
SYS 6003: Optimization Fall 2016

Lecture 5

Instructor: Quanquan Gu Date: Sep 7th

In last lecture, I have introduced two convexity preserving operations: intersection of
sets, and affine functions. I continue to introduce two more convexity preserving operations.

Definition 1 A perspective function is a function f : Rd → Rd−1 such that

f(x) =


x1/xd
x2/xd

...
xd−1/xd

 ∈ Rd−1, where x ∈ Rd and xd > 0.

In general, a perspective function can also be written as f(x, t) = x/t, where x ∈ Rd−1, and
t > 0.

Claim 1 If f is a perspective function defined on a convex set S, then f(S) is also convex.

Proof: First note that f(S) = {y ∈ Rd−1 : ∃(x, t) ∈ S, such that y = x/t}. Consider any
y1,y2 ∈ f(S) where y1 = x1/t1, and y2 = x2/t2. We need to prove that for any α ∈ [0, 1],
y = αy1 + (1− α)y2 ∈ f(S). In other words, there exist (x′, t′) ∈ S such that y = x′/t′.

Since (x1, t1), (x2, t2) are two points in the convex set S, so are their convex combinations.
We assume that x′ = θx1 + (1 − θ)x2 and t′ = θt1 + (1 − θ)t2. The goal is then to find a
θ ∈ [0, 1] such that the following equality holds:

α
x1

t1
+ (1− α)

x2

t2
=
θx1 + (1− θ)x2

θt1 + (1− θ)t2
. (1)

It can be verified that (1) holds when

θ =
αt2

(1− α)t1 + αt2
.

Also note that since α ∈ [0, 1], the θ given by the equation above lies in [0, 1].
Thus, we have proved that given any two points y1,y2 ∈ f(S), and any α ∈ [0, 1], their

convex combination y can be represented as x′/t where (x′, t) ∈ S. This means y ∈ f(S).
By definition, f(S) is convex.

Claim 2 If S is convex, then f−1(S) is convex where f is a perspective function.

Proof: First note that f−1(S) can be explicitly written as:

f−1(S) =
{

(x, t) :
x

t
∈ S, t > 0

}
.
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For any (x1, t1), (x2, t2) ∈ f−1(S), and α ∈ [0, 1] we want to show that

α

(
x1

t1

)
+ (1− α)

(
x2

t2

)
∈ f−1(S)

That is, we want to show that

y =
αx1 + (1− α)x2

αt1 + (1− α)t2
∈ S.

We assume that this y can be represented as y = θx1/t1 + (1 − θ)x2/t2, where θ ∈ [0, 1].
Then the goal is to find θ ∈ [0, 1] such that the the following equality holds:

α

αt1 + (1− α)t2
x1 +

1− α
αt1 + (1− α)t2

x2 =
θ

t1
x1 +

1− θ
t2

x2.

Matching the coefficients of x1 and x2 in the equation above gives

θ =
αt1

(1− α)t1 + αt1
.

Since α ∈ [0, 1], θ ∈ [0, 1]. Hence y is a convex combination of x1/t1 and x2/t2, which are in
S. Due to the assumption that S is convex, it follows that y ∈ S, and f−1(S) is a convex
set.

Definition 2 The following function is called a linear fractional function:

f(x) =
Ax + b

c>x + u
,

where x ∈ Rd, A ∈ Rm×d, b ∈ Rm, c ∈ Rd, and u ∈ R. The domain of f is {x : c>x+u > 0}.

Claim 3 If a set S is convex, then f(S) is convex, where f is a linear fraction function.

Proof: The intuition behind the proof is that f(x) is a perspective transform of an affine
function. Define

g(x) =

(
A
c>

)
x +

(
b
u

)
∈ Rm+1.

f(x) = perspective(g(x)) =⇒ f(S) = perspective(g(S)) is convex.

So far, I have covered the basic concepts and proof techniques for convex sets. I’m now
going to introduce another important component in convex optimization: convex functions.

Definition 3 (Convex function) A function f : Rd → R is called a convex function if its
domain domf is a convex set, and for any two points x,y ∈ domf and any α ∈ [0, 1], the
following inequality holds:

f(αx + (1− α)y) ≤ αf(x) + (1− α)f(y).
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Definition 4 (Strictly Convex function) A function f : Rd → R is called a strictly
convex function if its domain domf is a convex set, and for any two points x,y ∈ domf
and any α ∈ (0, 1), the following inequality holds:

f(αx + (1− α)y) < αf(x) + (1− α)f(y).

While the convex function is typically considered in minimization problem, its counter-
part, the concave function, is often considered in maximization problem. A concave function
is the negative of a convex function. Its formal definition is as follows.

Definition 5 (Concave function) A function f : Rd → R is called a concave function if
−f is a convex function.

Definition 6 (Strictly Concave function) A function f : Rd → R is called a strictly
concave function if −f is a strictly convex function.

Example 1 The following functions are all convex:

(1) Affine function: f(x) = Ax + b,A ∈ Rm×d,b ∈ Rm;

(2) Vector norms: ‖x‖p = (
∑d

i=1 |xi|p)1/p, where p ≥ 1;

(3) Exponential function: f(x) = eαx, where α ∈ R;

(4) Powers: f(x) = xa, where α ≥ 1 or α < 0, for x > 0;

(5) Negative entropy: f(x) = x ln(x), for x > 0.
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