Lecture 5

Instructor: Quanquan Gu
Date: Sep $7^{\text {th }}$
In last lecture, I have introduced two convexity preserving operations: intersection of sets, and affine functions. I continue to introduce two more convexity preserving operations.

Definition $1 A$ perspective function is a function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d-1}$ such that

$$
f(\mathbf{x})=\left[\begin{array}{c}
x_{1} / x_{d} \\
x_{2} / x_{d} \\
\vdots \\
x_{d-1} / x_{d}
\end{array}\right] \in \mathbb{R}^{d-1}, \text { where } \mathbf{x} \in \mathbb{R}^{d} \text { and } x_{d}>0
$$

In general, a perspective function can also be written as $f(\mathbf{x}, t)=\mathbf{x} / t$, where $\mathbf{x} \in \mathbb{R}^{d-1}$, and $t>0$.

Claim 1 If f is a perspective function defined on a convex set \mathcal{S}, then $f(\mathcal{S})$ is also convex.
Proof: First note that $f(\mathcal{S})=\left\{\mathbf{y} \in \mathbb{R}^{d-1}: \exists(\mathbf{x}, t) \in \mathcal{S}\right.$, such that $\left.\mathbf{y}=\mathbf{x} / t\right\}$. Consider any $\mathbf{y}_{1}, \mathbf{y}_{2} \in f(S)$ where $\mathbf{y}_{1}=\mathbf{x}_{1} / t_{1}$, and $\mathbf{y}_{2}=\mathbf{x}_{2} / t_{2}$. We need to prove that for any $\alpha \in[0,1]$, $\mathbf{y}=\alpha \mathbf{y}_{1}+(1-\alpha) \mathbf{y}_{2} \in f(S)$. In other words, there exist $\left(\mathbf{x}^{\prime}, t^{\prime}\right) \in \mathcal{S}$ such that $\mathbf{y}=\mathbf{x}^{\prime} / t^{\prime}$.

Since $\left(\mathbf{x}_{1}, t_{1}\right),\left(\mathbf{x}_{2}, t_{2}\right)$ are two points in the convex set \mathcal{S}, so are their convex combinations. We assume that $\mathbf{x}^{\prime}=\theta \mathbf{x}_{1}+(1-\theta) \mathbf{x}_{2}$ and $t^{\prime}=\theta t_{1}+(1-\theta) t_{2}$. The goal is then to find a $\theta \in[0,1]$ such that the following equality holds:

$$
\begin{equation*}
\alpha \frac{\mathbf{x}_{1}}{t_{1}}+(1-\alpha) \frac{\mathbf{x}_{2}}{t_{2}}=\frac{\theta \mathbf{x}_{1}+(1-\theta) \mathbf{x}_{2}}{\theta t_{1}+(1-\theta) t_{2}} . \tag{1}
\end{equation*}
$$

It can be verified that (1) holds when

$$
\theta=\frac{\alpha t_{2}}{(1-\alpha) t_{1}+\alpha t_{2}} .
$$

Also note that since $\alpha \in[0,1]$, the θ given by the equation above lies in $[0,1]$.
Thus, we have proved that given any two points $\mathbf{y}_{1}, \mathbf{y}_{2} \in f(\mathcal{S})$, and any $\alpha \in[0,1]$, their convex combination \mathbf{y} can be represented as \mathbf{x}^{\prime} / t where $\left(\mathbf{x}^{\prime}, t\right) \in \mathcal{S}$. This means $\mathbf{y} \in f(\mathcal{S})$. By definition, $f(\mathcal{S})$ is convex.

Claim 2 If \mathcal{S} is convex, then $f^{-1}(\mathcal{S})$ is convex where f is a perspective function.
Proof: First note that $f^{-1}(\mathcal{S})$ can be explicitly written as:

$$
f^{-1}(\mathcal{S})=\left\{(\mathbf{x}, t): \frac{\mathbf{x}}{t} \in \mathcal{S}, t>0\right\}
$$

For any $\left(\mathbf{x}_{1}, t_{1}\right),\left(\mathbf{x}_{2}, t_{2}\right) \in f^{-1}(\mathcal{S})$, and $\alpha \in[0,1]$ we want to show that

$$
\alpha\binom{\mathbf{x}_{1}}{t_{1}}+(1-\alpha)\binom{\mathbf{x}_{2}}{t_{2}} \in f^{-1}(S)
$$

That is, we want to show that

$$
\mathbf{y}=\frac{\alpha \mathbf{x}_{1}+(1-\alpha) \mathbf{x}_{2}}{\alpha t_{1}+(1-\alpha) t_{2}} \in \mathcal{S} .
$$

