, consider, for each

particular spot in the ordering, the set of all those elements that occur at or
before that spot; we obtain in this way the sets

{c} {c,b} {c,b,d} lc,b,d,a}.

We can go on then to consider the set (or collection, if that sounds better)

6= {{a,b,e,d},{b,c},{b,e,dl, {c}}

that has exactly those sets for its elements. In order to emphasize that
the intuitively based and possibly unclear concept of order has succeeded

in producing something solid and simple, namely a plain, unembellished

set 6, the elements of 6, and their elements, are presented above in a scram

bled manner. (The lexicographically inclined reader might be able to see

a method in the manner of scrambling.)

Let us continue to pretend for a while that we do know what order

means. Suppose that in a hasty glance at the preceding paragraph all we

could catch is the set 6; can we use it to recapture the order that gave rise

to it? The answer is easily seen to be yes. Examine the elements of 6
(they themselves are sets, of course) to find one that is included in all the
others; since {c} fills the bill (and nothing else does) we know that c must

have been the first element. Look next for the next smallest element of 6,
22
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i.e., the one that is included in all the ones that remain after {c} is removed;

since {b, c} fills the bill (and nothing else does), we know that b must have

been the second element. Proceeding thus (only two more steps are needed)

we pass from the set 6 to the given ordering of the given set A.
The moral is this: we may not know precisely what it means to order the

elements of a set A, but with each order we can associate a set 6 of subsets

of A in such a way that the given order can be uniquely recaptured from

6. (Here is a non-trivial exercise: find an intrinsic characterization of those

sets of subsets of A that correspond to some order in A. Since "order"
has no official meaning for us yet, the whole problem is officially meaning

less. Nothing that follows depends on the solution, but the reader would

learn something valuable by trying to find it.) The passage from an order

in A to the set 6, and back, was illustrated above for a quadruple; for a

pair everything becomes at least twice as simple. If A = {a, b\ and if
,

in

the desired order, a comes first, then Q = {{a}, [a, b}}; if
,

however, b

comes first, then e =

{ {&}, {a, b}}.

The ordered pair of a and b
, with first coordinate a and second coordinate

b
, is the set (a, b
) defined by

^/ lA

However convincing the motivation of this definition may be, we must

still prove that the result has the main property that an ordered pair must

have to deserve its name. We must show that if (a, b
) and (x, y
) are or

dered pairs and if (a, b
) = (x, y), then a = x and b = y. To prove this,

we note first that if a and b happen to be equal, then the ordered pair (a, b
)

is the same as the singleton {{a}}. If, conversely, (a, b
) is a singleton,

then {a} = {a, b\, so that be {a}, and therefore a = b
. Suppose now that

(a, b
) = (x, y). If a = b
, then both (a, b
) and (x, y
) are singletons, so that

x = y; since {x} e (a, b
) and {a} e (x, y), it follows that a, b
, x, and y are

all equal. If a ^ b
, then both (a, b
) and (x, y
) contain exactly one single

ton, namely {a} and {x} respectively, so that a = x. Since in this case it

is also true that both (a, b
) and (x, y
) contain exactly one unordered pair

that is not a singleton, namely {a, b
) and {x, y
]

respectively, it follows that
\a,b] = {x,y\, and therefore, in particular, be {x, y}. Since b cannot be

x (for then we should have a = x and b = x, and, therefore, a = b), we

must have b — y, and the proof is complete.

If A and B are sets, does there exist a set that contains all the ordered

pairs (a, b
) with a in A and b in B? It is quite easy to see that the answer

is yes. Indeed, if a e A and b e B, then {a} C A and {b} CZ B
,

and there

fore {a, 6
} CZ A U B. Since also {a} <Z A U B, it follows that both {a}
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and {a, b} are elements of <f(A U B). This implies that { {a}, {a,b}} is a

subset of 8>(A U B), and hence that it is an element of <P( U B)); in U B)); in

other words (a, 6) « 8>((?(A U B)) whenever a e A and 6 « B. Once this is

known, it is a routine matter to apply the axiom of specification and the

axiom of extension to produce the unique set A X B that consists exactly
of the ordered pairs (a, 6) with a in A and b in B. This set is called the

Cartesian product of A and B; it is characterized by the fact that

A X B = [x: x = (a, b) for some a in A and for some b in B}.

The Cartesian product of two sets is a set of ordered pairs (that is
,

a set

each of whose elements is an ordered pair), and the same is true of every

subset of a Cartesian product. It is of technical importance to know that
we can go in the converse direction also : every set of ordered pairs is a subset

of the Cartesian product of two sets. In other words: if R is a set such

that every element of R is an ordered pair, then there exist two sets A and

B such that R d A X B. The proof is elementary. Suppose indeed that
x e R, so that x = {{a}, {a,b}} for some a and for some b

. The problem

is to dig out a and b from under the braces. Since the elements of R are

sets, we can form the union of the sets in R ; since x is one of the sets in R,
the elements of x belong to that union. Since {a, 6

} is one of the elements

of x, we may write, in what has been called the brutal notation above,

{a, 6
} « \J R. One set of braces has disappeared; let us do the same thing

again to make the other set go away. Form the union of the sets in (J R.
Since {a, b

} is one of those sets, it follows that the elements of {a, b
} belong

to that union, and hence both a and b belong to U \J R. This fulfills the

promise made above; to exhibit R as a subset of some A X B
,

we may take

both A and B to be U \J R. It is often desirable to take A and B as small

as possible. To do so, just apply the axiom of specification to produce the
sets

A = [a: for some b ((a, b
) eR)}

and

B = [b: for some a ((a, b
) eR)}.

These sets are called the projections of R onto the first and second coordi

nates respectively.

However important set theory may be now, when it began some scholars

considered it a disease from which, it was to be hoped, mathematics would
soon recover. For this reason many set-theoretic considerations were

called pathological, and the word lives on in mathematical usage; it often

refers to something the speaker does not like. The explicit definition of an
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ordered pair ((a, 6) = {{a}, {a, b} }) is frequently relegated to pathological

set theory. For the benefit of those who think that in this case the name

is deserved, we note that the definition has served its purpose by now and

will never be used again. We need to know that ordered pairs are deter

mined by and uniquely determine their first and second coordinates, that
Cartesian products can be formed, and that every set of ordered pairs is a

subset of some Cartesian product; which particular approach is used to

achieve these ends is immaterial.

It is easy to locate the source of the mistrust and suspicion that many

mathematicians feel toward the explicit definition of ordered pair given

above. The trouble is not that there is anything wrong or anything miss

ing; the relevant properties of the concept we have defined are all correct

(that is
, in accord with the demands of intuition) and all the correct proper

ties are present. The trouble is that the concept has some irrelevant prop

erties that are accidental and distracting. The theorem that (a, 6
) =

(x, y
) if and only if a = x and b = y is the sort of thing we expect to learn

about ordered pairs. The fact that {a,b} « (a, &), on the other hand, seems

accidental; it is a freak property of the definition rather than an intrinsic
property of the concept.

The charge of artificiality is true, but it is not too high a price to pay

for conceptual economy. The concept of an ordered pair could have been

introduced as an additional primitive, axiomatically endowed with just the

right properties, no more and no less. In some theories this is done. The
mathematician's choice is between having to remember a few more axioms

and having to forget a few accidental facts; the choice is pretty clearly a

matter of taste. Similar choices occur frequently in mathematics; in this
book, for instance, we shall encounter them again in connection with the

definitions of numbers of various kinds.

EXERCISE. It A, B
,

X, and Y are sets, then

(i
) (A U B) X X = (A X X) U (B X X),

(ii) (A n B) x (x n Y) = (A x x) n (B x Y),

(iii) (A - B) X X = (A X X) - (B X X).

If either A = 0 or B = 0, then A X B = 0, and conversely. If

A C X and B C Y
,

then A X B c X X Y
,

and (provided A X B ^

0) conversely.
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RELATIONS

Using ordered pairs, we can formulate the mathematical theory of rela

tions in set-theoretic language. By a relation we mean here something like
marriage (between men and women) or belonging (between elements and

sets). More explicitly, what we shall call a relation is sometimes called a

binary relation. An example of a ternary relation is parenthood for people

(Adam and Eve are the parents of Cain). In this book we shall have no

occasion to treat the theory of relations that are ternary, quaternary, or

worse.

Looking at any specific relation, such as marriage for instance, we might

be tempted to consider certain ordered pairs (x, y), namely just those for
which x is a man, y is a woman, and x is married to y. We have not yet

seen the definition of the general concept of a relation, but it seems plausi

ble that, just as in this marriage example, every relation should uniquely
determine the set of all those ordered pairs for which the first coordinate

does stand in that relation to the second. If we know the relation, we know
the set, and, better yet, if we know the set, we know the relation. If, for
instance, we were presented with the set of ordered pairs of people that
corresponds to marriage, then, even if we forgot the definition of marriage,

we could always tell when a man x is married to a woman y and when not ;

we would just have to see whether the ordered pair (x, y) does or does not
belong to the set.

We may not know what a relation is
, but we do know what a set is
,

and

the preceding considerations establish a close connection between relations

and sets. The precise set-theoretic treatment of relations takes advantage

of that heuristic connection; the simplest thing to do is to define a relation
to be the corresponding set. This is what we do; we hereby define a rela

tion as a set of ordered pairs. Explicitly: a set R is a relation if each ele
26
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ment of R is an ordered pair; this means, of course, that if z « R, then there

exist x and y so that z = (x, y). If R is a relation, it is sometimes con

venient to express the fact that (x, y) « R by writing

xRy

and saying, as in everyday language, that x stands in the relation R to y.

The least exciting relation is the empty one. (To prove that 0 is a set

of ordered pairs, look for an element of 0 that is not an ordered pair.)
Another dull example is the Cartesian product of any two sets X and Y.
Here is a slightly more interesting example: let X be any set, and let R be

the set of all those pairs (x, y) in X X X for which x = y. The relation R
is just the relation of equality between elements of X; if x and y are in X,
then x R y means the same as x = y. One more example will suffice for
now: let X be any set, and let R be the set of all those pairs (x, A) in X X
S>(X) for which x e A. This relation R is just the relation of belonging

between elements of X and subsets of X; if x e X and A e <P(X), then

x R A means the same as x e A.
In the preceding section we saw that associated with every set R of

ordered pairs there are two sets called the projections of R onto the first
and second coordinates. In the theory of relations these sets are known
as the domain and the range of R (abbreviated damR and ranB); we

recall that they are defined by

domB = {x: for some y (x R y)}

and
ranfl = {y.for some x (xRy)}.

If R is the relation of marriage, so that x R y means that x is a man, y is a

woman, and x and y are married to one another, then dom R is the set of

married men and ran R is the set of married women. Both the domain

and the range of 0 are equal to 0. If R = X X Y, then dom R = X
and ran R = Y. If R is equality in X, then dom R = ran R = X. If R
is belonging, between X and <P(X), then dom R = X and ran R = 6>(X)- {0}.

If R is a relation included in a Cartesian product X X Y (so that dom R
c X and ran R C Y), it is sometimes convenient to say that R is a relation

from X to Y; instead of a relation from X to X we may speak of a relation
in X. A relation R in X is reflexive if x R x for every x in X; it is symmetric

if x R y implies that yRx; and it is transitive if x R y and y R z imply that
x R z. (Exercise: for each of these three possible properties, find a relation

that does not have that property but does have the other two.) A relation
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in a set is an equivalence relation if it is reflexive, symmetric, and transitive.
The smallest equivalence relation in a set X is the relation of equality in
X; the largest equivalence relation in X is X X X.

There is an intimate connection between equivalence relations in a set

X and certain collections (called partitions) of subsets of X. A partition

of X is a disjoint collection 6 of non-empty subsets of X whose union is X.
If R is an equivalence relation in X, and if x is in X, the equivalence class

of x with respect to R is the set of all those elements y in X for which x R y.

(The weight of tradition makes the use of the word "class" at this point

unavoidable.) Examples: if R is equality in X, then each equivalence class

is a singleton; if R = X X X, then the set X itself is the only equivalence

class. There is no standard notation for the equivalence class of x with

respect to R ; we shall usually denote it by x/R, and we shall write X/R for
the set of all equivalence classes. (Pronounce X/R as "X modulo R," or,

in abbreviated form, "XmodR." Exercise: show that X/R is indeed a

set by exhibiting a condition that specifies exactly the subset X/R of the

power set <P(X).) Now forget R for a moment and begin anew with a

partition Q of X. A relation, which we shall call X/Q, is defined in X by
writing

x X/Q y

just in case x and y belong to the same set of the collection Q. We shall

call X/Q the relation induced by the partition Q.

In the preceding paragraph we saw how to associate a set of subsets of

X with every equivalence relation in X and how to associate a relation in
X with every partition of X. The connection between equivalence rela

tions and partitions can be described by saying that the passage from e
to X/Q is exactly the reverse of the passage from R to X/R. More explic

itly : if R is an equivalence relation in X, then the set of equivalence classes

is a partition of X that induces the relation R, and if Q is a partition of X,
then the induced relation is an equivalence relation whose set of equivalence

classes is exactly Q.

For the proof, let us start with an equivalence relation R. Since each x

belongs to some equivalence class (for instance x e x/R), it is clear that the

union of the equivalence classes is all X. If z e x/R 0 y/R, then x R z and

z R y, and therefore x R y. This implies that if two equivalence classes

have an element in common, then they are identical, or, in other words,

that two distinct equivalence classes are always disjoint. The set of

equivalence classes is therefore a partition. To say that two elements be

long to the same set (equivalence class) of this partition means, by defini
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tion, that they stand in the relation R to one another. This proves the

first half of our assertion.

The second half is easier. Start with a partition 6 and consider the

induced relation. Since every element of X belongs to some set of 6, re-

flexivity just says that x and x are in the same set of G. Symmetry says

that if x and y are in the same set of 6, then y and x are in the same set of

6, and this is obviously true. Transitivity says that if x and y are in the

same set of 6 and if y and z are in the same set of G, then x and z are in the

same set of 6, and this too is obvious. The equivalence class of each x in
X is just the set of e to which x belongs. This completes the proof of every

thing that was promised.



SECTION 8

FUNCTIONS

If X and Y are sets, & function from (or on) X to (or into) Y is a relation

/ such that dom / = X and such that for each x in X there is a unique ele

ment y in Y with (x, y) ef. The uniqueness condition can be formulated

explicitly as follows: if (x, y) ef and (x, z) ef, then y = z. For each x in
X, the unique y in Y such that (x, y) ef is denoted by /(x). For functions
this notation and its minor variants supersede the others used for more

general relations; from now on, if / is a function, we shall write f(x) = y

instead of (x, y) «/ or xfy. The element y is called the value that the

function / assumes (or takes on) at the argument x; equivalently we may

say that / sends or maps or transforms x onto y. The words map or map

ping, transformation, correspondence, and operator are among some of the

many that are sometimes used as synonyms for function. The symbol

f:X -> Y

is sometimes used as an abbreviation for "/is a function from X to Y."
The set of all functions from X to Y is a subset of the power set <P(X X Y) ;

it will be denoted by Yx.
The connotations of activity suggested by the synonyms listed above

make some scholars dissatisfied with the definition according to which a

function does not do anything but merely is. This dissatisfaction is re

flected in a different use of the vocabulary : function is reserved for the un
defined object that is somehow active, and the set of ordered pairs that
we have called the function is then called the graph of the function. It is

easy to find examples of functions in the precise set-theoretic sense of the

word in both mathematics and everyday life; all we have to look for is

information, not necessarily numerical, in tabulated form. One example
30
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is a city directory; the arguments of the function are, in this case, the in
habitants of the city, and the values are their addresses.

For relations in general, and hence for functions in particular, we have
denned the concepts of domain and range. The domain of a function /
from X into Y is

,

by definition, equal to X, but its range need not be equal
to Y; the range consists of those elements y of Y for which there exists an

x in X such that f(x) = y
. If the range of / is equal to Y
,

we say that /

maps X onto Y. If A is a subset of X, we may want to consider the set of
all those elements y of Y for which there exists an x in the subset A such
that f(x) = y. This subset of Y is called the image of A under / and is

frequently denoted by f(A). The notation is bad but not catastrophic.
What is bad about it is that if A happens to be both an element of X and

a subset of X (an unlikely situation, but far from an impossible one), then
the symbol f(A) is ambiguous. Does it mean the value of / at A or does it

mean the set of values of/ at the elements of A? Following normal math
ematical custom, we shall use the bad notation, relying on context, and,
on the rare occasions when it is necessary, adding verbal stipulations, to
avoid confusion. Note that the image of X itself is the range of /; the
"onto" character of / can be expressed by writing f(X) = Y.

If X is a subset of a set Y
,

the function / defined by f(x) = x for each

x in X is called the inclusion map (or the embedding, or the injection) of
X into Y. The phrase "the function / denned by ..." is a very common
one in such contexts. It is intended to imply, of course, that there does
indeed exist a unique function satisfying the stated condition. In the spe

cial case at hand this is obvious enough; we are being invited to consider
the set of all those ordered pairs (x, y

) in X X Y for which x = y. Similar
considerations apply in every case, and, following normal mathematical

practice, we shall usually describe a function by describing its value y at
each argument x. Such a description is sometimes longer and more cum
bersome than a direct description of the set (of ordered pairs) involved,
but, nevertheless, most mathematicians regard the argument-value de

scription as more perspicuous than any other.

The inclusion map of X into X is called the identity map on X. (In the

language of relations, the identity map on X is the same as the relation of

equality in X.) If, as before, X C Y
,

then there is a connection between
the inclusion map of X into Y and the identity map on Y; that connection

is a special case of a general procedure for making small functions out of
large ones. If / is a functi&n from Y to Z

,

say, and if X is a subset of Y
,

then there is a natural way of constructing a function g from X to Z; de
fine g(x) to be equal to /(x) for each x in X. The function g is called the
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restriction of / to X, and / is called an extension of g to Y ; it is customary to
write g = f \ X. The definition of restriction can be expressed by writing

(/ 1 X)(x) = f(x) for each x in X; observe also that ran (/ 1 X) = f(X).
The inclusion map of a subset of Y is the restriction to that subset of the
identity map on Y.

Here is a simple but useful example of a function. Consider any two
sets X and Y, and define a function / from X X Y onto X by writing
/(#, V) = x. (The purist will have noted that we should have written
f((x, 2/)) instead oif(x, y), but nobody ever does.) The function / is called
the projection from X X Y onto X; if

, similarly, g(x, y
) = y, then g is the

projection from X X Y onto Y. The terminology here is at variance with
an earlier one, but not too badly. If R = X X Y

,

then what was earlier
called the projection of R onto the first coordinate is

, in the present lan

guage, the range of the projection /.
A more complicated and correspondingly more valuable example of a

function can be obtained as follows. Suppose R is an equivalence relation in
X, and let / be the function from X onto X/R defined by f(x) = x/R,
The function / is sometimes called the canonical map from X to X/R.

