
SYS 6003: Optimization Fall 2016

Lecture 4

Instructor: Quanquan Gu Date: Sep 5th

Recall the general optimization problem as follows

min
x∈D

f(x) (1)

For a convex optimization problem, the objective function f(x) needs to be convex, and the
constraint set D needs to be convex. Therefore, it is important to know the definitions of
convex functions and convex sets. In this lecture, we study convex sets.

Definition 1 (Affine Set) A set S is called an affine set if for any x,y ∈ S and any real
number θ, θ x + (1− θ) y ∈ S.

It can be easily verified that R and Rd are affine sets. Also, the set of solutions to the linear
system Ax = b, i.e., {x|Ax = b} is an affine set.

Definition 2 (Convex Set) A set S is called a convex set if for any x,y ∈ S and any real
number θ ∈ [0, 1], θ x + (1− θ) y ∈ S.

Note that an affine set is also a convex set, however, the converse is not true.

Example 1 (Hyperplane) A hyperplane in Rd is defined as H ≡ {x ∈ Rd | a>x = b, a ∈
Rd, b ∈ R}

Hyperplane is an affine set, and therefore it is also a convex set.

Example 2 (Half Space) A upper (lower, respectively) half space is the set {x ∈
Rd | a>x ≥ b} ({x ∈ Rd | a>x ≤ b}, respectively).

It can be easily verified that a half space is convex but not affine.
We will now define various combination methods.

Definition 3 An affine combination of x1,x2, . . . ,xk ∈ Rd is any y ∈ Rd that can be written
as y =

∑k
i=1 αixi, where αi ∈ R for 1 ≤ i ≤ k and

∑k
i=1 αi = 1.

Definition 4 A convex combination of x1,x2, . . . ,xk ∈ Rd is any y ∈ Rd that can be written
as y =

∑k
i=1 αixi, where αi ≥ 0 for 1 ≤ i ≤ k and

∑k
i=1 αi = 1.

If a set is not convex, we can find a convex set which contains this set. It can be achieved
by finding its convex hull.

Definition 5 The convex hull C of a set S is

C =

{
y : y =

n∑
i=1

αixi for some n and {xi}ni=1 ⊆ S and αi ≥ 0 for 1 ≤ i ≤ n s.t.
n∑

i=1

αi = 1

}
This set is denoted by conv(S).
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The smallest convex set that contains this set is called its convex hull. In other words,
convex hull is the tightest convex relaxation of a nonconvex set. In particular, the convex
hull of a convex set is itself.

In the following, we show more examples of convex sets.

Example 3 A set C ∈ Rd is a cone if for any x ∈ C, {λx|λ ≥ 0} ⊆ C.

Example 4 A set C ∈ Rd is a convex cone if for any x,y ∈ C and any α1 ≥ 0, α2 ≥ 0,
α1x + α2y ∈ C.

Example 5 Define a norm cone as

C ≡ {(x, t) : x ∈ Rd, t ≥ 0, ‖x‖ ≤ t} ⊆ Rd+1

We will prove the norm cone is convex by using the definition of convex sets.
Proof: Let (x1, t1), (x2, t2) ∈ C. By definition t1, t2 ≥ 0, thus αt1 + (1 − α)t2 ≥ 0 for any
α ∈ [0, 1]. Next, we need to show the convex combination of x1 and x2 is contained in the
norm cone. By the triangle inequality, for any α ∈ [0, 1], we have

‖αx1 + (1− α)x2 ≤ ‖αx1‖+ ‖(1− α)x2‖
≤ α · ‖x1‖+ (1− α) · ‖x2‖
≤ αt1 + (1− α)t2,

where the last inequality follows from the assumption that (x1, t1), (x2, t2) ∈ C. Therefore,
α(x1, t1) + (1− α)(x2, t2) ∈ C

Two more examples of convex sets include Euclidean balls centered at a point x, as well
as ellipsoids centered at a point x. Since Euclidean balls are a special case of ellipsoids, we
only show that an ellipsoid is convex.

Example 6 An ellipsoid around a point x ∈ Rd is the set E(x), where

E(x) = {y : (y − x)>P(y − x) ≤ 1,P � 0,y ∈ Rd}

Before proving that ellipsoids centered about x are convex, we introduce a new norm.
We will show that this norm is a valid norm, in that it conforms to the three conditions for
a norm.

