SYS 6003: Optimization Fall 2016

Lecture 7

Instructor: Quanquan Gu Date: September 14"

We continue to illustrate the application of second-order condition for convex functions
with more examples.

Example 1 (Quadratic over Linear Function)
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f(z,y) is convex over R x (0,4+00). To show this, we first calculate the partial derivatives.
The first order partial derivatives are:
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The second order partial derivatives of f(z,y) are:
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Then we can write down the Hessian matriz of f(x,y) as:
z _z
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Factoring out 2/y>, we can achieve:
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Note that the matriz can be factorized as the outer product of two vectors, yielding
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V?f(z,y) = 0.

By the second order condition, we know that f(x,y) is convex.
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where we notice that:

Therefore we have:



Example 2 (Log-sum-exponential Function) f:R?— R is defined as follows
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It is a conver function.

Example 3 (Geometric Mean) f:R? — R is defined as follows
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It is a concave function.

For convex function, we can show that its local minimum is also a global minimum. In
detail, the following theorem shows that, a local minimum of a convex function is also a
global minimum.

Theorem 1 (Local Minimum is also a Global Minimum) Let fR? — R be convez. If
X* is a local minimum of f over a convex set D, then xX* is also a global minimum of f over
a conver set D.

Proof: Since D is a convex set, for any y, y — x* is a feasible direction. Since x* is a local
minimum, for any y € D, we can choose a small enough o > 0, such that

Fx') < F(x" +aly — X)) 3)
Furthermore, since f is convex, we have
[ +aly —x%) = floy + (1 — a)x") < af(y) + (1 - a) f(x). @)
Combining (3) and (4), we have
1) < af(y)+ (1 - a)f(x"),
which implies that f(x*) < f(y). Since y is an arbitrary point in D, this immediately proves

that x* is a global minimum. M

Theorem 2 (First-order Condition for a Global Minimum) Let function f : R —
R be convexr and continuously differentiable. x* is a global minimum of f over a convex set
D if and only if,

Vix)"(x—x*)>0, forall x€&D. (5)



Proof: “="

Since x* is a global minimum, x* must also be a local minimum. By the first order necessary
condition of a local minimum, we have V f(x*)"d > 0 where d is a feasible direction. For
any x € D, d = x — x* is a feasible direction. Then we obtain:

Vi) (x=x) =0
Thus, this completes the proof in the forward direction.

“<:’7
By definition, we have that:

f(x) > f(x*) + Vf(x)(x — x*) for any x € D.

Thus, if Vf(x*)"(x —x*) > 0, then f(x) — f(x*) > Vf(x*)"(x — x*) > 0, which means x*
is a global minimum of f over D. &

In the following, we will show another way to prove that a function is convex. First of
all, let’s introduce the restriction of a function to a line.

Let f : RY — R be a function. The restriction of f to a line x + tv is defined as
g:R—=R:g(t) = f(x+tv), where dom(g) = {t : x + tv € dom(f)}.

Theorem 3 (Restriction of a convex function to a line) f : RY — R is a convex
function if and only if the function g : R — R : g(t) = f(x +tv),dom(g) = {t : x + tv €
dom(f)} is convex for any x € dom(f),v € R?

Proof: “=": fis convex — g is convex.
For any t1,t2 € dom(g) and any « € [0, 1], we have

glaty + (1 — a)ty) = f(x+ (aty + (1 — a)ts)v)
= flax+ at1v+ (1 —a)x + (1 — a)tyv)
= fla(x+tv)+ (1 —a)(x+t2v))

Since f(x) is convex, it then follows that

glat; + (1 —a)ty) <af(x+tv)+ (1 —a)f(x+tav)
= ag(t) + (1 — a)g(t),

where the last equality follows by the definition of g(¢). Thus, by definition, g(¢) is convex.

“«&” g is convex — f is convex.
For any x,y € dom(f) and any « € [0, 1], we want to show

flax+ (1 —a)y) < af(x)+ (1 —a)f(y).



Let v =y — x, and consider g(t) = f(x + t(y — x)). It is easy to verify that ¢(0) = f(x),
g(1) = f(y), and g(1 — @) = f(ax+ (1 — a)y). We then have

flax+ (1 —a)y) =g(1-a) (6)
=g(a0+ (1 —a)-1)
< ag(0) + (1 —a)g(1)
=af(x)+ (1 —a)f(y).

Therefore, by definition, f(x) is a convex function. B

Theorem 3 basically suggests that a function is convex if and only if the restriction of this
function to any lines is convex. It enables us to check convexity of f by checking convexity
of functions of one variable.