If / is an arbitrary function, from X onto Y
,

then there is a natural way
of defining an equivalence relation R in X; write a R b (where a and b are
in X) in case /(a) = f(b). For each element y of Y

,
let g(y) be the set of

all those elements x in X for which f(x) = y. The definition of R implies

that g(y) is
, for each y, an equivalence class of the relation R; in other

words, g is a function from Y onto the set X/R of all equivalence classes

of R. The function g has the following special property: if u and v are

distinct elements of Y
,

then g(u) and g(v) are distinct elements of X/R.

A function that always maps distinct elements onto distinct elements is
called one-to-one (usually a one-to-one correspondence). Among the exam

ples above the inclusion maps are one-to-one, but, except in some trivial
special cases, the projections are not. (Exercise: what special cases?)

To introduce the next aspect of the elementary theory of functions we

must digress for a moment and anticipate a tiny fragment of our ultimate
definition of natural numbers. We shall not find it necessary to define all

the natural numbers now; all we need is the first three of them. Since this

is not the appropriate occasion for lengthy heuristic preliminaries, we shall

proceed directly to the definition, even at the risk of temporarily shocking

or worrying some readers. Here it is : we define 0
,

1
, and 2 by writing

0 = 0, 1 = {0}, and 2= {0, {0}}.

In other words, 0 is empty, 1 is the singleton {O}, and 2 is the pair {0, Ij.
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Observe that there is some method in this apparent madness; the number

of elements in the sets 0, 1, or 2 (in the ordinary everyday sense of the

word) is
,

respectively, zero, one, or two.

If A is a subset of a set X, the characteristic function of A is the function

X from X to 2 such that x(x) = 1 or 0 according as x e A or x e X — A.
The dependence of the characteristic function of A on the set A may be

indicated by writing xa instead of x- The function that assigns to each

subset A of X (that is
,

to each element of <P(X)) the characteristic function

of A (that is
,

an element of 2X) is a one-to-one correspondence between

<P(X) and 2X. (Parenthetically: instead of the phrase "the function that
assigns to each A in <P(X) the element xa in 2X" it is customary to use the

abbreviation "the function A — » xa-" In this language, the projection
from X X Y onto X, for instance, may be called the function (x, y

) — » x,
and the canonical map from a set X with a relation R onto X/R may be

called the function x — » x/R.)

Exercise. (i
) Y& has exactly one element, namely 0, whether Y is

empty or not, and (ii) if X is not empty, then 0X is empty.



SECTION 9

FAMILIES

There are occasions when the range of a function is deemed to be more

important than the function itself. When that is the case, both the ter

minology and the notation undergo radical alterations. Suppose, for in
stance, that a: is a function from a set / to a set X. (The very choice of

letters indicates that something strange is afoot.) An element of the do
main / is called an index, I is called the index set, the range of the function
is called an indexed set, the function itself is called a family, and the value

of the function x at an index i, called a term of the family, is denoted by #,..

(This terminology is not absolutely established, but it is one of the standard

choices among related slight variants; in the sequel it and it alone will be

used.) An unacceptable but generally accepted way of communicating the

notation and indicating the emphasis is to speak of a family {x,.} in X, or

of a family {#i} of whatever the elements of X may be; when necessary,

the index set / is indicated by some such parenthetical expression as (i « /).
Thus, for instance, the phrase "a family {A^ of subsets of X" is usually
understood to refer to a function A, from some set / of indices, into <P(X).

If {Ai} is a family of subsets of X, the union of the range of the family
is called the union of the family {Ai}, or the union of the sets Ai; the

standard notation for it is

\Ji.iAi or \JiAi,

according as it is or is not important to emphasize the index set /. It
follows immediately from the definition of unions that x e U» Ai if and

only if x belongs to Ai for at least one i. If / = 2, so that the range of
the family {Ai} is the unordered pair { A0, A\}, then (Ji A« = A0 \J A\.
Observe that there is no loss of generality in considering families of sets

instead of arbitrary collections of sets; every collection of sets is the range
34
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of some family. If, indeed, e is a collection of sets, let 6 itself play the

role of the index set, and consider the identity mapping on e in the role

of the family.
The algebraic laws satisfied by the operation of union for pairs can be

generalized to arbitrary unions. Suppose, for instance, that {Ij} is a fam

ily of sets with domain J, say; write K = Ui Ij' an<^ ^ M*} be a family
of sets with domain K. It is then not difficult to prove that

\Jk.K Ak = \J,.j (Ui.ii
this is the generalized version of the associative law for unions. Exercise:

formulate and prove a generalized version of the commutative law.

An empty union makes sense (and is empty), but an empty intersection

does not make sense. Except for this triviality, the terminology and nota

tion for intersections parallels that for unions in every respect. Thus, for

instance, if {A,} is a non-empty family of sets, the intersection of the range

of the family is called the intersection of the family {A.,}, or the intersec

tion of the sets A*; the standard notation for it is

or fli^i,

according as it is or is not important to emphasize the index set I. (By a

"non-empty family" we mean a family whose domain I is not empty.) It
follows immediately from the definition of intersections that if 1^0,
then a necessary and sufficient condition that x belong to P|< A< is that x

belong to A,- for all i.
The generalized commutative and associative laws for intersections can

be formulated and proved the same way as for unions, or, alternatively,

De Morgan's laws can be used to derive them from the facts for unions.

This is almost obvious, and, therefore, it is not of much interest. The in

teresting algebraic identities are the ones that involve both unions and

intersections. Thus, for instance, if {Ai} is a family of subsets of X and
BcX, then

BD \JiAi= U. (Bf1 At)
and

B U fit Ai- n. (5 U At);

these equations are a mild generalization of the distributive laws.

Exercise. If both {A,} and {By} are families of sets, then

(IM.) n (UyBy) = UijUiHBj)
and

(Hi ^) U (f|y By) = n,.i (Ai U B,).
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Explanation of notation: a symbol such as U,.y is an abbreviation for

U(,V)«rx/-

The notation of families is the one normally used in generalizing the

concept of Cartesian product. The Cartesian product of two sets X and
Y was defined as the set of all ordered pairs (x, y) with x in X and y in Y.
There is a natural one-to-one correspondence between this set and a cer

tain set of families. Consider, indeed, any particular unordered pair

{a, b], with a 9* b, and consider the set Z of all families z, indexed by

{a, 6}, such that za e X and z& « Y. If the function / from Z to X X Y is

defined by /(z) = (z0, Zj), then / is the promised one-to-one correspond
ence. The difference between Z and X X Y is merely a matter of nota

tion. The generalization of Cartesian products generalizes Z rather than
X X Y itself. (As a consequence there is a little terminological friction
in the passage from the special case to the general. There is no help for
it; that is how mathematical language is in fact used nowadays.) The
generalization is now straightforward. If {X,} is a family of sets (i e 1),
the Cartesian product of the family is

, by definition, the set of all families

\xi) with xi e Xi for each i in /. There are several symbols for the Carte
sian product in more or less current usage; in this book we shall denote it by

It is clear that if every X,- is equal to one and the same set X, then X, ^,
= X1. If / is a pair {a, 6 J, with a b

, then it is customary to identify
X, €jX,- with the Cartesian product Xa X Xb as defined earlier, and if /

is a singleton {a}, then, similarly, we identify X,«/ X, with. Xa itself.

Ordered triples, ordered quadruples, etc., may be defined as families whose

index sets are unordered triples, quadruples, etc.

Suppose that [Xi] is a family of sets (i e 1
) and let X be its Cartesian

product. If J is a subset of J, then to each element of X there corresponds
in a natural way an element of the partial Cartesian product X<«/X,-
To define the correspondence, recall that each element x of X is itself a

family {xi}, that is
,

in the last analysis, a function on /; the corresponding

element, say y, of X<«/ Xi m obtained by simply restricting that function
to J. Explicitly, we write y,- = xi whenever i e J. The correspondence

x — > y is called the projection from X onto X,"«/ we shall temporarily

denote it by //. If, in particular, J is a singleton, say «
/ = then we

shall write /y (instead of /(/)) for//. The word "projection" has a multiple
use; if x e X, the value of at x, that is xj, is also called the projection of

x onto Xj, or, alternatively, the j-coordinote of x. A function on a Carte
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sian product such as X is called a function of several variables, and, in par

ticular, a function on a Cartesian product Xa X -Xj is called a function of

two variables.

Exercise. Prove that (U. At) X (Ui Bj) = U..j X B,), and that
the same equation holds for intersections (provided that the domains

of the families involved are not empty). Prove also (with appropriate

provisos about empty families) that f")i %i c Xj c U, Xf f°r each in

dex j and that intersection and union can in fact be characterized as the

extreme solutions of these inclusions. This means that if Xj (Z Y for

each index j, then U, Xi c Y, and that U, X% is the only set satisfying

this minimality condition; the formulation for intersections is similar.
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INVERSES AND COMPOSITES

Associated with every function /, from X to Y, say, there is a function

from <P(X) to <P(Y), namely the function (frequently called / also) that
assigns to each subset A of X the image subset f(A) of Y. The algebraic

behavior of the mapping A —* f(A) leaves something to be desired. It is

true that if {A,} is a family of subsets of X, then /(U<A,) = U,/C^,)
(proof?), but the corresponding equation for intersections is false in gen

eral (example?), and the connection between images and complements is

equally unsatisfactory.

A correspondence between the elements of X and the elements of Y
does always induce a well-behaved correspondence between the subsets of

X and the subsets of Y, not forward, by the formation of images, but
backward, by the formation of inverse images. Given a function / from

X to Y, let J~1, the inverse of /, be the function from <P( Y) to <P{X) such

that if B C Y, then

S-\B) = /(*).*}.

In words: f-1(B) consists of exactly those elements of X that / maps into
B; the set/-1(B) is called the inverse image of B under/. A necessary and

sufficient condition that / map X onto Y is that the inverse image under

/ of each non-empty subset of Y be a non-empty subset of X. (Proof?)
A necessary and sufficient condition that / be one-to-one is that the inverse

image under / of each singleton in the range of / be a singleton in X.
If the last condition is satisfied, then the symbol /_1 is frequently as

signed a second interpretation, namely as the function whose domain is

the range of /, and whose value for each y in the range of / is the unique

r in X for which j{x) = y. In other words, for one-to-one functions / we

may write /-1(j/) = x if and only if f(x) = y. This use of the notation is
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mildly inconsistent with our first interpretation of but the double

meaning is not likely to lead to any confusion.

The connection between images and inverse images is worth a moment's

consideration.
IfBcr, then

f(T\B)) C B.

Proof. If y « /(/_1(JS)), then y = f(x) for some x in /~X(B) ; this means that

y = f(x) and f(x) e B, and therefore y eB.
If / maps X onto Y, then

f(f-\B)) = B.

Proof. If y (B, then y — f(x) for some x in X, and therefore for some x

in/_1(B); this means that y

If A C X, then

iCf'(/(4)).
Proof. If x e A, then /(x) ef(A); this means that a;

If / is one-to-one, then

Proof. If x e S~lU{A)), then /(a;) e f(A), and therefore /(a) = /(«) for

some u in A ; this implies that x = u and hence that x e A.
The algebraic behavior of/-1 is unexceptionable. If {Z?,-} is a family of

subsets of Y, then

/-'(U.-s.) = u.rw
and

rHn.s.) = dif-\Bi).
The proofs are straightforward. If, for instance, x ef~1(C\i Bi), then

f(x) e Bi for all i, so that x e/_1(B,) for all i, and therefore a; e C\iS~l{B^);

all the steps in this argument are reversible. The formation of inverse

images commutes with complementation also; i.e.,

r\Y-B) = x-r\B)
for each subset B of Y. Indeed: if x «/-1(y — B), then/(x) e Y — B, so

that x e' f~1(B), and therefore x e X — the steps are reversible.

(Observe that the last equation is indeed a kind of commutative law: it
says that complementation followed by inversion is the same as inversion

followed by complementation.)
The discussion of inverses shows that what a function does ean in a cer
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tain sense be undone; the next thing we shall see is that what two functions
do can sometimes be done in one step. If, to be explicit, / is a function
from X to Y and g is a function from Y to Z, then every element in the

range of / belongs to the domain of g, and, consequently, g(f(x)) makes

sense for each x in X. The function h from X to Z, defined by h(x) =

g(f(x)) is called the composite of the functions / and g; it is denoted by
g "f or, more simply, by gf. (Since we shall not have occasion to consider

any other kind of multiplication for functions, in this book we shall use

the latter, simpler notation only.)

Observe that the order of events is important in the theory of functional
composition. In order that gf be denned, the range of / must be included

in the domain of g, and this can happen without it necessarily happening

in the other direction at the same time. Even if both fg and gf are defined,

which happens if
, for instance, / maps X into Y and g maps Y into X, the

functions fg and g
f

need not be the same ; in other words, functional compo

sition is not necessarily commutative.

Functional composition may not be commutative, but it is always asso

ciative. If / maps X into Y
,

if g maps Y into Z
,

and if h maps Z into U,
then we can form the composite of h with g

f
and the composite of h

g with

/; it is a simple exercise to show that the result is the same in either case.

The connection between inversion and composition is important; some

thing like it crops up all over mathematics. If / maps X into Y and g

maps Y into Z
,

then f~l maps <P(Y) into <P(X) and g~l maps (P(Z) into

(P(F). In this situation, the composites that are formable are g
f

and

f~lg~l ; the assertion is that the latter is the inverse of the former. Proof:

if x e (gf)~l(C), where x « X and C C Z
,

then g(f(x)) e C
,

so that f(x) e

g~1(C}, and therefore x ef~l(g~l(C)); the steps of the argument are

reversible.

Inversion and composition for functions are special cases of similar opera

tions for relations. Thus, in particular, associated with every relation R

from X to Y there is the inverse (or converse) relation R~l from Y to X; by
definition y R ~l x means that x R y. Example : if R is the relation of be

longing, from X to <y(X), then R~l is the relation of containing, from <P(X)

to X. It is an immediate consequence of the definitions involved that
dom R~l = ran R and ran R~l •= dom R. If the relation R is a function,
then the equivalent assertions x R y and y R ~l x can be written in the

equivalent forms R(x) = y and x eR~l([y}).
Because of difficulties with commutativity, the generalization of func

tional composition has to be handled with care. The composite of the rela

tions R and S is denned in case R is a relation from X to Y and S is a rela
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tion from Y to Z. The composite relation T, from X to Z, is denoted by
S ° R, or, simply, by SR; it is defined so that x T z if and only if there exists

an element y in Y such that xRy and y S z. For an instructive example,
let R mean "son" and let S mean "brother" in the set of human males,

say. In other words, xRy means that x is a son of y, and y S z means

that y is a brother of z. In this case the composite relation <S22 means

"nephew." (Query: what do R'1, S'1, RS, and R^S-1 mean?) If both

R and S are functions, then xRy and y S z can be rewritten as R(x) = y

and S(y) = z, respectively. It follows that S(R(x)) = z if and only if x T z,

so that functional composition is indeed a special case of what is sometimes

called the relative product.

The algebraic properties of inversion and composition are the same for

relations as for functions. Thus, in particular, composition is commuta

tive by accident only, but it is always associative, and it is always con

nected with inversion via the equation (SR)-1 = 72_1>S-1. (Proofs?)
The algebra of relations provides some amusing formulas. Suppose that,

temporarily, we consider relations in one set X only, and, in particular, let

J be the relation of equality in X (which is the same as the identity map

ping on X). The relation I acts as a multiplicative unit; this means that
IR — RI = R for every relation R in X. Query: is there a connection

among /, RR-1, and R—1R? The three defining properties of an equiv
alence relation can be formulated in algebraic terms as follows : reflexivity
means I d R, symmetry means R C R~l, and transitivity means RR <z R.

Exercise. (Assume in each case that / is a function from X to Y.)

(i
) If g is a function from Y to X such that g
f

is the identity on X, then

/ is one-to-one and g maps Y onto X. (ii) A necessary and sufficient

condition that f(A fl B) = f(A) D f(B) for all subsets A and B of X is

that / be one-to-one. (iii) A necessary and sufficient condition that

f(X — A) C Y — f(A) for all subsets A of X is that / be one-to-one.

(iv) A necessary and sufficient condition that Y — f(A) CI f(X — A)
for all subsets A of X is that / map X onto Y.
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NUMBERS

How much is two? How, more generally, are we to define numbers?

To prepare for the answer, let us consider a set X and let us form the col

lection P of all unordered pairs {a, b}, with a in X, b in X, and a 7* b. It
seems clear that all the sets in the collection P have a property in com

mon, namely the property of consisting of two elements. It is tempting

to try to define "twoness" as the common property of all the sets in the

collection P, but the temptation must be resisted; such a definition is
,

after all, mathematical nonsense. What is a "property"? How do we

know that there is only one property in common to all the sets in P?
After some cogitation we might hit upon a way of saving the idea behind

the proposed definition without using vague expressions such as "the com

mon property." It is ubiquitous mathematical practice to identify a

property with a set, namely with the set of all objects that possess the

property; why not do it here? Why not, in other words, define "two" as

the set P? Something like this is done at times, but it is not completely

satisfying. The trouble is that our present modified proposal depends on

P
,

and hence ultimately on X. At best the proposal defines twoness for
subsets of X; it gives no hint as to when we may attribute twoness to a

set that is not included in X.
There are two ways out. One way is to abandon the restriction to a

particular set and to consider instead all possible unordered pairs {a, 6
}

with a 7* b
. These unordered pairs do not constitute a set; in order to

base the definition of "two" on them, the entire theory under consideration

would have to be extended to include the "unsets" (classes) of another

theory. This can be done, but it will not be done here; we shall follow a

different route.

How would a mathematician define a meter? The procedure analogous
42
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to the one sketched above would involve the following two steps. First,
select an object that is one of the intended models of the concept being

denned—an object, in other words, such that on intuitive or practical

grounds it deserves to be called one meter long if anything does. Second,

form the set of all objects in the universe that are of the same length as the

selected one (note that this does not depend on knowing what a meter

is), and define a meter as the set so formed.

How in fact is a meter defined? The example was chosen so that the

answer to this question should suggest an approach to the definition of

numbers. The point is that in the customary definition of a meter the

second step is omitted. By a more or less arbitrary convention an object

is selected and its length is called a meter. If the definition is accused of

circularity (what does "length" mean?), it can easily be converted into an

unexceptionable demonstrative definition; there is after all nothing to stop

us from defining a meter as equal to the selected object. If this demon

strative approach is adopted, it is just as easy to explain as before when

"one-meter-ness" shall be attributed to some other object, namely, just
in case the new object has the same length as the selected standard. We
comment again that to determine whether two objects have the same

length depends on a simple act of comparison only, and does not depend

on having a precise definition of length.