We assume that this \mathbf{y} can be represented as $\mathbf{y}=\theta \mathbf{x}_{1} / t_{1}+(1-\theta) \mathbf{x}_{2} / t_{2}$, where $\theta \in[0,1]$. Then the goal is to find $\theta \in[0,1]$ such that the the following equality holds:

$$
\frac{\alpha}{\alpha t_{1}+(1-\alpha) t_{2}} \mathbf{x}_{1}+\frac{1-\alpha}{\alpha t_{1}+(1-\alpha) t_{2}} \mathbf{x}_{2}=\frac{\theta}{t_{1}} \mathbf{x}_{1}+\frac{1-\theta}{t_{2}} \mathbf{x}_{2} .
$$

Matching the coefficients of \mathbf{x}_{1} and \mathbf{x}_{2} in the equation above gives

$$
\theta=\frac{\alpha t_{1}}{(1-\alpha) t_{1}+\alpha t_{1}}
$$

Since $\alpha \in[0,1], \theta \in[0,1]$. Hence \mathbf{y} is a convex combination of \mathbf{x}_{1} / t_{1} and \mathbf{x}_{2} / t_{2}, which are in \mathcal{S}. Due to the assumption that \mathcal{S} is convex, it follows that $\mathbf{y} \in \mathcal{S}$, and $f^{-1}(\mathcal{S})$ is a convex set.

Definition 2 The following function is called a linear fractional function:

$$
f(\mathbf{x})=\frac{\mathbf{A} \mathbf{x}+\mathbf{b}}{\mathbf{c}^{\top} \mathbf{x}+u},
$$

where $\mathbf{x} \in \mathbb{R}^{d}, \mathbf{A} \in \mathbb{R}^{m \times d}, \mathbf{b} \in \mathbb{R}^{m}, \mathbf{c} \in \mathbb{R}^{d}$, and $u \in \mathbb{R}$. The domain of f is $\left\{\mathbf{x}: \mathbf{c}^{\top} \mathbf{x}+u>0\right\}$.
Claim 3 If a set \mathcal{S} is convex, then $f(\mathcal{S})$ is convex, where f is a linear fraction function.
Proof: The intuition behind the proof is that $f(x)$ is a perspective transform of an affine function. Define

$$
\begin{array}{r}
g(\mathbf{x})=\binom{\mathbf{A}}{\mathbf{c}^{\top}} \mathbf{x}+\binom{\mathbf{b}}{u} \in \mathbb{R}^{m+1} \\
f(\mathbf{x})=\operatorname{perspective}(g(\mathbf{x})) \Longrightarrow f(\mathcal{S})=\operatorname{perspective}(\mathrm{g}(\mathcal{S})) \text { is convex. }
\end{array}
$$

So far, I have covered the basic concepts and proof techniques for convex sets. I'm now going to introduce another important component in convex optimization: convex functions.

Definition 3 (Convex function) A function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is called a convex function if its domain $\operatorname{dom} f$ is a convex set, and for any two points $\mathbf{x}, \mathbf{y} \in \operatorname{dom} f$ and any $\alpha \in[0,1]$, the following inequality holds:

$$
f(\alpha \mathbf{x}+(1-\alpha) \mathbf{y}) \leq \alpha f(\mathbf{x})+(1-\alpha) f(\mathbf{y})
$$

Definition 4 (Strictly Convex function) A function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is called a strictly convex function if its domain $\operatorname{dom} f$ is a convex set, and for any two points $\mathbf{x}, \mathbf{y} \in \operatorname{dom} f$ and any $\alpha \in(0,1)$, the following inequality holds:

$$
f(\alpha \mathbf{x}+(1-\alpha) \mathbf{y})<\alpha f(\mathbf{x})+(1-\alpha) f(\mathbf{y}) .
$$

While the convex function is typically considered in minimization problem, its counterpart, the concave function, is often considered in maximization problem. A concave function is the negative of a convex function. Its formal definition is as follows.

Definition 5 (Concave function) A function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is called a concave function if $-f$ is a convex function.

Definition 6 (Strictly Concave function) A function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is called a strictly concave function if $-f$ is a strictly convex function.

Example 1 The following functions are all convex:
(1) Affine function: $f(\mathbf{x})=\mathbf{A x}+\mathbf{b}, \mathbf{A} \in \mathbb{R}^{m \times d}, \mathbf{b} \in \mathbb{R}^{m}$;
(2) Vector norms: $\|\mathbf{x}\|_{p}=\left(\sum_{i=1}^{d}\left|x_{i}\right|^{p}\right)^{1 / p}$, where $p \geq 1$;
(3) Exponential function: $f(x)=e^{\alpha x}$, where $\alpha \in \mathbb{R}$;
(4) Powers: $f(\mathbf{x})=x^{a}$, where $\alpha \geq 1$ or $\alpha<0$, for $x>0$;
(5) Negative entropy: $f(\mathbf{x})=x \ln (x)$, for $x>0$.

