SYS 6003: Optimization

Lecture 5

Date: Sep 7^{th}

Instructor: Quanquan Gu

In last lecture, I have introduced two convexity preserving operations: intersection of sets, and affine functions. I continue to introduce two more convexity preserving operations.

Definition 1 A perspective function is a function $f : \mathbb{R}^d \to \mathbb{R}^{d-1}$ such that

$$f(\mathbf{x}) = \begin{bmatrix} x_1/x_d \\ x_2/x_d \\ \vdots \\ x_{d-1}/x_d \end{bmatrix} \in \mathbb{R}^{d-1}, \text{ where } \mathbf{x} \in \mathbb{R}^d \text{ and } x_d > 0.$$

In general, a perspective function can also be written as $f(\mathbf{x}, t) = \mathbf{x}/t$, where $\mathbf{x} \in \mathbb{R}^{d-1}$, and t > 0.

Claim 1 If f is a perspective function defined on a convex set S, then f(S) is also convex.

Proof: First note that $f(S) = \{ \mathbf{y} \in \mathbb{R}^{d-1} : \exists (\mathbf{x}, t) \in S, \text{ such that } \mathbf{y} = \mathbf{x}/t \}$. Consider any $\mathbf{y}_1, \mathbf{y}_2 \in f(S)$ where $\mathbf{y}_1 = \mathbf{x}_1/t_1$, and $\mathbf{y}_2 = \mathbf{x}_2/t_2$. We need to prove that for any $\alpha \in [0, 1]$, $\mathbf{y} = \alpha \mathbf{y}_1 + (1 - \alpha)\mathbf{y}_2 \in f(S)$. In other words, there exist $(\mathbf{x}', t') \in S$ such that $\mathbf{y} = \mathbf{x}'/t'$.

Since $(\mathbf{x}_1, t_1), (\mathbf{x}_2, t_2)$ are two points in the convex set \mathcal{S} , so are their convex combinations. We assume that $\mathbf{x}' = \theta \mathbf{x}_1 + (1 - \theta) \mathbf{x}_2$ and $t' = \theta t_1 + (1 - \theta) t_2$. The goal is then to find a $\theta \in [0, 1]$ such that the following equality holds:

$$\alpha \frac{\mathbf{x}_1}{t_1} + (1 - \alpha) \frac{\mathbf{x}_2}{t_2} = \frac{\theta \mathbf{x}_1 + (1 - \theta) \mathbf{x}_2}{\theta t_1 + (1 - \theta) t_2}.$$
 (1)

It can be verified that (1) holds when

$$\theta = \frac{\alpha t_2}{(1-\alpha)t_1 + \alpha t_2}$$

Also note that since $\alpha \in [0, 1]$, the θ given by the equation above lies in [0, 1].

Thus, we have proved that given any two points $\mathbf{y}_1, \mathbf{y}_2 \in f(\mathcal{S})$, and any $\alpha \in [0, 1]$, their convex combination \mathbf{y} can be represented as \mathbf{x}'/t where $(\mathbf{x}', t) \in \mathcal{S}$. This means $\mathbf{y} \in f(\mathcal{S})$. By definition, $f(\mathcal{S})$ is convex.

Claim 2 If S is convex, then $f^{-1}(S)$ is convex where f is a perspective function.

Proof: First note that $f^{-1}(\mathcal{S})$ can be explicitly written as:

$$f^{-1}(\mathcal{S}) = \Big\{ (\mathbf{x}, t) : \frac{\mathbf{x}}{t} \in \mathcal{S}, t > 0 \Big\}.$$

For any $(\mathbf{x}_1, t_1), (\mathbf{x}_2, t_2) \in f^{-1}(\mathcal{S})$, and $\alpha \in [0, 1]$ we want to show that

$$\alpha \begin{pmatrix} \mathbf{x}_1 \\ t_1 \end{pmatrix} + (1-\alpha) \begin{pmatrix} \mathbf{x}_2 \\ t_2 \end{pmatrix} \in f^{-1}(S)$$

That is, we want to show that

$$\mathbf{y} = \frac{\alpha \mathbf{x}_1 + (1 - \alpha) \mathbf{x}_2}{\alpha t_1 + (1 - \alpha) t_2} \in \mathcal{S}.$$

We assume that this **y** can be represented as $\mathbf{y} = \theta \mathbf{x}_1/t_1 + (1 - \theta)\mathbf{x}_2/t_2$, where $\theta \in [0, 1]$. Then the goal is to find $\theta \in [0, 1]$ such that the the following equality holds:

$$\frac{\alpha}{\alpha t_1 + (1-\alpha)t_2} \mathbf{x}_1 + \frac{1-\alpha}{\alpha t_1 + (1-\alpha)t_2} \mathbf{x}_2 = \frac{\theta}{t_1} \mathbf{x}_1 + \frac{1-\theta}{t_2} \mathbf{x}_2.$$