Motivated by the considerations described above, we have earlier defined

2 as some particular set with (intuitively speaking) exactly two elements.

How was that standard set selected? How should other such standard sets

for other numbers be selected? There is no compelling mathematical rea

son for preferring one answer to this question to another; the whole thing
is largely a matter of taste. The selection should presumably be guided

by considerations of simplicity and economy. To motivate the particular
selection that is usually made, suppose that a number, say 7, has already

been defined as a set (with seven elements). How, in this case, should we

define 8? Where, in other words, can we find a set consisting of exactly

eight elements? We can find seven elements in the set 7; what shall we use

as an eighth to adjoin to them? A reasonable answer to the last question

is the number (set) 7 itself; the proposal is to define 8 to be the set consist

ing of the seven elements of 7, together with 7. Note that according to this
proposal each number will be equal to the set of its own predecessors.

The preceding paragraph motivates a set-theoretic construction that
makes sense for every set, but that is of interest in the construction of

numbers only. For every set x we define the successor x+ of x to be the

set obtained by adjoining x to the elements of x ; in other words,
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z+ = z U {*}.

(The successor of x is frequently denoted by x'.)
We are now ready to define the natural numbers. In defining 0 to be a

set with zero elements, we have no choice; we must write (as we did)

0 = 0.
If every natural number is to be equal to the set of its predecessors, we

have no choice in defining 1, or 2, or 3 either; we must write

1-0+ (-{<)}),

2 = l+( = {0,1)),

3 = 2+ (={0,1, 2}),

etc. The "etc." means that we hereby adopt the usual notation, and, in
what follows, we shall feel free to use numerals such as "4" or "956" with
out any further explanation or apology.

From what has been said so far it does not follow that the construction

of successors can be carried out ad infinitum within one and the same set.

What we need is a new set-theoretic principle.

Axiom of infinity. There exists a set containing 0 and containing the

successor of each of its elements.

The reason for the name of the axiom should be clear. We have not yet

given a precise definition of infinity, but it seems reasonable that sets such

as the ones that the axiom of infinity describes deserve to be called infinite.
We shall say, temporarily, that a set A is a successor set if 0 « A and if

x+ e A whenever x e A. In this language the axiom of infinity simply says

that there exists a successor set A. Since the intersection of every (non
empty) family of successor sets is a successor set itself (proof?), the inter
section of all the successor sets included in A is a successor set w. The set

w is a subset of every successor set. If, indeed, B is an arbitrary successor

set, then so is A fl B. Since A D B C A, the set A D B is one of the

sets that entered into the definition of w; it follows that w C A fl B, and,

consequently, that w C B. The minimality property so established

uniquely characterizes w; the axiom of extension guarantees that there

can be only one successor set that is included in every other successor set.

A natural number is
,

by definition, an element of the minimal successor

set w. This definition of natural numbers is the rigorous counterpart of

the intuitive description according to which they consist of 0
,

1
, 2
,

3
, "and
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so on." Incidentally, the symbol we are using for the set of all natural
numbers (w) has a plurality of the votes of the writers on the subject, but
nothing like a clear majority. In this book that symbol will be used sys

tematically and exclusively in the sense denned above.

The slight feeling of discomfort that the reader may experience in con

nection with the definition of natural numbers is quite common and in
most cases temporary. The trouble is that here, as once before (in the

definition of ordered pairs), the object defined has some irrelevant struc

ture, which seems to get in the way (but is in fact harmless). We want
to be told that the successor of 7 is 8, but to be told that 7 is a subset of 8

or that 7 is an element of 8 is disturbing. We shall make use of this super

structure of natural numbers just long enough to derive their most impor
tant natural properties; after that the superstructure may safely be for
gotten.

A family {#,.} whose index set is either a natural number or else the set

of all natural numbers is called a sequence (finite or infinite, respectively).
If {Ai} is a sequence of sets, where the index set is the natural number n+,

then the union of the sequence is denoted by

U?-o Ai or 4, U • • • U An.

If the index set is w, the notation is

Ur-o^i or A0V A,. U A2U....
Intersections and Cartesian products of sequences are denoted similarly by

n?-0 Ai, A0 n • • • n An,

Xi-o Ai, A0X...XAn,
and

n?.0Ai, A0 n AI n A2 n...,

X"-o Ai, AO X AI X A2 X • • •.

The word "sequence" is used in a few different ways in the mathematical

literature, but the differences among them are more notational than con

ceptual. The most common alternative starts at 1 instead of 0; in other

words, it refers to a family whose index set is w —
{0} instead of w.
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THE PEANO AXIOMS

We enter now into a minor digression. The purpose of the digression is

to make fleeting contact with the arithmetic theory of natural numbers.

From the set-theoretic point of view this is a pleasant luxury.
The most important thing we know about the set u of all natural num

bers is that it is the unique successor set that is a subset of every successor

set. To say that a is a successor set means that

(I) 0 « w

(where, of course, 0 = 0), and that

(II) if n e w, then n+ e u

(where n+ = n U {n}). The minimality property of w can be expressed

by saying that if a subset S of w is a successor set, then S = u. Alterna
tively, and in more primitive terms,

(III) ifSCu,ifQeS, and if n+ eS whenever n e S, then S = u.

Property (III) is known as the principle of mathematical induction.
We shall now add to this list of properties of u two others:

(IV) n+ 7* Q for att n in a,

and

(V) if n and m are in u, and if n+ = m+, then n = m.

The proof of (IV) is trivial; since n+ always contains n, and since 0 is

empty, it is clear that n+ is different from 0. The proof of (V) is not triv
ial; it depends on a couple of auxiliary propositions. The first one asserts

that something that ought not to happen indeed does not happen. Even
46
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if the considerations that the proof involves seem to be pathological and

foreign to the arithmetic spirit that we expect to see in the theory of nat
ural numbers, the end justifies the means. The second proposition refers

to behavior that is quite similar to the one just excluded. This tune, how

ever, the apparently artificial considerations end in an affirmative result:

something mildly surprising always does happen. The statements are as

follows: (i
) no natural number is a subset o
f any o
f its elements, and (ii)

every element o
f a natural number is a subset o
f it. Sometimes a set with

the property that it includes (C) everything that it contains («) is called

a transitive set. More precisely, to say that E is transitive means that if

x e y and y « E, then x « E. (Recall the slightly different use of the word

that we encountered in the theory of relations.) In this language, (ii) says

that every natural number is transitive.

The proof of (i
) is a typical application of the principle of mathematical

induction. Let S be the set of all those natural numbers n that are not
included in any of their elements. (Explicitly : n e S if and only if n e u

and n is not a subset of x for any x in n.) Since 0 is not a subset of any of

its elements, it follows that 0 eS. Suppose now that n e S. Since n is a

subset of n, we may infer that n is not an element of n, and hence that n+

is not a subset of n. What can n+ be a subset of? If n+ C x, then n C x,

and therefore (since n e S
) x e
' n. It follows that n+ cannot be a subset of

n, and n+ cannot be a subset of any element of n. This means that n+
cannot be a subset of any element of n+, and hence that n+ e S. The de

sired conclusion (i
) is now a consequence of (III).

The proof of (ii) is also inductive. This tune let S be the set of all

transitive natural numbers. (Explicitly: n e S if and only if n e u and x is
a subset of n for every x in n.) The requirement that 0 « S is vacuously

satisfied. Suppose now that n e S. If x e n+, then either x e n or x = n.

In the first case x C n (since n eS) and therefore x d n+; in the second

case x C n+ for even more trivial reasons. It follows that every element

of ra+ is a subset of n+, or, in other words, that n+ eS. The desired con

clusion (ii) is a consequence of (III).
We are now ready to prove (V). Suppose indeed that n and m are

natural numbers and that n+ = m+. Since n e n+, it follows that n « m+,

and hence that either n e m or n = m. Similarly, either m « n or m = n.
Ifn^m, then we must have n em and men. Since, by (ii), n is transi

tive, it follows that n en. Since, however, n C n, this contradicts (i), and

the proof is complete.

The assertions (I)-(V) are known as the Peano axioms; they used to

be considered as the fountainhead of all mathematical knowledge. From
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them (together with the set-theoretic principles we have already met) it
is possible to define integers, rational numbers, real numbers, and complex
numbers, and to derive their usual arithmetic and analytic properties.
Such a program is not within the scope of this book; the interested reader
should have no difficulty in locating and studying it elsewhere.

Induction is often used not only to prove things but also to define things.

Suppose, to be specific, that / is a function from a set X into the same set
X, and suppose that a is an element of X. It seems natural to try to define
an infinite sequence {w(n)} of elements of X (that is

,
a function u from u

to X) in some such way as this: write u(0) = a, u(l) = /(w(0)), u(2) =

/(«(!)), and so on. If the would-be definer were pressed to explain the

"and so on," he might lean on induction. What it all means, he might say,

is that we define w(0) as a, and then, inductively, we define u(n+) as

/(w(n)) for every n. This may sound plausible, but, as justification for an

existential assertion, it is insufficient. The principle of mathematical in
duction does indeed prove, easily, that there can be at most one function
satisfying all the stated conditions, but it does not establish the existence

of such a function. What is needed is the following result.

Recursion theorem. // a is an element o
f a set X, and iff is a function

from X into X, then there exists a function u from w into X such that u(Q)
— a and such that u(n+) = f(u(n)) for all n in w.

PROOF. Recall that a function from w to X is a certain kind of subset

of w X X; we shall construct u explicitly as a set of ordered pairs. Con
sider, for this purpose, the collection 6 of all those subsets A of w X X for
which (0, a

) « A and for which (n+, /(z)) « A whenever (n, x
) « A. Since

w X X has these properties, the collection C is not empty. We may, there

fore, form the intersection u of all the sets of the collection 6. Since it is
easy to see that u itself belongs to 6

, it remains only to prove that u is a

function. We are to prove, in other words, that for each natural number

n there exists at most one element x of X such that (n, x
) e u. (Explicitly:

if both (n, x
) and (n, y
) belong to u, then x = y.) The proof is inductive.

Let S be the set of all those natural numbers n for which it is indeed true

that (n, x
) e u for at most one x. We shall prove that 0 e S and that if

n eS, then n+ eS.

Does 0 belong to 5? If not, then (0, &
)

e u for some b distinct from a.

Consider, in this case, the set w —

{ (0, 6
)

} . Observe that this diminished

set still contains (0, a
) (since a 7* b), and that if the diminished set con

tains (n,x), then it contains (n+,f(x)) also. The reason for the second

assertion is that since n+ j* 0
, the discarded element is not equal to
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(n+,/(x)). In other words, u — {(0, 6)} e 6. This contradicts the fact

that u is the smallest set in 6, and we may conclude that 0 e S.

Suppose now that n eS; this means that there exists a unique element

x in X such that (n, x) e u. Since (n, x) e u, it follows that (ra+, /(a;)) e w.

If n+ does not belong to S, then (n+, i/)«u for some y different from f(x).
Consider, in this case, the set u —

{ (n+, y) } . Observe that this diminished

set contains (0, a) (since n+ 5^ 0), and that if the diminished set contains

(to, t)
,

say, then it contains (to+, /(<)) also. Indeed, if to = n, then t must

be x, and the reason the diminished set contains (n+, /(x)) is that/(x) y;

if
,

on the other hand, m ^ n, then the reason the diminished set contains

(to+,/(0) is that m+ ^ n+. In other words, u — {(n+, y)\ e e. This
again contradicts the fact that u is the smallest set in 6

,

and we may

conclude that n+ « S.

The proof of the recursion theorem is complete. An application of the

recursion theorem is called definition b
y induction.

Exercise. Prove that if n is a natural number, then n j± n+; if n ^ 0
,

then n = m+ for some natural number to. Prove that w is transitive.

Prove that if E is a non-empty subset of some natural number, then

there exists an element k in E such that k em whenever m is an element

of E distinct from A
;.
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ARITHMETIC

The introduction of addition for natural numbers is a typical example of

definition by induction. Indeed, it follows from the recursion theorem

that for each natural number to there exists a function sm from w to w

such that sm(0) = m and such that sm(n+) = (sm(n))+ for every natural
number n; the value sm(n) is

,

by definition, the sum m + n. The general
arithmetic properties of addition are proved by repeated applications of

the principle of mathematical induction. Thus, for instance, addition is

associative. This means that

(A
;

+ to) + n = fc + (to + n
)

whenever fc
,

m, and n are natural numbers. The proof goes by induction

on n as follows. Since (f
c + TO)+0 = fc + to and fc + (to + 0
) = fc + to,

the equation is true if n = 0. If the equation is true for n, then (f
c + to)

+ n+ = ((fc + to) + n)+ (by definition) =

(f
c + (to + n))+ (by the in

duction hypothesis) — k + (to + n
) + (again by the definition of addition)

= fc + (to + n+) (ditto), and the argument is complete. The proof that
addition is commutative (i.e., to + n = n + to for all to and n

) is a little
tricky; a straightforward attack might fail. The trick is to prove, by in

duction on n, that (i
) 0 + n = n and (ii) m+ + n = (to + n
)

+
, and then

to prove the desired commutativity equation by induction on to, via (i
)

and (ii).
Similar techniques are applied in the definitions of products and expo

nents and in the derivations of their basic arithmetic properties. To define

multiplication, apply the recursion theorem to produce functions pm such

that Pm(0) = 0 and such that pm(n+) = pm(n) + to for every natural num

ber n; then the value pm(n) is
,

by definition, the product m-n. (The dot is

frequently omitted.) Multiplication is associative and commutative; the
50
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proofs are straightforward adaptations of the ones that worked for addi

tion. The distributive law (i.e., the assertion that k-(m + n) = k-m +
k-n whenever k, to, and n are natural numbers) is another easy consequence

of the principle of mathematical induction. (Use induction on n.) Anyone

who has worked through sums and products in this way should have no

trouble with exponents. The recursion theorem yields functions em such

that em(0) = 1 and such that em(n+) = em(n) •m for every natural number

n; the value em(n) is
, by definition, the power to". The discovery and estab

lishment of the properties of powers, as well as the detailed proofs of the

statements about products, can safely be left as exercises for the reader.

The next topic that deserves some attention is the theory of order in the

set of natural numbers. For this purpose we proceed to examine with
some care the question of which natural numbers belong to which others.

Formally, we say that two natural numbers to and n are comparable if

men, or to = n, or n « to. Assertion : two natural numbers are always

comparable. The proof of this assertion consists of several steps; it will be

convenient to introduce some notation. For each n in w, write S(n) for

the set of all to in w that are comparable with n, and let S be the set of all

those n for which S(n) = u. In these terms, the assertion is that S = w.

We begin the proof by showing that S(0) = w (i.e., that 0 eS). Clearly

S(0) contains 0
. If to « <S(0), then, since to « 0 is impossible, either to = 0

(in which case 0 e to+), or 0 « to (in which case, again, 0 « to+). Hence, in

all cases, if to « <S(0), then m+ e S(0) ; this proves that S(0) = w. We com

plete the proof by showing that if S(n) = w, then S(n+) = u. The fact

that 0 eS(n+) is immediate (since n+ «<S(0)); it remains to prove that if
m e S(n+), then m+ « S(n+). Since to e S(n+), therefore either n+ e m (in
which case n+ « to+), or n+ = to (ditto), or to « n+. In the latter case,

either to = n (in which case m+ = n+), or to « n. The last case, in turn,

splits according to the behavior of m+ and n: since m+ eS(n), we must

have either n e m+, or n = to+, or to+ « n. The first possibility is incom

patible with the present situation (i.e., with men). The reason is that if

n e m+, then either n e m or n = to, so that, in any case, n C to, and we

know that no natural number is a subset of one of its elements. Both the
remaining possibilities imply that m+ e n+, and the proof is complete.

The preceding paragraph implies that if to and n are in w, then at least
one of the three possibilities (to « n, to = n, n « to) must hold; it is easy to
see that, in fact, always exactly one of them holds. (The reason is another
application of the fact that a natural number is not a subset of one of its

elements.) Another consequence of the preceding paragraph is that if n
and m are distinct natural numbers, then a necessary and sufficient condi
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tion that TO e n is that m C n. Indeed, the implication from m « n to
m d n is just the transitivity of n. If, conversely, m C n and m ?•* n,

then n « m cannot happen (for then m would be a subset of one of its ele

ments), and therefore men. If m en, or if
,

equivalently, m is a proper

subset of n, we shall write m < n and we shall say that m is less than n. If
m is known to be either less than n or else equal to n, we write m ^ n.

Note that ^ and < are relations in w. The former is reflexive, but the

latter is not; neither is symmetric; both are transitive. If m ^ n and

n ^ m, then m = n.

EXERCISE. Prove that if m < n, then m + k < n + k, and prove that

if TO < n and fc ^ 0
, then m.k < n.k. Prove that if E is a non-empty

set of natural numbers, then there exists an element A
; in E such that

k ^ m for all m in E.

Two sets £ and F (not necessarily subsets of w
) are called equivalent, in

symbols E ~ F, if there exists a one-to-one correspondence between them.

It is easy to verify that equivalence in this sense, for subsets of some par

ticular set X, is an equivalence relation in the power set 8>(X).

Every proper subset of a natural number n is equivalent to some smaller

natural number (i.e., to some element of n). The proof of this assertion

is inductive. For n = 0 it is trivial. If it is true for n, and if E is a proper

subset of n+, then either E is a proper subset of n and the induction hy
pothesis applies, orE = n and the result is trivial, orneE. In the latter case,

find a number k in n but not in E and define a function f on E by writing

f(i) = i when i ^ n and f(n) = k. Clearly / is one-to-one and / maps E
into n. It follows that the image of E under / is either equal to n or (by

the induction hypothesis) equivalent to some element of n, and, conse

quently, E itself is always equivalent to some element of n+.

It is a mildly shocking fact that a set can be equivalent to a proper sub

set of itself. If, for instance, a function / from w to w is defined by writing

f(n) = n+ for all n in w, then/ is a one-to-one correspondence between the

set of all natural numbers and the proper subset consisting of the non-zero

natural numbers. It is nice to know that even though the set of all natural

numbers has this peculiar property, sanity prevails for each particular nat
ural number. In other words, if n e w, then n is not equivalent to a proper

subset of n. For n = 0 this is clear. Suppose now that it is true for n, and

suppose that / is a one-to-one correspondence from n+ to a proper subset

E of n+. If n e
' E
,

then the restriction of / to n is a one-to-one correspond

ence between n and a proper subset of n, which contradicts the induction
hypothesis. If n e E

,

then n is equivalent to E — {n}, so that, by the in
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duction hypothesis, n = E —
{n}. This implies that E = n+, which con

tradicts the assumption that E is a proper subset of n+.

