Natural Numbers

Definitions: We define $0 = \emptyset$ and the *successor* of x as $x^+ = x \cup \{x\}$. (Think of x^+ as x + 1.)

Successor set (or inductive set): a set A such that $0 \in S$ and $x^+ \in A$ for every $x \in A$.

Axiom of Infinity: There exists a successor set.

Exercises

- 1. Prove that the intersection of a non-empty collection of successor sets is a successor set itself.
- 2. Prove that there exists a unique successor set that is a subset of every successor set.

Definition of natural numbers

The unique minimal successor set is called the *set of natural numbers* and is denoted \mathbb{N} or ω . A *natural number* is defined to be an element of ω .

Properties of ω (The Peano Axioms)

$$(I) \ 0 \in \mathbb{N}$$

(II)
$$\forall n \in \mathbb{N}, n^+ \in \mathbb{N}$$

- (III) $\forall S \subset \omega, [0 \in S \land (\forall n \in S, n^+ \in S)] \Rightarrow S = \omega.$
- (IV) $\forall n \in \omega, n^+ \neq 0.$
- $({\rm V}) \ \, \forall n,m\in \omega, (n^+=m^+\Rightarrow n=m).$

Properties (I)-(IV) follow easily from the definition of ω , and (V) can also be proven from the definition. (See Halmos.) Property (III) is called the *Principle of Mathematical Induction*.

Addition Define $x+1 = x^+$, $x+2 = (x+1)^+$, $x+3 = (x+2)^+$, ..., $x+(n+1) = (x+n)^+$, and so on inductively. (See the "Recursion Theorem" in Halmos for a careful treatment.)

Multiplication Define 2x = x + x, 3x = 2x + x, \dots , (n + 1)x = nx + x, and so on.

Ordering Define i < j if $i \in j$.

Exercises

- 3. For natural numbers m and n, what does $m \cap n$ and $m \cup n$ mean in terms of the "usual" operations on integers?
- 4. For which natural numbers m and n is the set difference m n also a natural number?
- 5. Describe a successor set that is not ω .