
SYS 6003: Optimization Fall 2016

Lecture 7

Instructor: Quanquan Gu Date: September 14th

We continue to illustrate the application of second-order condition for convex functions
with more examples.

Example 1 (Quadratic over Linear Function)

f(x, y) =
x2

y
, y > 0.

f(x, y) is convex over R × (0,+∞). To show this, we first calculate the partial derivatives.
The first order partial derivatives are:

∂f(x, y)

∂x
=

2x

y
,

∂f(x, y)

∂y
= −x

2

y2
.

The second order partial derivatives of f(x, y) are:

∂2f(x, y)

∂x2
=

2

y
,

∂2f(x, y)

∂y2
=

2x2

y3
,

∂2f(x, y)

∂x∂y
= −2x

y2
.

Then we can write down the Hessian matrix of f(x, y) as:

∇2f(x, y) =

[
2
y
−2x

y2

−2x
y2

2x2

y3

]
.

Factoring out 2/y3, we can achieve:

∇2f(x, y) =
2

y3

[
y2 −xy
−xy x2

]
.

Note that the matrix can be factorized as the outer product of two vectors, yielding

∇2f(x, y) =
2

y3

(
y
−x

)
(y,−x),

where we notice that: (
y
−x

)
(y,−x) � 0.

Therefore we have:
∇2f(x, y) � 0.

By the second order condition, we know that f(x, y) is convex.
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Example 2 (Log-sum-exponential Function) f : Rd → R is defined as follows

f(x) = log

[ d∑
i=1

exp(xi)

]
. (1)

It is a convex function.

Example 3 (Geometric Mean) f : Rd → R is defined as follows

f(x) =

[ d∏
i=1

xi

]1/d
. (2)

It is a concave function.

For convex function, we can show that its local minimum is also a global minimum. In
detail, the following theorem shows that, a local minimum of a convex function is also a
global minimum.

Theorem 1 (Local Minimum is also a Global Minimum) Let fRd → R be convex. If
x∗ is a local minimum of f over a convex set D, then x∗ is also a global minimum of f over
a convex set D.

Proof: Since D is a convex set, for any y, y − x∗ is a feasible direction. Since x∗ is a local
minimum, for any y ∈ D, we can choose a small enough α > 0, such that

f(x∗) ≤ f(x∗ + α(y − x∗)). (3)

Furthermore, since f is convex, we have

f(x∗ + α(y − x∗)) = f(αy + (1− α)x∗) ≤ αf(y) + (1− α)f(x∗). (4)

Combining (3) and (4), we have

f(x∗) ≤ αf(y) + (1− α)f(x∗),

which implies that f(x∗) ≤ f(y). Since y is an arbitrary point in D, this immediately proves
that x∗ is a global minimum.

Theorem 2 (First-order Condition for a Global Minimum) Let function f : Rd →
R be convex and continuously differentiable. x∗ is a global minimum of f over a convex set
D if and only if,

∇f(x∗)>(x− x∗) ≥ 0, for all x ∈ D. (5)
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Proof: “⇒”
Since x∗ is a global minimum, x∗ must also be a local minimum. By the first order necessary
condition of a local minimum, we have ∇f(x∗)>d ≥ 0 where d is a feasible direction. For
any x ∈ D, d = x− x∗ is a feasible direction. Then we obtain:

∇f(x∗)>(x− x∗) ≥ 0

Thus, this completes the proof in the forward direction.

“⇐”
By definition, we have that:

f(x) ≥ f(x∗) +∇f(x∗)>(x− x∗) for any x ∈ D.

Thus, if ∇f(x∗)>(x− x∗) ≥ 0, then f(x)− f(x∗) ≥ ∇f(x∗)>(x− x∗) ≥ 0, which means x∗

is a global minimum of f over D.

In the following, we will show another way to prove that a function is convex. First of
all, let’s introduce the restriction of a function to a line.

Let f : Rd → R be a function. The restriction of f to a line x + tv is defined as
g : R→ R : g(t) = f(x + tv), where dom(g) = {t : x + tv ∈ dom(f)}.

Theorem 3 (Restriction of a convex function to a line) f : Rd → R is a convex
function if and only if the function g : R → R : g(t) = f(x + tv),dom(g) = {t : x + tv ∈
dom(f)} is convex for any x ∈ dom(f),v ∈ Rd

Proof: “⇒”: f is convex → g is convex.
For any t1, t2 ∈ dom(g) and any α ∈ [0, 1], we have

g(αt1 + (1− α)t2) = f(x + (αt1 + (1− α)t2)v)

= f(αx + αt1v + (1− α)x + (1− α)t2v)

= f(α(x + t1v) + (1− α)(x + t2v))

Since f(x) is convex, it then follows that

g(αt1 + (1− α)t2) ≤ αf(x + t1v) + (1− α)f(x + t2v)

= αg(t1) + (1− α)g(t2),

where the last equality follows by the definition of g(t). Thus, by definition, g(t) is convex.

“⇐” g is convex → f is convex.
For any x,y ∈ dom(f) and any α ∈ [0, 1], we want to show

f(αx + (1− α)y) ≤ αf(x) + (1− α)f(y).
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Let v = y − x, and consider g(t) = f(x + t(y − x)). It is easy to verify that g(0) = f(x),
g(1) = f(y), and g(1− α) = f(αx + (1− α)y). We then have

f(αx + (1− α)y) = g(1− α) (6)

= g(α0 + (1− α) · 1)

≤ αg(0) + (1− α)g(1)

= αf(x) + (1− α)f(y).

Therefore, by definition, f(x) is a convex function.

Theorem 3 basically suggests that a function is convex if and only if the restriction of this
function to any lines is convex. It enables us to check convexity of f by checking convexity
of functions of one variable.
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