## SYS 6003: Optimization

Fall 2016

Lecture 7

Instructor: Quanquan Gu

Date: September  $14^{th}$ 

We continue to illustrate the application of second-order condition for convex functions with more examples.

## Example 1 (Quadratic over Linear Function)

$$f(x,y) = \frac{x^2}{y}, y > 0.$$

f(x,y) is convex over  $\mathbb{R} \times (0,+\infty)$ . To show this, we first calculate the partial derivatives. The first order partial derivatives are:

$$\frac{\partial f(x,y)}{\partial x} = \frac{2x}{y}, \quad \frac{\partial f(x,y)}{\partial y} = -\frac{x^2}{y^2}.$$

The second order partial derivatives of f(x, y) are:

$$\frac{\partial^2 f(x,y)}{\partial x^2} = \frac{2}{y}, \quad \frac{\partial^2 f(x,y)}{\partial y^2} = \frac{2x^2}{y^3}, \quad \frac{\partial^2 f(x,y)}{\partial x \partial y} = -\frac{2x}{y^2}.$$

Then we can write down the Hessian matrix of f(x,y) as:

$$\nabla^2 f(x,y) = \begin{bmatrix} \frac{2}{y} & -\frac{2x}{y^2} \\ -\frac{2x}{y^2} & \frac{2x^2}{y^3} \end{bmatrix}.$$

Factoring out  $2/y^3$ , we can achieve:

$$\nabla^2 f(x,y) = \frac{2}{y^3} \left[ \begin{array}{cc} y^2 & -xy \\ -xy & x^2 \end{array} \right].$$

Note that the matrix can be factorized as the outer product of two vectors, yielding

$$\nabla^2 f(x,y) = \frac{2}{y^3} \begin{pmatrix} y \\ -x \end{pmatrix} (y, -x),$$

where we notice that:

$$\left(\begin{array}{c} y \\ -x \end{array}\right)(y,-x) \succeq 0.$$

Therefore we have:

$$\nabla^2 f(x,y) \succeq 0.$$

By the second order condition, we know that f(x,y) is convex.

Example 2 (Log-sum-exponential Function)  $f: \mathbb{R}^d \to \mathbb{R}$  is defined as follows

$$f(\mathbf{x}) = \log \left[ \sum_{i=1}^{d} \exp(x_i) \right]. \tag{1}$$

It is a convex function.

**Example 3 (Geometric Mean)**  $f: \mathbb{R}^d \to \mathbb{R}$  is defined as follows

$$f(\mathbf{x}) = \left[\prod_{i=1}^{d} x_i\right]^{1/d}.$$
 (2)

It is a **concave** function.

For convex function, we can show that its local minimum is also a global minimum. In detail, the following theorem shows that, a local minimum of a convex function is also a global minimum.

**Theorem 1 (Local Minimum is also a Global Minimum)** Let  $f\mathbb{R}^d \to \mathbb{R}$  be convex. If  $\mathbf{x}^*$  is a local minimum of f over a convex set  $\mathcal{D}$ , then  $\mathbf{x}^*$  is also a global minimum of f over a convex set  $\mathcal{D}$ .

**Proof:** Since  $\mathcal{D}$  is a convex set, for any  $\mathbf{y}$ ,  $\mathbf{y} - \mathbf{x}^*$  is a feasible direction. Since  $\mathbf{x}^*$  is a local minimum, for any  $\mathbf{y} \in \mathcal{D}$ , we can choose a small enough  $\alpha > 0$ , such that

$$f(\mathbf{x}^*) \le f(\mathbf{x}^* + \alpha(\mathbf{y} - \mathbf{x}^*)). \tag{3}$$

Furthermore, since f is convex, we have

$$f(\mathbf{x}^* + \alpha(\mathbf{y} - \mathbf{x}^*)) = f(\alpha \mathbf{y} + (1 - \alpha)\mathbf{x}^*) \le \alpha f(\mathbf{y}) + (1 - \alpha)f(\mathbf{x}^*). \tag{4}$$

Combining (3) and (4), we have

$$f(\mathbf{x}^*) \le \alpha f(\mathbf{y}) + (1 - \alpha) f(\mathbf{x}^*),$$

which implies that  $f(\mathbf{x}^*) \leq f(\mathbf{y})$ . Since  $\mathbf{y}$  is an arbitrary point in  $\mathcal{D}$ , this immediately proves that  $\mathbf{x}^*$  is a global minimum.

Theorem 2 (First-order Condition for a Global Minimum) Let function  $f : \mathbb{R}^d \to \mathbb{R}$  be convex and continuously differentiable.  $\mathbf{x}^*$  is a global minimum of f over a convex set  $\mathcal{D}$  if and only if,

$$\nabla f(\mathbf{x}^*)^{\top}(\mathbf{x} - \mathbf{x}^*) \ge 0, \quad \text{for all} \quad \mathbf{x} \in \mathcal{D}.$$
 (5)

Proof: "⇒"

Since  $\mathbf{x}^*$  is a global minimum,  $\mathbf{x}^*$  must also be a local minimum. By the first order necessary condition of a local minimum, we have  $\nabla f(\mathbf{x}^*)^{\top} \mathbf{d} \geq 0$  where  $\mathbf{d}$  is a feasible direction. For any  $\mathbf{x} \in \mathcal{D}$ ,  $\mathbf{d} = \mathbf{x} - \mathbf{x}^*$  is a feasible direction. Then we obtain:

$$\nabla f(\mathbf{x}^*)^{\top}(\mathbf{x} - \mathbf{x}^*) \ge 0$$

Thus, this completes the proof in the forward direction.