A set E is called finite if it is equivalent to some natural number; other

wise E is infinite.

EXERCISE. Use this definition to prove that w is infinite.

A set can be equivalent to at most one natural number. (Proof: we

know that for any two distinct natural numbers one must be an element

and therefore a proper subset of the other; it follows from the preceding

paragraph that they cannot be equivalent.) We may infer that a finite

set is never equivalent to a proper subset; in other words, as long as we

stick to finite sets, the whole is always greater than any of its parts.

EXERCISE. Use this consequence of the definition of finiteness to prove

that u is infinite.

Since every subset of a natural number is equivalent to a natural num

ber, it follows also that every subset of a finite set is finite.

The number of elements in a finite set E is
, by definition, the unique

natural number equivalent to E; we shall denote it by #(E). It is clear

that if the correspondence between E and #(.£) is restricted to the finite

subsets of some set X, the result is a function from a subset of the power

set <P(X) to w. This function is pleasantly related to the familiar set-

theoretic relations and operations. Thus, for example, if E and F are

finite sets such that E C F, then #(E) ^ #(F). (The reason is that since

E ~ #(.£) and F ~ #(F), it follows that #(#) is equivalent to a subset of

#(F).) Another example is the assertion that if E and F are finite sets,

then E U F is finite, and, moreover, if E and F are disjoint, then #(E U F)
= #(E) + #(F). The crucial step in the proof is the fact that if m and n

are natural numbers, then the complement of m in the sum m + n is equiv
alent to n; the proof of this auxiliary fact is achieved by induction on n.

Similar techniques prove that if E and F are finite sets, then so also are

E X F and EF, and, moreover, #(E X F) = #(#).#(F) and #(EF) =

EXERCISE. The union of a finite set of finite sets is finite. If E is finite,

then <P(E) is finite and, moreover, #((?(£)) = 2t(E\ If E is a non-empty

finite set of natural numbers, then there exists an element k in E such

that m ^ k for all m in E.
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ORDER

Throughout mathematics, and, in particular, for the generalization to
infinite sets of the counting process appropriate to finite sets, the theory

of order plays an important role. The basic definitions are simple. The
only thing to remember is that the primary motivation comes from the

familiar properties of "less than or equal to" and not "less than." There
is no profound reason for this; it just happens that the generalization of

"less than or equal to" occurs more frequently and is more amenable to
algebraic treatment.

A relation R in a set X is called antisymmetric if
, for every x and y in X,

the simultaneous validity of x R y and y R x implies that x = y. A partial
order (or sometimes simply an order) in a set X is a reflexive, antisymmetric,

and transitive relation in X. It is customary to use only one symbol (or
some typographically close relative of it) for most partial orders in most

sets; the symbol in common use is the familiar inequality sign. Thus a

partial order in X may be denned as a relation ^ in X such that, for all x,

y, and z in X, we have (i
) x ^ x, (ii) if x ^ y and y ^ x, then x = y, and

(iii) if x ^ y and y ^ z, then x ^ z. The reason for the qualifying "par
tial" is that some questions about order may be left unanswered. If for
every x and y in X either x f£ y or y ^ x, then ^ is called a total (some
times also simple or linear) order. A totally ordered set is frequently
called a chain.

EXERCISE. Express the conditions of antisymmetry and totality for a

relation R by means of equations involving R and its inverse.

The most natural example of a partial (and not total) order is inclusion.

Explicitly : for each set X, the relation C is a partial order in the power set

<P(X) ; it is a total order if and only if X is empty or X is a singleton. A
54
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well known example of a total order is the relation "less than or equal to"
in the set of natural numbers. An interesting and frequently seen partial
order is the relation of extension for functions. Explicitly: for given sets

X and Y, let F be the set of all those functions whose domain is included

in X and whose range is included in Y. Define a relation R in F by writing

fR g in case dom/ C dom g and /(z) = g(x) for all x in dom /; in other

words, fR g means that / is a restriction of g, or, equivalently, that g is an

extension of /. If we recall that the functions in F are, after all, certain

subsets of the Cartesian product X X Y, we recognize that fR g means

the same asfdg; extension is a special case of inclusion.

A partially ordered set is a set together with a partial order in it. A pre

cise formulation of this "togetherness" goes as follows: a partially ordered

set is an ordered pair (X, ^), where X is a set and ^ is a partial order in
X. This kind of definition is very common in mathematics; a mathemati

cal structure is almost always a set "together" with some specified other

sets, functions, and relations. The accepted way of making such denni

tions precise is by reference to ordered pairs, triples, or whatever is appro

priate. That is not the only way. Observe, for instance, that knowledge

of a partial order implies knowledge of its domain. If, therefore, we de

scribe a partially ordered set as an ordered pair, we are being quite re

dundant; the second coordinate alone would have conveyed the same

amount of information. In matters of language and notation, however,

tradition always conquers pure reason. The accepted mathematical be

havior (for structures in general, illustrated here for partially ordered sets)
is to admit that ordered pairs are the right approach, to forget that the

second coordinate is the important one, and to speak as if the first coordi

nate were all that mattered. Following custom, we shall often say some

thing like "let X be a partially ordered set," when what we really mean is

"let X be the domain of a partial order." The same linguistic conventions

apply to totally ordered sets, i.e., to partially ordered sets whose order is

in fact total.
The theory of partially ordered sets uses many words whose technical

meaning is so near to their everyday connotation that they are almost self-

explanatory. Suppose, to be specific, that X is a partially ordered set and

that x and y are elements of X. We write y ^ x in case x ^ y; in other

words, ^ is the inverse of the relation ^ . If x ^ y and x 7* y, we write

x < y and we say that x is less than or smaller than y, or that x is a predeces

sor of y. Alternatively, under the same circumstances, we write y > x and

we say that y is greater or larger than x, or y is a successor of x. The relation

< is such that (i
) for no elements x and y do x < y and y < x hold simul
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taneously, and (ii) if x < y and y < z, then x < z (i.e., < is transitive).

If
,

conversely, < is a relation in X satisfying (i
) and (ii), and if x ^ y is

denned to mean that either x < y or x = y, then ^ is a partial order in X.
The connection between ^ and < can be generalized to arbitrary rela

tions. That is
,

given any relation R in a set X, we can define a relation S

in X by writing x S y in case x R y but x 7* y, and, vice versa, given any

relation S in X, we can define a relation R in X by writing x R y in case

either x S y or x = y. To have an abbreviated way of referring to the

passage from R to S and back, we shall say that S is the strict relation

corresponding to R
,

and R is the weak relation corresponding to S. We
shall say of a relation in a set X that it "partially orders X" in case either

it is a partial order in X or else the corresponding weak relation is one.

If X is a partially ordered set, and if a e X, the set [x e X: x < a
} is the

initial segment determined by a; we shall usually denote it by s(a). The
set {

x e X: x ^ a
} is the weak initial segment determined by a, and will be

denoted by s(a). When it is important to emphasize the distinction be

tween initial segments and weak initial segments, the former will be called

strict initial segments. In general the words "strict" and "weak" refer to
< and ^ respectively. Thus, for instance, the initial segment determined

by a may be described as the set of all predecessors of a, or, for emphasis,

as the set of all strict predecessors of a; similarly the weak initial segment

determined by a consists of all weak predecessors of a. If x ^ y and y ^ z,

we may say that y is between x and z; if x < y and y < z, then y is strictly

between x and z. If x < y and if there is no element strictly between x and

y, we say that x is an immediate predecessor of y, or y is an immediate suc

cessor of x.

If X is a partially ordered set (which may in particular be totally or

dered), then it could happen that X has an element a such that a ^ x for
every x in X. In that case we say that a is the least (smallest, first) element

of X. The antisymmetry of an order implies that if X has a least element,

then it has only one. If, similarly, X has an element a such that x ^ a for
every x in X, then a is the greatest (largest, last) element of X; it too is

unique (i
f it exists at all). The set w of all natural numbers (with its cus

tomary ordering by magnitude) is an example of a partially ordered set

with a first element (namely 0
) but no last. The same set, but this time

with the inverse ordering, has a last element but no first.

In partially ordered sets there is an important distinction between least

elements and minimal ones. If, as before, X is a partially ordered set, an

element a of X is called a minimal element of X in case there is no element

in X strictly smaller than a. Equivalently, a is minimal if x ^ a implies
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that x = a. For an example, consider the collection 6 of non-empty sub

sets of a non-empty set X, with ordering by inclusion. Each singleton is

a minimal element of G, but clearly 6 has no least element (unless X itself

is a singleton). We distinguish similarly between greatest and maximal

elements; a maximal element of X is an element a such that X contains

nothing strictly greater than a. Equivalently, a is maximal if a ^ x im

plies that x = a.

An element a of a partially ordered set is said to be a lower bound of a

subset E of X in case a ^ x for every x in E ; similarly a is an upper bound

of E in case x ^ a for every x in E. A set £ may have no lower bounds or

upper bounds at all, or it may have many ; in the latter case it could happen

that none of them belongs to E. (Examples?) Let Et be the set of all
lower bounds of E in X and let E* be the set of all upper bounds of E in X.
What was just said is that Ef may be empty, or E. fl E may be empty.

If Et D E is not empty, then it is a singleton consisting of the unique least

element of E. Similar remarks apply, of course, to E*. If it happens that
the set Et contains a greatest element a (necessarily unique), then a is

called the greatest lower bound or infimum of E. The abbreviations g.l.b.

and inf are in common use. Because of the difficulties in pronouncing the

former, and even in remembering whether g.l.b. is up (greatest) or down

(lower), we shall use the latter notation only. Thus inf E is the unique

element in X (possibly not in E) that is a lower bound of E and that
dominates (i.e., is greater than) every other lower bound of E. The defini

tions at the other end are completely parallel. If E* has a least element a

(necessarily unique), then a is called the least upper bound (l.u.b.) or supre-

mum (sup) of E.
The ideas connected with partially ordered sets are easy to express but

they take some time to assimilate. The reader is advised to manufacture

many examples to illustrate the various possibilities in the behavior of

partially ordered sets and their subsets. To aid him in this enterprise, we

proceed to describe three special partially ordered sets with some amusing

properties. (i
) The set is w X w. To avoid any possible confusion, we

shall denote the order we are about to introduce by the neutral symbol R.
If (a, 6

) and (x, y
) are ordered pairs of natural numbers, then (a, b
) R (x, y
)

means, by definition, that (2a + 1
) .2" <i (2z + 1
) .26. (Here the inequal

ity sign refers to the customary ordering of natural numbers.) The reader

who is not willing to pretend ignorance of fractions will recognize that,

except for notation, what we just defined is the usual order for —
-5

— and

2x+ 1— . (ii) The set is ca X w again. Once more we use a neutral symbol
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for the order; say S. If (a, b) and (x, y) are ordered pairs of natural num

bers, then (a, b) S {x, y) means, by definition, that either a is strictly less

than x (in the customary sense), or else a = x and b ^ y. Because of its

resemblance to the way words are arranged in a dictionary, this is called

the lexicographical order of w X w. (iii) Once more the set is w X w. The
present order relation, say T, is such that (a, 6) T (x, y) means, by defini

tion, that a 5= x and b ^ y.



SECTION 15

THE AXIOM OF CHOICE

For the deepest results about partially ordered sets we need a new set-

theoretic tool; we interrupt the development of the theory of order long

enough to pick up that tool.

We begin by observing that a set is either empty or it is not, and, if it is

not, then, by the definition of the empty set, there is an element in it.

This remark can be generalized. If X and Y are sets, and if one of them is

empty, then the Cartesian product X X Y is empty. If neither X nor Y
is empty, then there is an element x in X, and there is an element y in Y;

it follows that the ordered pair (x, y) belongs to the Cartesian product

X X Y, so that X X Y is not empty. The preceding remarks constitute

the cases n = 1 and n = 2 of the following assertion: if {Xi} is a finite

sequence of sets, for i'mn, say, then a necessary and sufficient condition

that their Cartesian product be empty is that at least one of them be empty.

The assertion is easy to prove by induction on n. (The case n = 0 leads to

a slippery argument about the empty function; the uninterested reader may

start his induction at 1 instead of 0.)

The generalization to infinite families of the non-trivial part of the asser

tion in the preceding paragraph (necessity) is the following important prin

ciple of set theory.

Axiom of choice. The Cartesian product of a non-empty family of non

empty sets is non-empty.

In other words: if {.X",.} is a family of non-empty sets indexed by a non

empty set /, then there exists a family {z,•}, i « /, such that xi « Xi for each

i in /.
Suppose that 6 is a non-empty collection of non-empty sets. We may

regard G as a family, or, to say it better, we can convert 6 into an indexed

set, just by using the collection 6 itself in the role of the index set and

using the identity mapping on 6 in the role of the indexing. The axiom
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of choice then says that the Cartesian product of the sets of 6 has at least
one element. An element of such a Cartesian product is

, by definition, a

function (family, indexed set) whose domain is the index set (in this case 6
)

and whose value at each index belongs to the set bearing that index. Con
clusion : there exists a function / with domain 6 such that if A « 6

,

then

f(A) e A. This conclusion applies, in particular, in case 6 is the collection
of all non-empty subsets of a non-empty set X . The assertion in that case

is that there exists a function / with domain <P(X)
—

{ 0 } such that if A

is in that domain, then f(A) e A. In intuitive language the function / can
be described as a simultaneous choice of an element from each of many
sets ; this is the reason for the name of the axiom. (A function that in this
sense "chooses" an element out of each non-empty subset of a set X is

called a choice function for X.) We have seen that if the collection of sets
we are choosing from is finite, then the possibility of simultaneous choice

is an easy consequence of what we knew before the axiom of choice was

even stated; the role of the axiom is to guarantee that possibility in infinite
cases.

The two consequences of the axiom of choice in the preceding paragraph

(one for the power set of a set and the other for more general collections of

sets) are in fact just reformulations of that axiom. It used to be considered

important to examine, for each consequence of the axiom of choice, the ex

tent to which the axiom is needed in the proof of the consequence. An
alternative proof without the axiom of choice spelled victory; a converse

proof, showing that the consequence is equivalent to the axiom of choice

(in the presence of the remaining axioms of set theory) meant honorable

defeat. Anything in between was considered exasperating. As a sample

(and an exercise) we mention the assertion that every relation includes a

function with the same domain. Another sample: if 6 is a collection of

pairwise disjoint non-empty sets, then there exists a set A such that A D C

is a singleton for each C in 6. Both these assertions are among the many

known to be equivalent to the axiom of choice.

As an illustration of the use of the axiom of choice, consider the assertion

that if a set is infinite, then it has a subset equivalent to w. An informal

argument might run as follows. If X is infinite, then, in particular, it is

not empty (that is
, it is not equivalent to 0
)

; hence it has an element, say

x0. Since X is not equivalent to 1
, the set X —

{x0} is not empty; hence it

has an element, say x\. Repeat this argument ad infinitum; the next step,

for instance, is to say that X — {xQ, xi] is not empty, and, therefore, it

has an element, say x2. The result is an infinite sequence {xn} of distinct
elements of X; q.e.d. This sketch of a proof at least has the virtue of being
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honest about the most important idea behind it; the act of choosing an
element from a non-empty set was repeated infinitely often. The mathe

matician experienced in the ways of the axiom of choice will often offer
such an informal argument; his experience enables him to see at a glance

how to make it precise. For our purposes it is advisable to take a longer

look.

Let / be a choice function for X; that is
, / is a function from the collec

tion of all non-empty subsets of X to X such that f(A) e A for all A in
the domain of/. Let 6 be the collection of all finite subsets of X. Since X

is infinite, it follows that if A e Q
,

then X — A is not empty, and hence

that X — A belongs to the domain of /. Define a function g from Q to 6

by writing g(A) = A U {f(X —A)}. In words: g(A) is obtained by ad

joining to A the element that / chooses from X — A. We apply the re

cursion theorem to the function g; we may start it rolling with, for in
stance, the set 0. The result is that there exists a function U from w

into 6 such that C7(0) = 0 and U(n+) = U(n) U {f(X - U(n))} for
every natural number n. Assertion: if v(n) = f(X — U(n)), then v is a

one-to-one correspondence from w to X, and hence, indeed, w is equivalent

to some subset of X (namely the range of v). To prove the assertion, we

make a series of elementary observations; their proofs are easy conse

quences of the definitions. First: v(n) e
'

U(n) for all n. Second: v(ri) e

U(n+) for all n. Third: if n and m are natural numbers and n ^ m, then

U(n) C U(m). Fourth: if n and m are natural numbers and n < m, then

v(n) ^ v(m). (Reason: v(n) e U(m) but v(m) «
'

U(m).) The last observa

tion implies that v maps distinct natural numbers onto distinct elements

of X; all we have to remember is that of any two distinct natural numbers

one of them is strictly smaller than the other.

The proof is complete; we know now that every infinite set has a subset

equivalent to w. This result, proved here not so much for its intrinsic in

terest as for an example of the proper use of the axiom of choice, has an

interesting corollary. The assertion is that a set is infinite if and only if

it is equivalent to a proper subset of itself. The "if" we already know;

it says merely that a finite set cannot be equivalent to a proper subset.

To prove the "only if," suppose that X is infinite, and let v be a one-to-one

correspondence from w into X. If x is in the range of v
, say x = v(n), write

h(x) = v(n+); if x is not in the range of v
, write h(x) = x. It is easy to

verify that h is a one-to-one correspondence from X into itself. Since the

range of h is a proper subset of X (it does not contain «(0)), the proof of

the corollary is complete. The assertion of the corollary was used by Dede-

kind as the very definition of infinity.
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ZORN'S LEMMA

An existence theorem asserts the existence of an object belonging to a

certain set and possessing certain properties. Many existence theorems

can be formulated (or, if need be, reformulated) so that the underlying set

is a partially ordered set and the crucial property is maximality. Our next

purpose is to state and prove the most important theorem of this kind.

Zorn's lemma. // X is a partially ordered set such that every chain in X
has an upper bound, then X contains a maximal element.

DISCUSSION. Recall that a chain is a totally ordered set. By a chain

"in X" we mean a subset of X such that the subset, considered as a par

tially ordered set on its own right, turns out to be totally ordered. If A is

a chain in X, the hypothesis of Zorn's lemma guarantees the existence of

an upper bound for A in X; it does not guarantee the existence of an upper

bound for A in A. The conclusion of Zorn's lemma is the existence of an

element a in X with the property that if a ^ x, then necessarily a = x.