Matching the coefficients of \mathbf{x}_1 and \mathbf{x}_2 in the equation above gives

$$\theta = \frac{\alpha t_1}{(1-\alpha)t_1 + \alpha t_1}$$

Since $\alpha \in [0, 1]$, $\theta \in [0, 1]$. Hence **y** is a convex combination of \mathbf{x}_1/t_1 and \mathbf{x}_2/t_2 , which are in \mathcal{S} . Due to the assumption that \mathcal{S} is convex, it follows that $\mathbf{y} \in \mathcal{S}$, and $f^{-1}(\mathcal{S})$ is a convex set.

Definition 2 The following function is called a linear fractional function:

$$f(\mathbf{x}) = \frac{\mathbf{A}\mathbf{x} + \mathbf{b}}{\mathbf{c}^{\top}\mathbf{x} + u}$$

where $\mathbf{x} \in \mathbb{R}^d$, $\mathbf{A} \in \mathbb{R}^{m \times d}$, $\mathbf{b} \in \mathbb{R}^m$, $\mathbf{c} \in \mathbb{R}^d$, and $u \in \mathbb{R}$. The domain of f is $\{\mathbf{x} : \mathbf{c}^\top \mathbf{x} + u > 0\}$.

Claim 3 If a set S is convex, then f(S) is convex, where f is a linear fraction function.

Proof: The intuition behind the proof is that f(x) is a perspective transform of an affine function. Define

$$g(\mathbf{x}) = \begin{pmatrix} \mathbf{A} \\ \mathbf{c}^{\top} \end{pmatrix} \mathbf{x} + \begin{pmatrix} \mathbf{b} \\ u \end{pmatrix} \in \mathbb{R}^{m+1}.$$

 $f(\mathbf{x}) = \text{perspective}(g(\mathbf{x})) \implies f(\mathcal{S}) = \text{perspective}(g(\mathcal{S})) \text{ is convex.} \blacksquare$

So far, I have covered the basic concepts and proof techniques for convex sets. I'm now going to introduce another important component in convex optimization: convex functions.

Definition 3 (Convex function) A function $f : \mathbb{R}^d \to \mathbb{R}$ is called a convex function if its domain **dom** f is a convex set, and for any two points $\mathbf{x}, \mathbf{y} \in \mathbf{dom} f$ and any $\alpha \in [0, 1]$, the following inequality holds:

$$f(\alpha \mathbf{x} + (1 - \alpha)\mathbf{y}) \le \alpha f(\mathbf{x}) + (1 - \alpha)f(\mathbf{y}).$$

Definition 4 (Strictly Convex function) A function $f : \mathbb{R}^d \to \mathbb{R}$ is called a strictly convex function if its domain **dom** f is a convex set, and for any two points $\mathbf{x}, \mathbf{y} \in \mathbf{dom} f$ and any $\alpha \in (0, 1)$, the following inequality holds:

$$f(\alpha \mathbf{x} + (1 - \alpha)\mathbf{y}) < \alpha f(\mathbf{x}) + (1 - \alpha)f(\mathbf{y}).$$

While the convex function is typically considered in minimization problem, its counterpart, the concave function, is often considered in maximization problem. A concave function is the negative of a convex function. Its formal definition is as follows.

Definition 5 (Concave function) A function $f : \mathbb{R}^d \to \mathbb{R}$ is called a concave function if -f is a convex function.

Definition 6 (Strictly Concave function) A function $f : \mathbb{R}^d \to \mathbb{R}$ is called a strictly concave function if -f is a strictly convex function.

Example 1 The following functions are all convex:

- (1) Affine function: $f(\mathbf{x}) = \mathbf{A}\mathbf{x} + \mathbf{b}, \mathbf{A} \in \mathbb{R}^{m \times d}, \mathbf{b} \in \mathbb{R}^m$;
- (2) Vector norms: $\|\mathbf{x}\|_p = (\sum_{i=1}^d |x_i|^p)^{1/p}$, where $p \ge 1$;
- (3) Exponential function: $f(x) = e^{\alpha x}$, where $\alpha \in \mathbb{R}$;
- (4) Powers: $f(\mathbf{x}) = x^a$, where $\alpha \ge 1$ or $\alpha < 0$, for x > 0;
- (5) Negative entropy: $f(\mathbf{x}) = x \ln(x)$, for x > 0.