Definition 6 The Mahalanobis norm is defined as ‖x‖P =
√

x>Px, where x ∈ Rd, and
P � 0.

Next, we will prove that ‖ · ‖P is indeed a norm.

Proof: First, note that

‖αx‖P =
√

(αx)>P(αx) = |α| ·
√

x>Px = |α| · ‖x‖P.
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Next, we observe that ‖x‖P ≥ 0 and ‖x‖P = 0 iff x = 0 by the definition of P � 0.
The third component of proving ‖ · ‖P is a norm is to show the triangle inequality holds. By
the definition of the Mahalanobis norm, we have

‖x + y‖2P = (x + y)>P(x + y) = x>Px + y>Py + 2x>Py. (2)

Since P � 0, P has the eigendecompostion P = UΛU>, where U is an orthogonal matrix,
Λ is a diagonal matrix with all diagonal entries being positive. Hence, Λ1/2 is well defined,
so is P1/2 (defined as UΛ1/2U>). From (2) and the definition of ‖ · ‖P, it then follows that

‖x + y‖2P = ‖x‖2P + ‖y‖2P + 2x>P
1
2 P

1
2 y

≤ ‖x‖2P + ‖y‖2P + 2‖P
1
2 x‖2 · ‖P

1
2 y‖2

= ‖x‖2P + ‖y‖2P + 2‖x‖P · ‖y‖P, (3)

where the inequality follows from the Cauchy-Schwarz inequality, and the last equality holds
since ‖P1/2x‖2 =

√
x>Px = ‖x‖P. Note that (3) can be rewritten as

‖x + y‖2P ≤ (‖x‖P + ‖y‖P)2,

which is equivalent to the triangle inequality. Therefore, ‖ · ‖P is a norm.

Given that the Mahalanobis norm is indeed a norm, we can now show that an ellipsoid
centered at x is a convex set.
Proof: Since (y − x)>P(y − x) = ‖y − x‖2P, we can redefine ellipsoid as

E(x) = {y ∈ Rd : ‖y − x‖2P ≤ 1, P � 0, x ∈ Rd},

or, equivalently,
E(x) = {y ∈ Rd : ‖y − x‖P ≤ 1, P � 0, x ∈ Rd}.

To show E(x) is convex, we need to show that for any y1,y2 ∈ E(x) and any α ∈ [0, 1],
αy1 +(1−α)y2 ∈ E(x), i.e. ‖αy1 +(1−α)y2−x‖P ≤ 1 holds. This is equivalent to showing

‖αy1 − αx + (1− α)y2 − (1− α)x‖P ≤ 1. (4)

Applying the triangle inequality gives

‖αy1 − αx + (1− α)y2 − (1− α)x‖P ≤ ‖αy1 − αx‖P + ‖(1− α)y2 − (1− α)x‖P
= α · ‖y1 − x‖P + (1− α) · ‖y2 − x‖P
≤ α + (1− α) = 1,

where the last inequality follows from the assumption that y1,y2 ∈ E(x). Hence, inequality
(4) holds and E(x) is convex.

To show a set is convex, we can prove it by definition. However, proving the convexity
of a set by definition is not the only way to prove that a set is convex.

In general, there are two major proof techniques for convex sets:
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1. By definition (for any x,y ∈ S, and any α ∈ [0, 1], show that αx + (1− α)y ∈ S)

2. Start with a known convex set S, and show that another set C can be obtained using
a convexity preserving operation based on S

For the first proof technique, we have already seen several examples. We therefore will
focus on the second technique in the sequel. To use the second proof technique, the key is to
know what are typical convexity preserving operations. In the following, we will show two
operations. More operations will be introduced next time.

1. Intersection - the intersection of convex sets is also convex. Specifically, suppose Si is
convex for all i ∈ A where A is a set. Then ∩i∈ASi is also convex.

2. Affine Function: f(x) = Ax + b, where x ∈ Rd,A ∈ Rm×d, and b ∈ Rm. We define
the image of S under f , denoted by f(S), as

f(S) = {y : y = Ax + b for all x ∈ S}.

It can be shown that if S is convex and f is affine, then f(S) is convex. Next, we
define the inverse image of S under f , denoted by f−1(S), as

f−1(S) = {x : there exists y ∈ S such that y = Ax + b}.

It can also be verified that if S is convex and f is affine, then f−1(S) is convex.
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