The basic idea of the proof is similar to the one used in our preceding

discussion of infinite sets. Since, by hypothesis, X is not empty, it has an

element, say xQ. If x0 is maximal, stop here. If it is not, then there exists

an element, say Xi, strictly greater than x0. If x\ is maximal, stop here;

otherwise continue. Repeat this argument ad infinitum; ultimately it
must lead to a maximal element.

The last sentence is probably the least convincing part of the argument;

it hides a multitude of difficulties. Observe, for instance, the following
possibility. It could happen that the argument, repeated ad infinitum,
leads to a whole infinite sequence of non-maximal elements; what are we

to do in that case? The answer is that the range of such an infinite se

quence is a chain in X, and, consequently, has an upper bound; the thing
to do is to start the whole argument all over again, beginning with that
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upper bound. Just exactly when and how all this comes to an end is ob

scure, to say the least. There is no help for it; we must look at the precise

proof. The structure of the proof is an adaptation of one originally given

by Zermelo.

PROOF. The first step is to replace the abstract partial ordering by the

inclusion order in a suitable collection of sets. More precisely, we consider,
for each element x in X, the weak initial segment s(x) consisting of x and

all its predecessors. The range S of the function 5 (from X to <P(X)) is a

certain collection of subsets of X, which we may, of course, regard as (par

tially) ordered by inclusion. The function § is one-to-one, and a necessary

and sufficient condition that s(x) d. $(y) is that x ^ y. In view of this,

the task of finding a maximal element in X is the same as the task of find

ing a maximal set in S. The hypothesis about chains in X implies (and is
,

in fact, equivalent to) the corresponding statement about chains in S.

Let 9C be the set of all chains in X; every member of 9C is included in

s(x) for some x in X. The collection 9C is a non-empty collection of sets,

partially ordered by inclusion, and such that if 6 is a chain in 9C, then the

union of the sets in 6 (i.e., U A « e A) belongs to 9C. Since each set in 9C is

dominated by some set in S
, the passage from S to 9C cannot introduce any

new maximal elements. One advantage of the collection 9C is the slightly
more specific form that the chain hypothesis assumes; instead of saying
that each chain Q has some upper bound in S

, we can say explicitly that
the union of the sets of 6

, which is clearly an upper bound of 6
,

is an ele

ment of the collection EC. Another technical advantage of EC is that it con

tains all the subsets of each of its sets; this makes it possible to enlarge
non-maximal sets in 9C slowly, one element at a time.

Now we can forget about the given partial order in X . In what follows
we consider a non-empty collection 9C of subsets of a non-empty set X,
subject to two conditions: every subset of each set in 9C is in 9C, and the

union of each chain of sets in 9C is in EC. Note that the first condition im

plies that 0 e EC. Our task is to prove that there exists in EC a maximal set.

Let / be a choice function for X, that is
, / is a function from the collection

of all non-empty subsets of X to X such that f(A) e A for all A in the
domain of /. For each set A in EC, let A be the set of all those elements
x of X whose adjunction to A produces a set in 9C; in other words, A =

{
x e X: A U {x} e EC} . Define a function g from 9C to EC as follows: if A —

A* 0, then g(A) = A U {f(A - A) } ; if A - A = 0, then g(A) = A.
It follows from the definition of A that A — A = 0 if and only if A is

maximal. In these terms, therefore, what we must prove is that there

exists in 9
C a set A such that g(A) = A, It turns out that the crucial prop
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erty of g is the fact that g(A) (which always includes A) contains at most

one more element than A.
Now, to facilitate the exposition, we introduce a temporary definition.

We shall say that a subcollection 3 of 9C is a tower if
(i

) 0«3,

(ii) if A « 3
, then g(A) e 3
,

(iii) if Q is a chain in 3
, then \JA , e A « 3
.

Towers surely exist; the whole collection 9C is one. Since the intersec

tion of a collection of towers is again a tower, it follows, in particular, that

if 3
0 is the intersection of all towers, then 3
0 is the smallest tower. Our

immediate purpose is to prove that the tower 3
0 is a chain.

Let us say that a set C in 3o is comparable if it is comparable with every

set in 30; this means that if A « 30, then either A C C or C C A. To say

that 30 is a chain means that all the sets in 3
0 are comparable. Comparable

sets surely exist; 0 is one of them. In the next couple of paragraphs we

concentrate our attention on an arbitrary but temporarily fixed comparable

setC.
Suppose that A e 30 and A is a proper subset of C. Assertion: g(A) C C.

The reason is that since C is comparable, either g(A) C C or C is a proper

subset of g(A). In the latter case A is a proper subset of a proper subset

of g(A), and this contradicts the fact that g(A) — A cannot be more than

a singleton.

Consider next the collection 11 of all those sets A in 3
0 for which either

A C C or g(C) C A. The collection 11 is somewhat smaller than the col

lection of sets in 3
0 comparable with g(C) ; indeed if A « 11, then, since

C C g(C), either A C g(C) or g(C) C A. Assertion: 11 is a tower. Since

0 C C
,

the first condition on towers is satisfied. To prove the second

condition, i.e., that if A e 11, then g(A) « 11, split the discussion into three

cases. First: A is a proper subset of C. Then g(A) <Z C by the preceding

paragraph, and therefore g(A) e 11. Second: A = C. Then g(A) = g(C),

so that g(C) d g(A), and therefore g(A) e 11. Third: g(C) C A. Then

g(C) C g(A), and therefore g(A) e 11. The third condition on towers, i.e.,

that the union of a chain in 11 belongs to 11, is immediate from the defini

tion of 11. Conclusion: 11 is a tower included in 30, and therefore, since

3
o is the smallest tower, It = 30.

The preceding considerations imply that for each comparable set C the

set g(C) is comparable also. Reason: given C
,

form 11 as above; the fact

that 11 =

3
0 means that if A e 30, then either A C C (in which case A c:

or g(C) C A.
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We now know that 0 is comparable and that g maps comparable sets

onto comparable sets. Since the union of a chain of comparable sets is

comparable, it follows that the comparable sets (in 30) constitute a tower,
and hence that they exhaust 30; this is what we set out to prove about 3o.

Since 3o is a chain, the union, say A, of all the sets in 30 is itself a set in

30. Since the union includes all the sets in 30, it follows that g(A) C A.
Since always A C g(A), it follows that A = g(A), and the proof of Zorn's
lemma is complete.

EXERCISE. Zorn's lemma is equivalent to the axiom of choice. [Hint
for the proof: given a set X, consider functions / such that dom f d
<P(X), ran/ C X, and f(A) e A for all A in dom/; order these functions

by extension, use Zorn's lemma to find a maximal one among them, and

prove that if / is maximal, then dom/ = <P(X)
— {0}.] Consider each

of the following statements and prove that they too are equivalent to
the axiom of choice, (i

) Every partially ordered set has a maximal
chain (i.e., a chain that is not a proper subset of any other chain), (ii)
Every chain in a partially ordered set is included in some maximal chain,

(iii) Every partially ordered set in which each chain has a least upper
bound has a maximal element.
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WELL ORDERING

A partially ordered set may not have a smallest element, and, even if it
has one, it is perfectly possible that some subset will fail to have one. A
partially ordered set is called well ordered (and its ordering is called a well

ordering) if every non-empty subset of it has a smallest element. One

consequence of this definition, worth noting even before we look at any
examples and counterexamples, is that every well ordered set is totally
ordered. Indeed, if x and y are elements of a well ordered set, then {x, y}

is a non-empty subset of that well ordered set and has therefore a first ele

ment; according as that first element is x or y, we have x ^ y or y ^ x.

For each natural number n, the set of all predecessors of n (that is
, in

accordance with our definitions, the set n
) is a well ordered set (ordered

by magnitude), and the same is true of the set w of all natural numbers.

The set w X w, with (a, 6
) ^ (x, y
) defined to mean (2a + 1)2* ^ (2z + 1)2*

is not well ordered. One way to see this is to note that (a, b + 1
) ^ (a, b
)

for all a and b
; it follows that the entire set w X w has no least element.

Some subsets of w X w do have a least element. Consider, for example, the

set E of all those pairs (a, 6
) for which (1,1) ^ (a, b); the set E has (1,1)

for its least element. Caution : E, considered as a partially ordered set on

its own right, is still not well ordered. The trouble is that even though E
has a least element, many subsets of E fail to have one; for an example

consider the set of all those pairs (a, 6
) in E for which (a, b
) 7* (1, 1).

One more example : w X w is well ordered by its lexicographical ordering.

One of the pleasantest facts about well ordered sets is that we can prove

things about their elements by a process similar to mathematical induc

tion. Precisely speaking, suppose that S is a subset of a well ordered set

X, and suppose that whenever an element x of X is such that the entire

initial segment s(z) is included in S
,

then x itself belongs to S
;

the principle
of transfinite induction asserts that under these circumstances we must
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have S = X. Equivalently: if the presence in a set of all the strict pred

ecessors of an element always implies the presence of the element itself,
then the set must contain everything.

A few remarks are in order before we look at the proof. The statement
of the ordinary principle of mathematical induction differs from that of

transfinite induction in two conspicuous respects. One : the latter, instead

of passing to each element from its predecessor, passes to each element

from the set of all its predecessors. Two: in the latter there is no assump

tion about a starting element (such as zero). The first difference is impor

tant : an element in a well ordered set may fail to have an immediate pred

ecessor. The present statement when applied to w is easily proved to be

equivalent to the principle of mathematical induction; that principle,

however, when applied to an arbitrary well ordered set, is not equivalent
to the principle of transfinite induction. To put it differently: the two
statements are in general not equivalent to each other; their equivalence
in w is a happy but special circumstance.

Here is an example. Let X be w+, i.e., X = w U {w}. Define order in
X by ordering the elements of w as usual and by requiring that n < u for
all n in w. The result is a well ordered set. Question: does there exist a

proper subset S of X such that 0 « *S and such that n + 1 e S whenever

n e S? Answer: yes, namely S = w.

The second difference between ordinary induction and transfinite induc

tion (no starting element required for the latter) is more linguistic than

conceptual. If x0 is the smallest element of X, then s(x0) is empty, and,

consequently, s(x0) C S; the hypothesis of the principle of transfinite in
duction requires therefore that XQ belong to S.

The proof of the principle of transfinite induction is almost trivial. If
X — S is not empty, then it has a smallest element, say x. This implies

that every element of the initial segment s(x) belongs to S, and hence, by

the induction hypothesis, that x belongs to S. This is a contradiction

(x cannot belong to both S and X — S) ; the conclusion is that X — S is

empty after all.

We shall say that a well ordered set A is a continuation of a well ordered

set B, if
, in the first place, B is a subset of A, if
, in fact, B is an initial seg

ment of A, and if
, finally, the ordering of the elements in B is the same as

their ordering in A. Thus if X is a well ordered set and if a and b are ele

ments of X with b < a, then s(a) is a continuation of s(b), and, of course,

X is a continuation of both s(a) and s(&).
If 6 is an arbitrary collection of initial segments of a well ordered set,

then 6 is a chain with respect to continuation ; this means that 6 is a collec



68 NAIVE SET THEORY SEC. 17

tion of well ordered sets with the property that of any two distinct mem

bers of the collection one is a continuation of the other. A sort of converse

of this comment is also true and is frequently useful. If a collection 6 of

well ordered sets is a chain with respect to continuation, and if U is the

union of the sets of G, then there is a unique well ordering of U such that
U is a continuation of each set (distinct from U itself) in the collection 6.

Roughly speaking, the union of a chain of well ordered sets is well ordered.

This abbreviated formulation is dangerous because it does not explain that
"chain" is meant with respect to continuation. If the ordering implied

by the word "chain" is taken to be simply order-preserving inclusion, then

the conclusion is not valid.

The proof is straightforward. If a and 6 are in U, then there exist sets

A and B in 6 with a e A and 6 « B. Since either A = B or one of A and

B is a continuation of the other, it follows that in every case both a and 6

belong to some one set in Q; the order of U is defined by ordering each

pair {a, b} the way it is ordered in any set of G that contains both a and

6. Since 6 is a chain, this order is unambiguously determined. (An alter

native way of denning the promised order in U is to recall that the given

orders, in the sets of 6, are sets of ordered pairs, and to form the union of

all those sets of ordered pairs.)

A direct verification shows that the relation defined in the preceding

paragraph is indeed an order, and that, moreover, its construction was

forced on us at every step (i.e., that the final order is uniquely determined

by the given orders). The proof that the result is actually a well ordering

is equally direct. Each non-empty subset of U must have a non-empty

intersection with some set in C, and hence it must have a first element in

that set; the fact that 6 is a continuation chain implies that that first ele

ment is necessarily the first element of U also.

EXERCISE. A subset A of a partially ordered set X is cofinal in X in case

for each element x of X there exists an element a of A such that x :£ a.

Prove that every totally ordered set has a cofinal well ordered subset.

The importance of well ordering stems from the following result, from

which we may infer, among other things, that the principle of transfinite

induction is much more widely applicable than a casual glance might
indicate.

Well ordering theorem. Every set can be well ordered.

DISCUSSION. A better (but less traditional) statement is this: for each

set X, there is a well ordering with domain X. Warning: the well ordering
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is not promised to have any relation whatsoever to any other structure

that the given set might already possess. If, for instance, the reader knows

of some partially or totally ordered sets whose ordering is very definitely

not a well ordering, he should not jump to the conclusion that he has dis

covered a paradox. The only conclusion to be drawn is that some sets can

be ordered in many ways, some of which are well orderings and others are

not, and we already knew that.

PROOF. We apply Zorn's lemma. Given the set X, consider the collec

tion °W of all well ordered subsets of X. Explicitly : an element of W is a

subset A of X together with a well ordering of A. We partially order W
by continuation.

The collection °W is not empty, because, for instance, 0 « 'W. If X .^ 0,
less annoying elements of W can be exhibited; one such is { (x, x) }, for any

particular element x of X. If 6 is a chain in W, then the union U of the

sets in Q has a unique well ordering that makes U "larger" than (or equal

to) each set in 6 ; this is exactly what our preceding discussion of continua

tion has accomplished. This means that the principal hypothesis of Zorn's

lemma has been verified ; the conclusion is that there exists a maximal well

ordered set, say M, in W. The set M must be equal to the entire set X.
Reason : if x is an element of X not in M , then M can be enlarged by putting
x after all the elements of M . The rigorous formulation of this unambigu

ous but informal description is left as an exercise for the reader. With that
out of the way, the proof of the well ordering theorem is complete.

EXERCISE. Prove that a totally ordered set is well ordered if and only
if the set of strict predecessors of each element is well ordered. Does any

such condition apply to partially ordered sets? Prove that the well order

ing theorem implies the axiom of choice (and hence is equivalent to that
axiom and to Zorn's lemma). Prove that if R is a partial order in a set

X, then there exists a total order S in X such that R C S; in other

words, every partial order can be extended to a total order without
enlarging the domain.
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TRANSFINITE RECURSION

The process of "definition by induction" has a transfinite analogue.
The ordinary recursion theorem constructs a function on w; the raw mate
rial is a way of getting the value of the function at each non-zero element n
of w from its value at the element preceding n. The transfinite analogue

constructs a function on any well ordered set W; the raw material is a

way of getting the value of the function at each element a of W from its
values at all the predecessors of a.

To be able to state the result concisely, we introduce some auxiliary
concepts. If a is an element of a well ordered set W, and if X is an arbi
trary set, then by a sequence of type a in X we shall mean a function from
the initial segment of a in W into X. The sequences of type a, for a in w+,
are just what we called sequences before, finite or infinite according as

a < w or a = u. If U is a function from W to X, then the restriction of U
to the initial segment s(a) of a is an example of a sequence of type a for
each a in W; in what follows we shall find it convenient to denote that
sequence by Ua (instead of U \ s(a)).

A sequence function of type W in X is a function / whose domain consists

of all sequences of type a in X, for all elements a in W, and whose range is

included in X. Roughly speaking, a sequence function tells us how to
"lengthen" a sequence; given a sequence that stretches up to (but not in
cluding) some element of W we can use a sequence function to tack on
one more term.

Transfinite recursion theorem. // W is a well ordered set, and if f is
a sequence function of type W in a set X, then there exists a unique function
UJrom W ioi# X such that U(a) = /(C/°) for each a in W.

70
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PKOOF. The proof of uniqueness is an easy transfinite induction. To
prove existence, recall that a function from W to X is a certain kind of

subset of W X X; we shall construct U explicitly as a set of ordered pairs.

Call a subset A of W X X f-closed if it has the following property : when

ever a « W and t is a sequence of type a included in A (that is
,

(c
,

t(c)) « A

for all c in the initial segment s(a)), then (a, /(£)) e A. Since W X X itself

is /-closed, such sets do exist; let U be the intersection of them all. Since

U itself is /-closed, it remains only to prove that U is a function. We are

to prove, in other words, that for each c in W there exists at most one el&-

ment x in X such that (c
,

x
) « U. (Explicitly : if both (c
,

x
) and (c
,

y
) be

long to C7, then x = y.) The proof is inductive. Let S be the set of all

those elements c of W for which it is indeed true that (c
,

x
) eU for at most

one x. We shall prove that if s(a) C S
,

then a « S.

To say that s(a) c S means that if c < a in W, then there exists a unique

element x in X such that (c
,

x
) e U. The correspondence c — > x thereby

denned is a sequence of type a, say t, and t c U. If o does not belong to

S
,

then (a, y
)

e U for some y different from /(<)• Assertion: the set U —

{ (a, y
)

} is /-closed. This means that if b e W and if r is a sequence of type

b included in U — {(a, y)}, then (b,f(r)) eU— {(a, y)}. Indeed, if 6 =

a, then r must be t (by the uniqueness assertion of the theorem), and the

reason the diminished set contains (b,f(r)) is that/(i) ^ y; if
,

on the other

hand, b ?* a, then the reason the diminished set contains (b,f(r)) is that

U is /-closed (and b ^ a). This contradicts the fact that U is the smallest

/-closed set, and we may conclude that a e S.

The proof of the existence assertion of the transfinite recursion theorem

is complete. An application of the transfinite recursion theorem is called

definition b
y

transfinite induction.

We continue with an important part of the theory of order, which, inci

dentally, will also serve as an illustration of how the transfinite recursion

theorem can be applied.

Two partially ordered sets (which may in particular be totally ordered

and even well ordered) are called similar if there exists an order-preserving

one-to-one correspondence between them. More explicitly: to say of the

partially ordered sets X and Y that they are similar (in symbols X ^ F)
means that there exists a one-to-one correspondence, say /, from X onto

Y
,

such that if a and b are in X, then a necessary and sufficient condition

that /(a) ^ /(&) (in Y) is that a ^ b (in X). A correspor.dence such as /

is sometimes called a similarity.

