
SYS 6003: Optimization Fall 2016

Lecture 8

Instructor: Quanquan Gu Date: Sep 19th

In the following example, we apply the fact that “a function is convex if and only if its
restriction to any line is convex” to prove that log determinant function is a concave function
(i.e., negative log determinant function is convex).

Example 1 (Log Determinant Function) f(X) = log det(X) is concave, where X is a
positive definite matrix.
To see that, first define: g(t) = log det(X + tV), such that X + tV is a positive definite
matrix. Since X is positive definite, there exists X1/2 such that X = X1/2X1/2. We then
have

g(t) = log det(X
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1
2 )
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1
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Recall that det(AB) = det(A) det(B), it then follows that

g(t) = log
(

det(X) det(I + tX−
1
2 VX−

1
2 )
)

= log det(X) + log det(I + tX−
1
2 VX−

1
2 ). (1)

Note that X and X + tV are positive semidefinite, so are X−1/2 and I + tX−1/2VX−1/2.
Assume the eigenvalues of X−1/2VX−1/2 are λ1, λ2, . . . , λd, then

log det(I + tX−
1
2 VX−

1
2 ) = log

d∏
i=1

(1 + tλi) =
d∑
i=1

log(1 + tλi).

Combining this with (1) gives

g(t) = log det(X) +
d∑
i=1

log(1 + tλi).

Notice that the second order derivative of −g(t) is

−g′′(t) =
d∑
i=1

λ2i
(1 + tλi)2

≥ 0.

Thus, −g(t) is convex, so is −f(X). We then know that f(X) is concave.

Remark 1 In the above proof, we do not require V to be positive definite. We only require
X + tV to be positive definite. Therefore, λ1, . . . , λd are not necessarily positive. But 1 +
tλ1, . . . , 1 + tλd are positive.
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Remark 2 The negative log determinant function is often used as a regularization term in
optimization problem, to make X positive semidefinite implicitly.

Definition 1 (Sublevel set)

LC(f) =
{
x : f(x) ≤ C,x ∈ dom(f)

}
,

where C is a constant.

The following theorem states that the sublevel set of a convex function is a convex set.

Theorem 1 If f is convex, then LC(f) is convex.

Proof: For any x1,x2 ∈ LC(f) and any α ∈ [0, 1], we have

f(αx1 + (1− α)x2) ≤ αf(x1) + (1− α)f(x2) ≤ αC + (1− α)C = C,

which implies that αx1 + (1− α)x2 ∈ LC(f). So, LC(f) is a convex set.

Note that Theorem 1 gives a necessary condition for convex functions. In other words,
the converse of Theorem 1 does not necessarily hold. Quasi convex set is an example to show
that why the the converse is not true.

Definition 2 (Quasi-convex) f : Rd → R is a Quasi-convex function if,
(i) its domain domf is a convex set;
(ii) its sublevel set is a convex set for any C ∈ R.

Note that convex function is quasi convex, but the converse is not necessarily true.
An example of quasi-convex function is the linear fractional function.

Example 2 (Linear Fractional Function)

f(x) =
a>x + b

c>x + u

is quasi-convex, where x, a, c ∈ Rd, b, u ∈ R, dom(f) = {x : c>x + u ≥ 0}. Note that
dom(f) is a half space and so is convex. For any real number α, consider the sublevel set:

Lα(f) =

{
x :

a>x + b

c>x + u
≤ α

}
= {x : a>x + b ≤ αc>x + αu}
= {x : (a− αc)>x + b− αu ≤ 0}.

It is clear that Lα(f) is a half space. Hence it is a convex set.

A concept which is very likely to be confused with sublevel set is epigraph.

Definition 3 (Epigraph) Epigraph of function f is epi(f) =
{

(x, t) : f(x) ≤ t
}

.
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The following theorems states that the convexity of a function and its epigraph are
equivalent. They can be derived from one another.

Theorem 2 Function f is convex if and only if its epigraph is a convex set.