"⇐"

By definition, we have that:

$$f(\mathbf{x}) \ge f(\mathbf{x}^*) + \nabla f(\mathbf{x}^*)^{\top} (\mathbf{x} - \mathbf{x}^*) \text{ for any } \mathbf{x} \in \mathcal{D}.$$

Thus, if  $\nabla f(\mathbf{x}^*)^{\top}(\mathbf{x} - \mathbf{x}^*) \geq 0$ , then  $f(\mathbf{x}) - f(\mathbf{x}^*) \geq \nabla f(\mathbf{x}^*)^{\top}(\mathbf{x} - \mathbf{x}^*) \geq 0$ , which means  $\mathbf{x}^*$  is a global minimum of f over  $\mathcal{D}$ .

In the following, we will show another way to prove that a function is convex. First of all, let's introduce the restriction of a function to a line.

Let  $f : \mathbb{R}^d \to \mathbb{R}$  be a function. The restriction of f to a line  $\mathbf{x} + t\mathbf{v}$  is defined as  $g : \mathbb{R} \to \mathbb{R} : g(t) = f(\mathbf{x} + t\mathbf{v})$ , where  $\mathbf{dom}(g) = \{t : \mathbf{x} + t\mathbf{v} \in \mathbf{dom}(f)\}$ .

Theorem 3 (Restriction of a convex function to a line)  $f: \mathbb{R}^d \to \mathbb{R}$  is a convex function if and only if the function  $g: \mathbb{R} \to \mathbb{R}: g(t) = f(\mathbf{x} + t\mathbf{v}), \mathbf{dom}(g) = \{t: \mathbf{x} + t\mathbf{v} \in \mathbf{dom}(f)\}$  is convex for any  $\mathbf{x} \in \mathbf{dom}(f), \mathbf{v} \in \mathbb{R}^d$ 

**Proof:** " $\Rightarrow$ ": f is convex  $\rightarrow g$  is convex. For any  $t_1, t_2 \in \mathbf{dom}(g)$  and any  $\alpha \in [0, 1]$ , we have

$$g(\alpha t_1 + (1 - \alpha)t_2) = f(\mathbf{x} + (\alpha t_1 + (1 - \alpha)t_2)\mathbf{v})$$
  
=  $f(\alpha \mathbf{x} + \alpha t_1 \mathbf{v} + (1 - \alpha)\mathbf{x} + (1 - \alpha)t_2\mathbf{v})$   
=  $f(\alpha(\mathbf{x} + t_1\mathbf{v}) + (1 - \alpha)(\mathbf{x} + t_2\mathbf{v}))$ 

Since  $f(\mathbf{x})$  is convex, it then follows that

$$g(\alpha t_1 + (1 - \alpha)t_2) \le \alpha f(\mathbf{x} + t_1 \mathbf{v}) + (1 - \alpha)f(\mathbf{x} + t_2 \mathbf{v})$$
$$= \alpha g(t_1) + (1 - \alpha)g(t_2),$$

where the last equality follows by the definition of g(t). Thus, by definition, g(t) is convex.

" $\Leftarrow$ " g is convex  $\to f$  is convex.

For any  $\mathbf{x}, \mathbf{y} \in \mathbf{dom}(f)$  and any  $\alpha \in [0, 1]$ , we want to show

$$f(\alpha \mathbf{x} + (1 - \alpha)\mathbf{y}) \le \alpha f(\mathbf{x}) + (1 - \alpha)f(\mathbf{y}).$$

Let  $\mathbf{v} = \mathbf{y} - \mathbf{x}$ , and consider  $g(t) = f(\mathbf{x} + t(\mathbf{y} - \mathbf{x}))$ . It is easy to verify that  $g(0) = f(\mathbf{x})$ ,  $g(1) = f(\mathbf{y})$ , and  $g(1 - \alpha) = f(\alpha \mathbf{x} + (1 - \alpha)\mathbf{y})$ . We then have

$$f(\alpha \mathbf{x} + (1 - \alpha)\mathbf{y}) = g(1 - \alpha)$$

$$= g(\alpha 0 + (1 - \alpha) \cdot 1)$$

$$\leq \alpha g(0) + (1 - \alpha)g(1)$$

$$= \alpha f(\mathbf{x}) + (1 - \alpha)f(\mathbf{y}).$$
(6)

Therefore, by definition,  $f(\mathbf{x})$  is a convex function.

Theorem 3 basically suggests that a function is convex if and only if the restriction of this function to any lines is convex. It enables us to check convexity of f by checking convexity of functions of one variable.