EXERCISE. Prove that a similarity preserves < (in the same sense in
which the definition demands the preservation of ^) and that, in fact, E.
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one-to-one function that maps one partially ordered set onto another is a

similarity if and only if it preserves < .

The identity mapping on a partially ordered set X is a similarity from
X onto X. If X and Y are partially ordered sets and if / is a similarity
from X onto Y, then (since / is one-to-one) there exists an unambiguously

determined inverse function f~l from Y onto X, and f~l is a similarity.
If, moreover, g is a similarity from Y onto a partially ordered set Z, then

the composite gf is a similarity from X onto Z. It follows from these

comments that if we restrict attention to some particular set E, and if
,

accordingly, we consider only such partial orders whose domain is a subset
of E, then similarity is an equivalence relation in the set of partially ordered
sets so obtained. The same is true if we narrow the field even further and

consider only well orderings whose domain is included in E; similarity is

an equivalence relation in the set of well ordered sets so obtained. Al
though similarity was defined for partially ordered sets in complete gen

erality, and the subject can be studied on that level, our interest in what
follows will be in similarity for well ordered sets only.

It is easily possible for a well ordered set to be similar to a proper sub

set; for an example consider the set of all natural numbers and the set of

all even numbers. (As always, a natural number m is defined to be even

if there exists a natural number n such that m = In. The mapping n — » 2n

is a similarity from the set of all natural numbers onto the set of all even

numbers.) A similarity of a well ordered set with a part of itself is
,

how

ever, a very special kind of mapping. If, in fact, / is a similarity of a well

ordered set X into itself, then a ^ /(a) for each a in X. The proof is based

directly on the definition of well ordering. If there are elements b such

that /(&) < b
, then there is a least one among them. If a < b
, where 6 is

that least one, then a ^ f(a); it follows, in particular, with a = /(&), that

/(&) ^ /(/(&))• Since, however, f(b) < b
, the order-preserving character of

/ implies that /(/(&)) < /(&). The only way out of the contradiction is to
admit the impossibility of f(b) < b

,

The result of the preceding paragraph has three especially useful conse

quences. The first of these is the fact that if two well ordered sets, X and

Y say, are similar at all, then there is just one similarity between them.

Suppose indeed that both g and h are similarities from X onto Y
,

and write

/ = g~lh. Since / is a similarity of X onto itself, it follows that o g /(a)
for each a in X. This means that a ^ g~l(h(d)) for each a in X. Apply

ing g
, we infer that g(a) ^ h(a) for each a in X. The situation is symmetric

in g and h
, so that we may also infer that h(a) ^ 17(0) for each a in X.

Conclusion: g = h
.
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A second consequence is the fact that a well ordered set is never similar
to one of its initial segments. If, indeed, X is a well ordered set, a is an
element of X , and / is a similarity from X onto s(a), then, in particular,
/(a) « s(a), so that /(a) < a, and that is impossible.

The third and chief consequence is the comparability theorem for well
ordered sets. The assertion is that if X and Y are well ordered sets, then
either X and Y are similar, or one of them is similar to an initial segment of
the other. Just for practice we shall use the transfmite recursion theorem
in the proof, although it is perfectly easy to avoid it. We assume that X
and Y are non-empty well ordered sets such that neither is similar to an
initial segment of the other; we proceed to prove that under these circum
stances X must be similar to Y. Suppose that a e X and that t is a sequence
of type a in Y; in other words t is a function from s(a) into Y. Let /(<) be

the least of the proper upper bounds of the range of t in Y, if there are any;
in the contrary case, let /(<) be the least element of Y. In the terminology
of the transfinite recursion theorem, the function / thereby determined is

a sequence function of type X in Y. Let U be the function that the trans-
finite recursion theorem associates with this situation. An easy argument
(by transfinite induction) shows that, for each z in X, the function U maps
the initial segment determined by a in X one-to-one onto the initial seg

ment determined by U(a) in Y. This implies that U is a similarity, and
the proof is complete.

Here is a sketch of an alternative proof that does not use the transfinite

recursion theorem. Let X0 be the set of those elements a of X for which
there exists an element b of Y such that s(o) is similar to s(6). For each
a in X0, write U(a) for the corresponding (uniquely determined) b hi Y,
and let Y0 be the range of U. It follows that either X0 = X, or else X0 is
an initial segment of X and Y0 = Y.

EXERCISB;. Each subset of a well ordered set X is similar either to X or
to an initial segment of X. If X and Y are well ordered sets and X ^ Y
(i.e., X is similar to Y), then the similarity maps the least upper bound

(i
f any) of each subset of X onto the least upper bound of the image of

that subset.
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ORDINAL NUMBERS

The successor x"1" of a set x was defined as x U {x}, and then w was con

structed as the smallest set that contains 0 and that contains x+ whenever

it contains x. What happens if we start with u, form its successor w+,

then form the successor of that, and proceed so on ad infinitum? In other

words: is there something out beyond u, u+, (w+)+, • • ., etc., in the same

sense in which w is beyond 0, 1, 2, • • •, etc.?

The question calls for a set, say T, containing w, such that each element

of T (other than w itself) can be obtained from u by the repeated formation

of successors. To formulate this requirement more precisely we introduce

some special and temporary terminology. Let us say that a function /
whose domain is the set of strict predecessors of some natural number n

(in other words, dom / = n) is an u-successor function if /(O) = w (provided

that n 9* 0, so that 0 < n), and/(wi+) = (/(m))+ whenever m+ < n. An
easy proof by mathematical induction shows that for each natural number

n there exists a unique w-successor function with domain n. To say that
something is either equal to w or can be obtained from w by the repeated

formation of successors means that it belongs to the range of some w-suc

cessor function. Let S(n, x) be the sentence that says "n is a natural
number and x belongs to the range of the w-successor function with do

main n." A set T such that x « T if and only if S(n, x) is true for some n
is what we are looking for; such a set is as far beyond w as w is beyond 0.

We know that for each natural number n we are permitted to form the

set {x: S(n, x)}. In other words, for each natural number n, there exists

a set F(n) such that x e F(n) if and only if S(n, x) is true. The connection

between n and F(n) looks very much like a function. It turns out, how
74
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ever, that none of the methods of set construction that we have seen so

far is sufficiently strong to prove the existence of a set F of ordered pairs

such that (n, x) e F if and only if x e F(n). To achieve this obviously de

sirable state of affairs, we need one more set-theoretic principle (our last).
The new principle says, roughly speaking, that anything intelligent that
one can do to the elements of a set yields a set.

Axiom of substitution. If S(a, b) is a sentence such that for each a in a

set A the set [b:S(a, 6)} can be formed, then there exists a function F with

domain A such that F(a) = {b: S(a, 6)} for each a in A.

To say that {b: S(a, b) } can be formed means, of course, that there exists

a set F(a) such that b e F(a) if and only if S(a, b) is true. The axiom of

extension implies that the function described in the axiom of substitution
is uniquely determined by the given sentence and the given set. The rea

son for the name of the axiom is that it enables us to make a new set out

of an old one by substituting something new for each element of the old.

The chief application of the axiom of substitution is in extending the

process of counting far beyond the natural numbers. From the present

point of view, the crucial property of a natural number is that it is a well

ordered set such that the initial segment determined by each element is

equal to that element. (Recall that if m and n are natural numbers, then

m < n means men; this implies that [m « u: m < n} = n.) This is the

property on which the extended counting process is based; the fundamen

tal definition in this circle of ideas is due to von Neumann. An ordinal

number is defined as a well ordered set « such that s(£) =
£ for all £ in a;

here s(£) is
,

as before, the initial segment {
ij

e a: i\ < £}.

An example of an ordinal number that is not a natural number is the

set w consisting of all the natural numbers. This means that we can a
l

ready "count" farther than we could before; whereas before the only
numbers at our disposal were the elements of w, now we have w itself. We
have also the successor a+ of w; this set is ordered in the obvious way, and,

moreover, the obvious ordering is a well ordering that satisfies the condi

tion imposed on ordinal numbers. Indeed, if £ « w+, then, by the defini

tion of successor, either £ e u, in which case we already know that s(f) = £
,

or else £ = u, in which case s($) = u, by the definition of order, so that
again s(£) = £

. The argument just presented is quite general; it proves

that if a is an ordinal number, then so is a +
. It follows that our counting

process extends now up to and including u, and u+, and (w+)+, and so on

ad infinitum.
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At this point we make contact with our earlier discussion of what happens

beyond w. The axiom of substitution implies easily that there exists a

unique function F on w such that F(0) = w and F(n+) = (F(n))
+ for each

natural number n. The range of this function is a set of interest for us; a

set of even greater importance is the union of the set w with the range of

the function F. For reasons that will become clear only after we have at

least glanced at the arithmetic of ordinal numbers, that union is usually

denoted by w2. If, borrowing again from the notation of ordinal arith
metic, we write u + n for F(n), then we can describe the set <o2 as the set

consisting of all n (with n in w) and of all w + n (with n in w).

It is now easy to verify that w2 is an ordinal number. The verification

depends, of course, on the definition of order in w2. At this point both

that definition and the proof are left as exercises; our official attention
turns to some general remarks that include the facts about w2 as easy

special cases.

An order (partial or total) in a set X is uniquely determined by its initial
segments. If, in other words, R and S are orders in X, and if

, for each x

in X, the set of all ^-predecessors of x is the same as the set of all <S-pred-

ecessors of x, then R and S are the same. This assertion is obvious

whether predecessors are taken in the strict sense or not. The assertion

applies, in particular, to well ordered sets. From this special case we infer

that if it is possible at all to well order a set so as to make it an ordinal

number, then there is only one way to do so. The set alone tells us what

the relation that makes it an ordinal number must be; if that relation sat

isfies the requirements, then the set is an ordinal number, and otherwise

it is not. To say that s(£) =

£ means that the predecessors of £ must be

just the elements of £
. The relation in question is therefore simply the

relation of belonging. If ij < £ is defined to mean i\ « £ whenever £ and q
are elements of a set a, then the result either is or is not a well ordering

of a such that s(£) = £ for each ('ma, and a is an ordinal number in the

one case and not in the other.

We conclude this preliminary discussion of ordinal numbers by mention

ing the names of the first few of them. After 0
,

1
, 2
, • • • comes w, and after

u, u + 1
, w + 2
, • • • comes w2. After w2 + 1 (that is
,

the successor of w2)

comes w2 + 2
, and then w2 + 3
;

next after all the terms of the sequence

so begun comes w3. (Another application of the axiom of substitution is

needed at this point.) Next come w3 + 1
, w3 + 2
,

w3 + 3
, • • •, and after

them comes w4. In this way we get successively w, w2, a>3, w4, • • • . An ap

plication of the axiom of substitution yields something that follows them

all in the same sense in which u follows the natural numbers; that some
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thing is w2. After that the whole thing starts over again: w2 + 1, w2 + 2,

w2 + w, w2 + w + 1, w2 + w + 2, • •
•, w2 + w2, w2 + w2 + 1, • • •, w2

+ w3, • • -V + w4, • • u22, • • •, w23, • • •, w3, ■• ■, w4, ■• w", • • €*,
• • - , w(<* ""^j • • •. The next one after all that is so! then come so + 1,

so + 2, • • •, sq + w, • • •, s0 + w2, • ■•, so + u2, so + w", • • •, sq2, • • •,

so", • • •, so"", • • ■, 4, •
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SETS OF ORDINAL NUMBERS

An ordinal number is
,

by definition, a special kind of well ordered set;

we proceed to examine its special properties.

The most elementary fact is that each element of an ordinal number a

is at the same time a subset of a. (In other words, every ordinal number

is a transitive set.) Indeed, if £ « a, then the fact that s(£) = £ implies

that each element of £ is a predecessor of £ in a and hence, in particular,

an element of a.

If £ is an element of an ordinal number a, then, as we have just seen, £

is a subset of a, and, consequently, £ is a well ordered set (with respect to

the ordering it inherits from a). Assertion: £ is in fact an ordinal number.

Indeed, if rj e £
, then the initial segment determined by jj in £ is the same as

the initial segment determined by jj in a; since the latter is equal to ri, so

is the former. Another way of formulating the same result is to say that

every initial segment of an ordinal number is an ordinal number.

The next thing to note is that if two ordinal numbers are similar, then

they are equal. To prove this, suppose that a and 0 are ordinal numbers

and that / is a similarity from a onto /3
; we shall show that /(£) =

£ for

each £ in a. The proof is a straightforward transfinite induction. Write

S =

{
£ e <*:/(£) =

£}. For each £ in a, the least element of a that does not

belong to s(£) is £ itself. Since / is a similarity, it follows that the least ele

ment of /3 that does not belong to the image of s(£) under/ is/(£). These

assertions imply that if s(£) c S
,

then/(£) and £ are ordinal numbers with
the same initial segments, and hence that/(£) =

£
. We have proved thus

that £ e S whenever s(£) c <S. The principle of transfinite induction

implies that S = a, and from this it follows that a =

/3
.

If a and f) are ordinal numbers, then, in particular, they are well ordered

sets, and, consequently, either they are similar or else one of them is simi
78
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lar to an initial segment of the other. If, say, ft is similar to an initial seg

ment of a, then ft is similar to an element of a. Since every element of a

is an ordinal number, it follows that ft is an element of a, or, in still other

words, that a is a continuation of ft
. We know by now that if a and ft are

distinct ordinal numbers, then the statements

()ea,

ft a a,

a is a continuation o
f

ft
,

are all equivalent to one another; if they hold, we may write

ft < a.

What we have just proved is that any two ordinal numbers are comparable;

that is
, if a and ft are ordinal numbers, then either ft = a, or ft < a, or

a < ft
.

The result of the preceding paragraph can be expressed by saying that
every set of ordinal numbers is totally ordered. In fact more is true: every

set of ordinal numbers is well ordered. Suppose indeed that E is a non

empty set of ordinal numbers, and let a be an element of E. If a 1= ft for
all ft in E

,

then a is the first element of E and all is well. If this is not the

case, then there exists an element ft in E such that ft < a, i.e., ft e a; in
other words, then a fl E is not empty. Since a is a well ordered set, a 0 E
has a first element, say OQ. If ft « E, then either a ^ ft (in which case

oo < ft), or ft < a (in which case ft e a D E and therefore OQ ^ ft), and

this proves that E has a first element, namely OQ.

Some ordinal numbers are finite; they are just the natural numbers (i.e.,

the elements of w). The others are called transfinite; the set w of all natural
numbers is the smallest transfinite ordinal number. Each finite ordinal
number (other than 0

) has an immediate predecessor. If a transfinite or

dinal number a has an immediate predecessor ft
, then, just as for natural

numbers, a = ft+. Not every transfinite ordinal number does have an

immediate predecessor; the ones that do not are called limit numbers.

Suppose now that G is a collection of ordinal numbers. Since, as we

have just seen, 6 is a continuation chain, it follows that the union a of

the sets of 6 is a well ordered set such that for every £ in 6
, distinct from

a itself, a is a continuation of £
. The initial segment determined by an

element in a is the same as the initial segment determined by that element

whatever set of 6 it occurs in; this implies that a is an ordinal number.

If £ « 6
, then £ ^ a; the number a is an upper bound o
f the elements o
f
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<2. If /3 is another upper bound of 6, then £ C /3 whenever £ « 6, and there

fore, by the definition of unions, a C 0. This implies that a is the least

upper bound of 6; we have proved thus that every set of ordinal numbers

has a supremum.

Is there a set that consists exactly of all the ordinal numbers? It is easy

to see that the answer must be no. If there were such a set, then we could

form the supremum of all ordinal numbers. That supremum would be an

ordinal number greater than or equal to every ordinal number. Since,

however, for each ordinal number there exists a strictly greater one (for
example, its successor), this is impossible; it makes no sense to speak of

the "set" of all ordinals. The contradiction, based on the assumption that
there is such a set, is called the Burali-Forti paradox. (Burali-Forti was

one man, not two.)
Our next purpose is to show that the concept of an ordinal number is

not so special as it might appear, and that, in fact, each well ordered set

resembles some ordinal number in all essential respects. "Resemblance"

here is meant in the technical sense of similarity. An informal statement

of the result is that each well ordered set can be counted.

Counting theorem. Each well ordered set is similar to a unique ordinal

number.

PROOF. Since for ordinal numbers similarity is the same as equality,

uniqueness is obvious. Suppose now that X is a well ordered set and sup

pose that an element a of X is such that the initial segment determined by
each predecessor of a is similar to some (necessarily unique) ordinal num

ber. If S(x, a) is the sentence that says "a is an ordinal number and s(z)
^ a," then, for each x in s(a), the set {a: S(x, a)} can be formed; in fact,

that set is a singleton. The axiom of substitution implies the existence of

a set consisting exactly of the ordinal numbers similar to the initial seg

ments determined by the predecessors of a. It follows, whether a is the

immediate successor of one of its predecessors or the supremum of them

all, that s(a) is similar to an ordinal number. This argument prepares the

way for an application of the principle of transfinite induction; the conclu

sion is that each initial segment in X is similar to some ordinal number.

This fact, in turn, justifies another application of the axiom of substitu

tion, just like the one made above; the final conclusion is
,

as desired, that X

is similar to some ordinal number.
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ORDINAL ARITHMETIC

For natural numbers we used the recursion theorem to define the arith
metic operations, and, subsequently, we proved that those operations are

related to the operations of set theory in various desirable ways. Thus,
for instance, we know that the number of elements in the union of two
disjoint finite sets E and F is equal to #(#) + #(F). We observe now that
this fact could have been used to define addition. If m and n are natural
numbers, we could have defined their sum by finding disjoint sets E and F,
with f(E) = m and #(F) = n, and writing m + n = #(E U F).

Corresponding to what was done and to what could have been done for
natural numbers, there are two standard approaches to ordinal arithmetic.

Partly for the sake of variety, and partly because in this context recursion

seems less natural, we shall emphasize the set-theoretic approach instead

of the recursive one.

We begin by pointing out that there is a more or less obvious way of

putting two well ordered sets together to form a new well ordered set.

Informally speaking, the idea is to write down one of them and then to

follow it by the other. If we try to say this rigorously, we immediately

encounter the difficulty that the two sets may not be disjoint. When are

we supposed to write down an element that is common to the two sets?