Proof: (i) “⇒” : f is convex ⇒ its epigraph is convex.
For any (

x1

t1

)
,

(
x2

t2

)
∈ epi(f),

and any α ∈ [0, 1], we want to show

α

(
x1

t1

)
+ (1− α)

(
x2

t2

)
=

(
αx1 + (1− α)x2

αt1 + (1− α)t2

)
∈ epi(f).

This is easy to prove since we have

f(αx1 + (1− α)x2) ≤ αf(x1) + (1− α)f(x2) ≤ αt1 + (1− α)t2.

(ii) “⇐” The epigraph of f is convex ⇒ f is convex.
We want to show that f(αx1 + (1 − α)x2) ≤ αf(x1) + (1 − α)f(x2). Let us choose t1 =
f(x1), t2 = f(x2), then (x1, t1), (x2, t2) ∈ epi(f). By the convexity of epi(f), we have

α

(
x1

t1

)
+ (1− α)

(
x2

t2

)
∈ epi(f), i.e.,

(
αx1 + (1− α)x2

αt1 + (1− α)t2

)
∈ epi(f),

which implies that f(αx1 + (1− α)x2) ≤ αt1 + (1− α)t2 = αf(x1) + (1− α)f(x2). Due to
the arbitrariness of x1,x2 and α, we know f(x) is indeed convex.

So far, we have learned different proof techniques for convex functions, which are sum-
marized as follows

1) By definition

2) By first-order condition: f(y) ≥ f(x) +∇f(x)>(y − x)

3) By second-order condition: ∇2f(x) � 0

4) By restriction of a function to any line)

5) By epigraphy(Theorem 2)

Before I am going to introduce one more proof technique for convex functions, I first
introduce the extended value extension of a convex function.

Recall the definition of convex function: A function f : Rd → R is convex if domf is
convex, and for any x,y ∈ domf and any α ∈ [0, 1] we have

f(αx + (1− α)y) ≤ αf(x) + (1− α)f(y).

As can be seen, we require domf is a convex set, and the inequality holds for any x,y ∈
domf . In order to simplify the notation, we introduce the extended value extension of
convex functions, which extends the domain of a convex function f : Rd → R from domf
to Rd.
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Definition 4 (Extended Value Extension) Suppose f : Rd → R is convex, the extended
value extension of f , denoted by f̃ is:

f̃(x) =

{
f(x), if x ∈ domf

∞, if x /∈ domf
. (2)

Now if a function f : Rd → R is convex, we have for any x,y ∈ Rd and any α ∈ [0, 1],

f̃(αx + (1− α)y) ≤ αf̃(x) + (1− α)f̃(y).

In addition, extended value extension will simplify the argument in some proofs. We will see
it in some lectures.

Now, I am going to introduce another proof technique for convex functions, which is
based on convexity preserving operation.

Convexity Preserving Operations for Convex Functions

1. Nonnegative Scaling: αf is convex, if f is convex and α ≥ 0.

2. Sum: f1 + f2 is convex in dom f1 ∩ dom f2, if f1 is convex and f2 is convex.

3. Composition with affine function: If f is convex, then f(Ax+b) is convex in {x|Ax+
b ∈ dom f}.

Example 3 f(x) = −
∑m

i=1 log(bi − a>i x), where ai ∈ Rd,x ∈ Rd, and bi ∈ R is
convex.

Example 4 f(x) = ‖Ax + b‖2 is convex.

4. Pointwise Maximum: If f1, f2, ..., fm are convex, then f(x) = max{f1(x), ..., fm(x)} is
convex on dom f = ∩mi=1dom fi
Proof: For any x,y ∈ dom f , and any α ∈ [0, 1], we have

f(αx + (1− α)y) = max{f1(αx + (1− α)y), ..., fm(αx + (1− α)y)}
≤ max{αf1(x) + (1− α)f1(y), ..., αfm(x) + (1− α)fm(y)}
= max

1≤i≤m
[αfi(x) + (1− α)fi(y)].

Note that

max
1≤i≤m

[αfi(x) + (1− α)fi(y)] ≤ α max
1≤i≤m

{fi(x)}+ (1− α) max
1≤i≤m

{fi(y)}

= αf(x) + (1− α)f(y).

Thus, by definition, f(x) is convex.
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