The way out of the difficulty is to make the sets disjoint. This can be

done by painting their elements different colors. In more mathematical

language, replace the elements of the sets by those same elements taken

together with some distinguishing object, using two different objects for
the two sets. In completely mathematical language : if E and F are arbi

trary sets, let E be the set of all ordered pairs (x, 0) with x in E, and let f
be the set of all ordered pairs (x, 1) with x in F. The sets E and f1 are

clearly disjoint. There is an obvious one-to-one correspondence between

E and E (x —> (x, 0)) and another one between F and f (x
-» (x, 1)).

81
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These correspondences can be used to carry over whatever structure E and

F may possess (for example, order) to E and F. It follows that any time
we are given two sets, with or without some additional structure, we may

always replace them by disjoint sets with the same structure, and hence

we may assume, with no loss of generality, that they were disjoint in the

first place.

Before applying this construction to ordinal arithmetic, we observe that
it can be generalized to arbitrary families of sets. If, indeed, {#i} is a

family, write $i for the set of all ordered pairs (x, i)
,

with x in Ei. (In
other words, $

i = Ei X [i}.) The family {$i} is pairwise disjoint, and

it can do anything the original family {£i} could do.

Suppose now that E and F are disjoint well ordered sets. Define order

in E U F so that pairs of elements in E
,

and also pairs of elements in F,

retain the order they had, and so that each element of E precedes each

element of F. (In ultrafonnal language: if R and S are the given order

relations in E and F respectively, let E U F be ordered by R U S U

(E X F ).
) The fact that E and F were well ordered implies that E U F

is well ordered. The well ordered set E U F is called the ordinal sum of
the well ordered sets E and F.

There is an easy and worth while way of extending the concept of ordinal
sum to infinitely many summands. Suppose that {.£,.} is a disjoint family
of well ordered sets indexed by a well ordered set /. The ordinal sum of
the family is the union (J,. £,., ordered as follows. If a and b are elements

of the union, with a e Ei and b e Ej, then a < b means that either i < j or

else i = j and a precedes b in the given order of Ei.
The definition of addition for ordinal numbers is now child's play. For

each well ordered set X, let ord X be the unique ordinal number similar to

X. (If X is finite, then ord X is the same as the natural number #(X) de

fined earlier.) If a and 0 are ordinal numbers, let A and B be disjoint well
ordered sets with ord A = a and ord B = ft

, and let C be the ordinal sum

of A and B. The sum a + ft is
,

by definition, the ordinal number of C
,

so

that ord A + ord B = ord C. It is important to note that the sum a + /3

is independent of the particular choice of the sets A and B; any other pair
of disjoint sets, with the same ordinal numbers, would have given the same

result.

These considerations extend without difficulty to the infinite case. If
{a,} is a well ordered family of ordinal numbers indexed by a well ordered

set /, let {Ai} be a disjoint family of well ordered sets with ord Ai = a,.

for each i, and let A be the ordinal sum of the family {A,.}. The sum

^i,j ord A i is
,

by definition, the ordinal number of A, so that 2>«r ord A»
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= ord A. Here too the final result is independent of the arbitrary choice

of the well ordered sets A^; any other choices (with the same ordinal num

bers) Would have given the same sum.

Some of the properties of addition for ordinal numbers are good and

others are bad. On the good side of the ledger are the identities

« + 0 = a,

0 + a = a,

«+!=«+
and the associative law

« + 08 + 7) = (« + ft + y.

Equally laudable is the fact that a < ft if and only if there exists an ordinal

number y different from 0 such that /3
= a + 7. The proofs of all these

assertions are elementary.

Almost all the bad behavior of addition stems from the failure of the

commutative law. Sample: 1 + w = w (but, as we saw just above, a +
1 ^ w). The misbehavior of addition expresses some intuitively clear

facts about order. If, for instance, we tack a new element in front of an

infinite sequence (of type w), the result is clearly similar to what we started

with, but if we tack it on at the end instead, then we have ruined similar
ity; the old set had no last element but the new set has one.

The main use of infinite sums is to motivate and facilitate the study of

products. If A and B are well ordered sets, it is natural to define their
product as the result of adding A to itself B times. To make sense out

of this, we must first of all manufacture a disjoint family of well ordered

sets, each of which is similar to A, indexed by the set B. The general pre

scription for doing this works well here; all we need to do is to write Ab = A
X {&} for each 6 in B. If now we examine the definition of ordinal sum as

it applies to the family {Ab}, we are led to formulate the following defini

tion. The ordinal product of two well ordered sets A and B is the Cartesian

product A X B with the reverse lexicographic order. In other words, if

(a, V) and (c
,

d
) are in A X B, then (a, 6
) < (c
,

d
) means that either 6 < d

or else 6 = d and a < c.

If a and /3 are ordinal numbers, let A and B be well ordered sets with
ord A = a and ord B = /3

, and let C be the ordinal product of A and B.
The product a/3 is

, by definition, the ordinal number of C
,

so that

(ord A) (ord B) = ordC. The product is unambiguously defined, inde

pendently of the arbitrary choice of the well ordered sets A and B. Alter
natively, at this point we could have avoided any arbitrariness at all by
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recalling that the most easily available well ordered set whose ordinal
number is a is the ordinal number a itself (and similarly for /3).

Like addition, multiplication has its good and bad properties. Among
the good ones are the identities

oO = 0,

Oa = 0,

al = a,

la = a,

the associative law

atfy) = (afiy,
the left distributive law

«(/3 + 7) = aft + ay,

and the fact that if the product of two ordinal numbers is zero, then one
of the factors must be zero. (Note that we use the standard convention
about multiplication taking precedence over addition; a/3 + ay denotes

(a/3) + (ay).)
The commutative law for multiplication fails, and so do many of its

consequences. Thus, for instance, 2o> = a (think of an infinite sequence
of ordered pairs), but w2 j& u (think of an ordered pair of infinite se

quences). The right distributive law also fails; that is (a + f))y is in gen
eral different from ay + 187. Example: (1 + l)w = 2w = w, but Iw + 1w

= w + w = w2.

Just as repeated addition led to the definition of ordinal products, re

peated multiplication could be used to define ordinal exponents. Alter
natively, exponentiation can be approached via transfinite recursion. The
precise details are part of an extensive and highly specialized theory of
ordinal numbers. At this point we shall be content with hinting at the
definition and mentioning its easiest consequences. To define of (where
a and /3 are ordinal numbers), use definition by transfinite induction (on ft).
Begin by writing a° = 1 and of+1 = o^a; if ft is a limit number, define
of as the supremum of the numbers of the form a1, where y < ft

. If this
sketch of a definition is formulated with care, it follows that

0" = 0 (a S: 1),
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Not all the familiar laws of exponents hold; thus, for instance, (a/3)T is in

general different from a1p. Example: (2 •2)" = 4" = w, but 2" -2" =
2

WO) = 0) .

Warning: the exponent notation for ordinal numbers, here and below, is

not consistent with our earlier use of it. The unordered set 2" of all func

tions from w to 2, and the well ordered set 2" that is the least upper bound

of the sequence of ordinal numbers 2, 2-2, 2-2-2, etc., are not the same

thing at all. There is no help for it; mathematical usage is firmly estab

lished in both camps. If, in a particular situation, the context does not

reveal which of the two interpretations is to be used, then explicit verbal

indication must be given.
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THE SCHRODER-BERNSTEIN THEOREM

The purpose of counting is to compare the size of one set with that of

another; the most familiar method of counting the elements of a set is to
arrange them in some appropriate order. The theory of ordinal numbers

is an ingenious abstraction of the method, but it falls somewhat short of

achieving the purpose. This is not to say that ordinal numbers are use

less; it just turns out that their main use is elsewhere, in topology, for in

stance, as a source of illuminating examples and counterexamples. In
what follows we shall continue to pay some attention to ordinal numbers,

but they will cease to occupy the center of the stage. (It is of some impor
tance to know that we could in fact dispense with them altogether. The

theory of cardinal numbers can be constructed with the aid of ordinal

numbers, or without it; both kinds of constructions have advantages.)

With these prefatory remarks out of the way, we turn to the problem of

comparing the sizes of sets.

The problem is to compare the sizes of sets when then* elements do not
appear to have anything to do with each other. It is easy enough to de

cide that there are more people in France than in Paris. It is not quite

so easy, however, to compare the age of the universe in seconds with the

population of Paris in electrons. For some mathematical examples, con

sider the following pairs of sets, defined in terms of an auxiliary set A : (i
)

X = A, Y = A+; (ii) X = <P(A), Y = 2A; (iii) X is the set of all one-to-

one mappings of A into itself, Y is the set of all finite subsets of A. In
each case we may ask which of the two sets X and Y has more elements.

The problem is first to find a rigorous interpretation of the question and

then to answer it.
The well ordering theorem tells us that every set can be well ordered.

For well ordered sets we have what seems to be a reasonable measure of
86
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size, namely, their ordinal number. Do these two remarks solve the prob

lem? To compare the sizes of X and Y, may we just well order each of

them and then compare ord X and ord F? The answer is most emphati

cally no. The trouble is that one and the same set can be well ordered in

many ways. The ordinal number of a well ordered set measures the well

ordering more than it measures the set. For a concrete example consider

the set w of all natural numbers. Introduce a new order by placing 0 after

everything else. (In other words, if n and m are non-zero natural num

bers, then arrange them in their usual order; if
,

however, n = 0 and m 7^ 0
,

let m precede n.) The result is a well ordering of w; the ordinal number of

this well ordering is a + 1
.

If X and Y are well ordered sets, then a necessary and sufficient condi

tion that ord X < ord Y is that X be similar to an initial segment of Y.
It follows that we could compare the ordinal sizes of two well ordered sets

even without knowing anything about ordinal numbers; all we would need

to know is the concept of similarity. Similarity was defined for ordered

sets; the central concept for arbitrary unordered sets is that of equivalence.

(Recall that two sets X and Y are called equivalent, X ~ Y
,

in case there

exists a one-to-one correspondence between them.) If we replace similar
ity by equivalence, then something like the suggestion of the preceding

paragraph becomes usable. The point is that we do not have to know
what size is if all we want is to compare sizes.

If X and Y are sets such that X is equivalent to a subset of Y
,

we shall

write
X •

< Y**• f^j * •

The notation is temporary and does not deserve a permanent name. As
long as it lasts, however, it is convenient to have a way of referring to it; a

reasonable possibility is to say that Y dominates X. The set of those or

dered pairs (X, Y) of subsets of some set E for which X £ Y constitutes a

relation in the power set of E. The symbolism correctly suggests some of

the properties of the concept that it denotes. Since the symbolism is remi

niscent of partial orders, and since a partial order is reflexive, antisym

metric, and transitive, we may expect that domination has similar

properties.

Reflexivity and transitivity cause no trouble. Since each set X is

equivalent to a subset (namely, X) of itself, it follows that X £
,

X for
all X. If / is a one-to-one correspondence between X and a subset of Y

,

and if g is a one-to-one correspondence between Y and a subset of Z
,

then

we may restrict g to the range of / and compound the result with /; the
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conclusion is that X is equivalent to a subset of Z. In other words, if
X < Y and Y <, Z, then X <, Z.

The interesting question is that of antisymmetry. If X £, Y and Y £
X, can we conclude that X = Y1 This is absurd; the assumptions are

satisfied whenever X and Y are equivalent, and equivalent sets need not
be identical. What then can we say about two sets if all we know is that
each of them is equivalent to a subset of the other? The answer is con

tained in the following celebrated and important result.

Schroder-Bernstein theorem. // X & Y and Y £ X, then X ~ Y.

REMARK. Observe that the converse, which is incidentally a consider

able strengthening of the assertion of reflexivity, follows trivially from the
dennition of domination.

PROOF. Let / be a one-to-one mapping from X into Y and let g be a

one-to-one mapping from Y into X; the problem is to construct a one-to-

one correspondence between X and Y. It is convenient to assume that
the sets X and Y have no elements in common; if that is not true, we can

so easily make it true that the added assumption involves no loss of
generality.

We shall say that an element x in X is the parent of the element f(x) in
Y, and, similarly, that an element y in Y is the parent of g(y) in X. Each
element x of X has an infinite sequence of descendants, namely, /(z), g(f(x)),
f(g(f(x))}, etc., and similarly, the descendants of an element y of Y are

Q(y), f(g(y)), 0(/(ff(2/))), ete. This definition implies that each term in the

sequence is a descendant of all preceding terms; we shall also say that each

term in the sequence is an ancestor of all following terms.

For each element (in either X or Y) one of three things must happen.

If we keep tracing the ancestry of the element back as far as possible, then
either we ultimately come to an element of X that has no parent (these
orphans are exactly the elements of X — g(Y)), or we ultimately come to
an element of Y that has no parent (Y — f(X)), or the lineage regresses

ad infinitum. Let Xx be the set of those elements of X that originate in
X (i.e., Xx consists of the elements of X — g(Y) together with all their
descendants in X), let XY be the set of those elements of X that originate

in Y (i.e., Xy consists of all the descendants in X of the elements of Y —

f(X)), and let Xx be the set of those elements of X that have no parentless

ancestor. Partition Y similarly into the three sets YX, YY, and Yx.
If x e Xx, then f(x) « YX, and, in fact, the restriction of / to Xx is a

one-to-one correspondence between Xx and YX. If x e Xy, then x belongs

to the domain of the inverse function g~l and g~1(x) « Yy; in fact the re-
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striction of g~l to Xy is a one-to-one correspondence between Xy and Yy.

If, finally, x e Xm then /(x) « Fw, and the restriction of / to Xx is a one-to-

one correspondence between Xx and Yx; alternatively, if xeXm then

g~l(x) e Fw, and the restriction of g~1 to Xx is a one-to-one correspondence

between Xx and FM. By combining these three one-to-one correspond

ences, we obtain a one-to-one correspondence between X and Y.

EXERCISE. Suppose that / is a mapping from X into Y and g is a map

ping from Y into X. Prove that there exist subsets A and B of X and

F respectively, such that f(A) = B and g(Y - B) = X - A. This
result can be used to give a proof of the Schroder-Bernstein theorem

that looks quite different from the one above.

By now we know that domination has the essential properties of a partial
order; we conclude this introductory discussion by observing that the order

is in fact total. The assertion is known as the comparability theorem for
sets: it says that if X and Y are sets, then either X ^ Y or Y £, X. The
proof is an immediate consequence of the well ordering theorem and of

the comparability theorem for well ordered sets. Well order both X and

Y and use the fact that either the well ordered sets so obtained are similar
or one of them is similar to an initial segment of the other; in the former

case X and F are equivalent, and in the latter one of them is equivalent
to a subset of the other.
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COUNTABLE SETS

If X and Y are sets such that Y dominates X and X dominates Y, then

the Schroder-Bernstein theorem applies and says that X is equivalent to

Y. If Y dominates X but X does not dominate Y, so that X is not equiva

lent to Y, we shall write

X < Y,

and we shall say that Y strictly dominates X.
Domination and strict domination can be used to express some of the

facts about finite and infinite sets in a neat form. Recall that a set X is

called finite in case it is equivalent to some natural number; otherwise it
is infinite. We know that if X < Y and Y is finite, then X is finite, and

we know that to is infinite (§ 13); we know also that if X is infinite, then

w X (§ 15). The converse of the last assertion is true and can be proved

either directly (using the fact that a finite set cannot be equivalent to a

proper subset of itself) or as an application of the Schroder-Bernstein the

orem. (If w X, then it is impossible that there exist a natural number

n such that X ~ n, for then we should have w n, and that contradicts

the fact that o is infinite.)
We have just seen that a set X is infinite if and only if w X; next we

shall prove that X is finite if and only if X < u. The proof depends on

the transitivity of strict domination: if X £ Y and Y £ Z, and if at least

one of these dominations is strict, then X < Z. Indeed, clearly, X < Z.

If we had Z X, then we should have Y & X and Z & Y and hence (by

the Schroder-Bernstein theorem) X ~ Y and Y ~ Z, in contradiction to

the assumption of strict domination. If now X is finite, then X ~ n for

some natural number n, and, since w is infinite, n < w, so that X < w.

90
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If, conversely, X < w, then X must be finite, for otherwise we should have
w £, X, and hence w •< w, which is absurd.

A set X is called countable (or denumerdble) in case X ^, w and countably

infinite in case X ~ w. Clearly a countable set is either finite or countably
infinite. Our main purpose in the immediate sequel is to show that many

set-theoretic constructions when performed on countable sets lead again to

countable sets.

We begin with the observation that every subset of co is countable, and

we go on to deduce that every subset of each countable set is countable.
These facts are trivial but useful.

If / is a function from w onto a set X, then X is countable. For the proof,

observe that for each x in X the set/~1 ({x}) is not empty (this is where

the onto character of / is important), and consequently, for each x in X, we

may find a natural number g(x) such that f(g(x}) = x. Since the function
g is a one-to-one mapping from X into w, this proves that X £, w. The
reader who worries about such things might have noticed that this proof

made use of the axiom of choice, and he may want to know that there is

an alternative proof that does not depend on that axiom. (There is.) The
same comment applies on a few other occasions in this section and its
successors but we shall refrain from making it.

It follows from the preceding paragraph that a set X is countable if and

only if there exists a function from some countable set onto X. A closely

related result is this: if Y is any particular countably infinite set, then a

necessary and sufficient condition that a non-empty set X be countable is

that there exist a function from Y onto X.
The mapping n —> 2n is a one-to-one correspondence between w and

the set A of ah1 even numbers, so that A is countably infinite. This implies

that if X is a countable set, then there exists a function / that maps A
onto X. Since, similarly, the mapping n —> 2ra + 1 is a one-to-one cor

respondence between w and the set B of all odd numbers, it follows that if
Y is a countable set, then there exists a function g that maps B onto Y.
The function h that agrees with / on A and with g on B (i.e., h(x) = f(x)
when x e A and h(x) = g(x) when x « B) maps w onto X U Y. Conclu
sion: the union of two countable sets is countable. From here on an easy

argument by mathematical induction proves that the union of a finite set

of countable sets is countable. The same result can be obtained by imitat
ing the trick that worked for two sets; the basis of the method is the fact

that for each non-zero natural number n there exists a pairwise disjoint
family {A,.} (i < n) of infinite subsets of w whose union is equal to w.

The same method can be used to prove still more. Assertion: there
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exists a pairwise disjoint family {An} (n e u) of infinite subsets of w whose

union is equal to w. One way to prove this is to write down the elements

of u in an infinite array by counting down the diagonals, thus:

150 1 3 6 10

2 4 7 11 16

5 8 12 17

9 13 18 . . .

14 19

20 ...

and then to consider the sequence of the rows of this array. Another way
is to let A0 consist of 0 and the odd numbers, let AI be the set obtained by
doubling each non-zero element of A0, and, inductively, let An+1 be the

set obtained by doubling each element of An, n ^ 1. Either way (and
there are many others still) the details are easy to fill in. Conclusion : the

union of a countably infinite family of countable sets is countable. Proof :

given the family {Xn} (n«w) of countable sets, find a family {/„} of func

tions such that, for each n, the function /„ maps An onto Xn, and define

a function / from u onto \Jn Xn by writing f(k) = fn(k) whenever k e An.
This result combined with the result of the preceding paragraph implies

that the union of a countable set of countable sets is always countable.

An interesting and useful corollary is that the Cartesian product of two
countable sets is also countable. Since

XXY = \JvtY(XX {y}),

and since, if X is countable, then, for each fixed y in Y, the set X X [y} is

obviously countable (use the one-to-one correspondence x —> (x, y)), the
result follows from the preceding paragraph.

EXERCISE. Prove that the set of all finite subsets of a countable set is

countable. Prove that if every countable subset of a totally ordered

set X is well ordered, then X itself is well ordered.

On the basis of the preceding discussion it would not be unreasonable

to guess that every set is countable. We proceed to show that that is not

so; this negative result is what makes the theory of cardinal numbers

interesting.
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Cantor's theorem. Every set is strictly dominated by its power set, or, in
other words,

X < <?(X)

for all X.

Proof. There is a natural one-to-one mapping from X into <P(X),

namely, the mapping that associates with each element x of X the single
ton {x} . The existence of this mapping proves that X & <P(X) ; it remains

to prove that X is not equivalent to <P(X).
Assume that / is a one-to-one mapping from X onto (P(X) ; our purpose

is to show that this assumption leads to a contradiction. Write A =

{x e X: x e' f(x)\; in words, A consists of those elements of X that are

not contained in the corresponding set. Since A e <P(X) and since / maps
X onto <P(X), there exists an element a in X such that f(a) = A. The ele

ment a either belongs to the set A or it does not. If a e A, then, by the

definition of A, we must have a e' f(a), and since f(a) = A this is impos
sible. If a e' A, then, again by the definition of A, we must have a ef(a),
and this too is impossible. The contradiction has arrived and the proof of

Cantor's theorem is complete.
Since <P(X) is always equivalent to 2X (where 2X is the set of all functions

from X into 2), Cantor's theorem implies that X < 2X for all X. If in

particular we take w in the role of X, then we may conclude that the set

of all sets of natural numbers is uncountable (i.e., not countable, non-de-

numerable), or, equivalently, that 2" is uncountable. Here 2" is the set

of all infinite sequences of O's and l's (i.e., functions from w into 2). Note
that if we interpret 2" in the sense of ordinal exponentiation, then 2" is

countable (in fact 2" = w).



SECTION 24

CARDINAL ARITHMETIC

One result of our study of the comparative sizes of sets will be ta define

a new concept, called cardinal number, and to associate with each set X a

cardinal number, denoted by card.X". The definitions are such that for
each cardinal number a there exist sets A with card A = a. We shall

also define an ordering for cardinal numbers, denoted as usual by < . The
connection between these new concepts and the ones already at our dis

posal is easy to describe: it will turn out that card X = card Y if and only
if X ~ Y, and card X < card Y if and only if X < Y. (If a and b are

cardinal numbers, a < b means, of course, that a ^ b but a F^ b.)

The definition of cardinal numbers can be approached in several different

ways, each of which has its strong advocates. To keep the peace as long

as possible, and to demonstrate that the essential properties of the concept

are independent of the approach, we shall postpone the basic construction.

We proceed, instead, to study the arithmetic of cardinal numbers. In the

course of that study we shall make use of the connection, described above,

between cardinal inequality and set domination; that much of a loan from
the future will be enough for the purpose.

If a and b are cardinal numbers, and if A and B are disjoint sets with
card A = a and card B = b, we write, by definition, a + b = card (A U B).
If C and D are disjoint sets with card C = a and card D = b, then A ~ C
and B ~ D; it follows that A U B ~ C U D, and hence that a + b is un

ambiguously defined, independently of the arbitrary choice of A and B.
Cardinal addition, thus defined, is commutative (a + b = b + a), and

associative (a + (b + c) = (a + b) + c) ; these identities are immediate

consequences of the corresponding facts about the formation of unions.
94
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EXERCISE. Prove that if a, b, c, and d are cardinal numbers such that
a < b and c ^ d, then a + c ^b + d.

There is no difficulty about defining addition for infinitely many sum-

mands. If {a,.) is a family of cardinal numbers, and if [Ai] is a corre

spondingly indexed family of pairwise disjoint sets such that card Ai = a,.

for each i, then we write, by definition,

£,ai = card (Ui^,).

As before, the definition is unambiguous.

To define the product ab of two cardinal numbers a and b, we find sets

A and B with card A = a and card B = b, and we write ab = card (A X B).
The replacement of A and B by equivalent sets yields the same value of the

product. Alternatively, we could have defined ab by "adding a to itself b

times"; this refers to the formation of the infinite sum 2««/ ai, where the

index set / has cardinal number b, and where ai = a for each i in /. The
reader should have no difficulty in verifying that this proposed alternative

definition is indeed equivalent to the one that uses Cartesian products.

Cardinal multiplication is commutative (ab = ba) and associative (a(bc) =

(afe)c), and multiplication distributes over addition (0(6 + c) = ab + oc);

the proofs are elementary.

EXERCISE. Prove that if a, b, c, and d are cardinal numbers such that
a ^ b and c ^ d, then ac ^ bd.

There is no difficulty about defining multiplication for infinitely many

factors. If {a,.} is a family of cardinal numbers, and if {Ai} is a correspond

ingly indexed family of sets such that card A,. = oi for each t, then we

write, by definition,

Hi a<
= card (Xi 4,.).

The definition is unambiguous.

EXERCISE. If {a,.} (t </) and {6,.} (i «/) are families of cardinal num

bers such that ai < &i for each i in I, then 2,. a,. < JJi &,..

We can go from products to exponents the same way as we went from

sums to products. The definition of a
b

,

for cardinal numbers a and b
, is

most profitably given directly, but an alternative approach goes via re

peated multiplication. For the direct definition, find sets A and B with
card A = a and card B = b

, and write a
b = card AB. Alternatively, to

define a
6 "multiply a by itself b times." More precisely: form U.../a,.,

where the index set 7 has cardinal number b
, and where a,. = a for each i
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in /. The familiar laws of exponents hold. That is
, if o, b
, and c are car

dinal numbers, then

ab+c = a»ae,

(ab)c = acbc,

EXERCISE. Prove that if a, b
, and c are cardinal numbers such that

a < 6
, then a" ^ bc. Prove that if a and b are finite, greater than 1
, and

if c is infinite, then ac = bc.

The preceding definitions and their consequences are reasonably straight

forward and not at all surprising. If they are restricted to finite sets only,

the result is the familiar finite arithmetic. The novelty of the subject

arises in the formation of sums, products, and powers in which at least

one term is infinite. The words "finite" and "infinite" are used here in a

very natural sense: a cardinal number is finite if it is the cardinal number

of a finite set, and infinite otherwise.

If a and b are cardinal numbers such that a is finite and b is infinite, then

a + b = b
.

For the proof, suppose that A and B are disjoint sets such that A is equiv

alent to some natural number k and B is infinite; we are to prove that

A U B ~ B. Since u £
,

B
,

we may and do assume that u c B. We de

fine a mapping/ from A U B to B as follows: the restriction of / to A is a

one-to-one correspondence between A and k, the restriction of / to a is

given by f(n) = n .f. fc for all n, and the restriction of / to B — <a is the

identity mapping on B — w. Since the result is a one-to-one correspond

ence between A U B and B, the proof is complete.

Next : if a is an infinite cardinal number, then

a + a = a.

For the proof, let A be a set with card A = a. Since the set A X 2 is the

union of two disjoint sets equivalent to A (namely, A X {0} and A X (1 }
),

it would be sufficient to prove that A X 2 is equivalent to A. The ap

proach we shall use will not quite prove that much, but it will come close

enough. The idea is to approximate the construction of the desired one-to-

one correspondence by using larger and larger subsets of A.
Precisely speaking, let J be the collection of all functions / such that the

domain of / is of the form X X 2
, for some subset X of A, and such that

/ is a one-to-one correspondence between X X 2 and X. If X is a count
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ably infinite subset of A, then X X 2 ~ X. This implies that the collec

tion J is not empty; at the very least it contains the one-to-one corre

spondences between X X 2 and X for the countably infinite subsets X of

A. The collection J is partially ordered by extension. Since a straight

forward verification shows that the hypotheses of Zorn's lemma are satis

fied, it follows that J contains a maximal element / with ran / = X, say.

Assertion: A — X is finite. If A — X were infinite, then it would in

clude a countably infinite set, say Y. By combining / with a one-to-one

correspondence between F X 2 and Y we could obtain a proper extension

of /, in contradiction to the assumed maximality.

Since card X + card X = card X, and since card A = card X +
card (A — X), the fact that A — X is finite completes the proof that
card A + card A = card A.

Here is one more result in additive cardinal arithmetic: if a and b are

cardinal numbers at least one of which is infinite, and if c is equal to the

larger one of a and b, then

a + b = c.

Suppose that b is infinite, and let A and B be disjoint sets with card A = a

and card B = b. Since a ^ c and b ^ c, it follows that a + b ^ c + c,

and since c ^ card (A U J5), it follows that c ^ a + b. The result fol
lows from the antisymmetry of the ordering of cardinal numbers.

The principal result in multiplicative cardinal arithmetic is that if a is

an infinite cardinal number, then

a.a = a.

The proof resembles the proof of the corresponding additive fact. Let ff

be the collection of all functions / such that the domain of / is of the form

X X X for some subset X of A, and such that / is a one-to-one correspond

ence between X X X and X. If X is a countably infinite subset of A,
then X X X ~ X. This implies that the collection J is not empty; at the

very least it contains the one-to-one correspondences between X X X and

.X" for the countably infinite subsets X of A . The collection ff is partially
ordered by extension. The hypotheses of Zorn's lemma are easily verified,

and it follows that ff contains a maximal element / with ran / = X, say.

Since (card JT)(card X) = card X, the proof may be completed by showing

that card X = card A .

Assume that card X < card A. Since card A is equal to the larger one

of card.X" and card (A — X), this implies that card A = card (A — X),
and hence that card X < card (A — X). From this it follows that A — X
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has a subset Y equivalent to X. Since each of the disjoint sets X X Y,
Y X X, and Y X Y is infinite and equivalent to X X X, hence to X, and

hence to Y, it follows that their union is equivalent to Y. By combining /
with a one-to-one correspondence between that union and Y, we obtain a

proper extension of /, in contradiction to the assumed maximality. This
implies that our present hypothesis (card X < card A) is untenable and

hence completes the proof.

EXERCISE. Prove that if a and b are cardinal numbers at least one of
which is infinite, then a + b = ab. Prove that if a and b are cardinal

numbers such that a is infinite and 6 is finite, then ab = a.
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CARDINAL NUMBERS

We know quite a bit about cardinal numbers by now, but we still do not

know what they are. Speaking vaguely, we may say that the cardinal

number of a set is the property that the set has in common with all sets

equivalent to it. We may try to make this precise by saying that the

cardinal number of X is equal to the set of all sets equivalent to X, but
the attempt will fail; there is no set as large as that. The next thing to

try, suggested by analogy with our approach to the definition of natural
numbers, is to define the cardinal number of a set X as some particular
carefully selected set equivalent to X. This is what we proceed to do.

For each set X there are too many other sets equivalent to X; our first
problem is to narrow the field. Since we know that every set is equivalent

to some ordinal number, it is not unnatural to look for the typical sets, the

representative sets, among ordinal numbers.

To be sure, a set can be equivalent to many ordinal numbers. A hopeful

sign, however, is the fact that, for each set X, the ordinal numbers equiv

alent to X constitute a set. To prove this, observe first that it is easy to

produce an ordinal number that is surely greater, strictly greater, than all the

ordinal numbers equivalent to X. Suppose in fact that 7 is an ordinal num

ber equivalent to the power set <P(X). If a is an ordinal number equivalent

to X, then the set a is strictly dominated by the set 7 (i.e., card a < card 7).
It follows that we cannot have 7 ^ a, and, consequently, we must have

a < 7. Since, for ordinal numbers, a < 7 means the same thing as a e y,

we have found a set, namely 7, that contains every ordinal number equiv

alent to X, and this implies that the ordinal numbers equivalent to X do

constitute a set.

Which one among the ordinal numbers equivalent to X deserves to be

singled out and called the cardinal number of X? The question has only
one natural answer. Every set of ordinal numbers is well ordered; the

99
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least element of a well ordered set is the only one that seems to clamor for
special attention.

We are now prepared for the definition: a cardinal number is an ordinal

number a such that if /3 is an ordinal number equivalent to a (i.e., card
a = card ft), then a ^ ft

. The ordinal numbers with this property have

also been called initial numbers. If X is a set, then card X, the cardinal

number of X (also known as the power of X), is the least ordinal number

equivalent to X.

EXERCISE. Prove that each infinite cardinal number is a limit number.

Since each set is equivalent to its cardinal number, it follows that if

curd X = card F, then X ~ Y. If, conversely, X ~ Y
,

then card X ~
card Y. Since card X is the least ordinal number equivalent to X, it fol
lows that card X < card Y

,

and, since the situation is symmetric in X and

y
,

we also have card Y ^ card X. In other words card X = card Y if

and only if X ~ F; this was one of the conditions on cardinal numbers

that we needed in the development of cardinal arithmetic.

A finite ordinal number (i.e., a natural number) is not equivalent to any

finite ordinal number distinct from itself. It follows that if X is finite,
then the set of ordinal numbers equivalent to X is a singleton, and, con

sequently, the cardinal number of X is the same as the ordinal number of
X. Both cardinal numbers and ordinal numbers are generalizations of the

natural numbers; in the familiar finite cases both the generalizations coin

cide with the special case that gave rise to them in the first place. As an

almost trivial application of these remarks, we can now calculate the car

dinal number of a power set <P(A) : if card A = a, then card <P(A) = 2°.

(Note that the result, though simple, could not have been stated before

this; till now we did not know that 2 is a cardinal number.) The proof is
immediate from the fact that <P(A) is equivalent to 2A.

If a and ft are ordinal numbers, we know what it means to say that
a < ft or a ^ ft

. It follows that cardinal numbers come to us automati
cally equipped with an order. The order satisfies the conditions we bor
rowed for our discussion of cardinal arithmetic. Indeed: if card.X" <
card F, then card X is a subset of card F, and it follows that X ^ Y.
If we had X ~ F, then, as we have already seen, we should have card X =

card F; it follows that we must have X < Y. If, finally, X < Y
,

then it

is impossible that card F ^ cardX (for similarity implies equivalence),
and hence card X < card F.

As an application of these considerations we mention the inequality

a <2a,
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valid for all cardinal numbers a. Proof: if A is a set with card A = a,

then A < <P(A), hence card A < card <P(A), and therefore a < 2°.

EXERCISE. If card A = a, what is the cardinal number of the set of all

one-to-one mappings of A onto itself? What is the cardinal number of

the set of all countably infinite subsets of A?

The facts about the ordering of ordinal numbers are at the same time

facts about the ordering of cardinal numbers. Thus, for instance, we know
that any two cardinal numbers are comparable (always either a < b, or

a = b, or b < a), and that, in fact, every set of cardinal numbers is well

ordered. We know also that every set of cardinal numbers has an upper

bound (in fact, a supremum), and that, moreover, for every set of cardinal

numbers, there is a cardinal number strictly greater than any of them.

This implies of course that there is no largest cardinal number, or, equiv-

alently, that there is no set that consists exactly of all the cardinal num

bers. The contradiction, based on the assumption that there is such a set,

is known as Cantor's paradox.

The fact that cardinal numbers are special ordinal numbers simplifies

some aspects of the theory, but, at the same time, it introduces the possi

bility of some confusion that it is essential to avoid. One major source of

difficulty is the notation for the arithmetic operations. If a and b are

cardinal numbers, then they are also ordinal numbers, and, consequent'y,

the sum a + b has two possible meanings. The cardinal sum of two car

dinal numbers is in general not the same as their ordinal sum. All this
sounds worse than it is; in practice it is easy to avoid confusion. The
context, the use of special symbols for cardinal numbers, and an occasional

explicit warning can make the discussion flow quite smoothly.

EXERCISE. Prove that if a and /3 are ordinal numbers, then card (a + /3
)

= card a + card /3 and card (a/3) = (card a
)

(card 0). Use the ordinal

interpretation of the operations on the left side and the cardinal inter
pretation on the right.

One of the special symbols for cardinal numbers that is used very fre

quently is the first letter (K, aleph) of the Hebrew alphabet. Thus in par

ticular the smallest transfinite ordinal number, i.e., u, is a cardinal number,

and, as such, it is always denoted by K0.

Every one of the ordinal numbers that we have explicitly named so far

is countable. In many of the applications of set theory an important role

is played by the smallest uncountable ordinal number, frequently denoted

by fi. The most important property of u is that it is an infinite well or-



102 NAIVE SET THEORY SEC. 25

dered set each of whose initial segments is finite; correspondingly, the most
important property of 12 is that it is an uncountably infinite well ordered
set each of whose initial segments is countable.

The least uncountable ordinal number J2 clearly satisfies the defining

condition of a cardinal number; in its cardinal role it is always denoted by

NI. Equivalently, NI may be characterized as the least cardinal number

strictly greater than NO, or, in other words, the immediate successor of N0

in the ordering of cardinal numbers.

The arithmetic relation between N0 and NI is the subject of a famous old

problem about cardinal numbers. How do we get from NO to NI by arith
metic operations? We know by now that the most elementary steps, in
volving sums and products, just lead from NO back to NO again. The sim

plest thing we know to do that starts with N0 and ends up with something

larger is to form 2X°. We know therefore that NI s= 2N°. Is the inequality
strict? Is there an uncountable cardinal number strictly less than 2X°?

The celebrated continuum hypothesis asserts, as a guess, that the answer

is no, or, in other words, that NI = 2X°. All that is known for sure is that
the continuum hypothesis is consistent with the axioms of set theory.

For each infinite cardinal number a, consider the set c(a) of all infinite
cardinal numbers that are strictly less than a. If a = N0, then c(a) = 0 ;

if a = NI, then c(a) = (NO). Since c(a) is a well ordered set, it has an or

dinal number, say a. The connection between a and a is usually expressed

by writing a = Na. An equivalent definition of the cardinal numbers Na

proceeds by transfinite induction; according to that approach Na (for a > 0)
is the smallest cardinal number that is strictly greater than all the N0's with

ft < a. The generalized continuum hypothesis is the conjecture that Na+1
=

2K" for each ordinal number a.
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