SYS 6003: Optimization	Fall 2016
Lecture 8	
Instructor: Quanquan Gu	Date: Sep 19 th

In the following example, we apply the fact that "a function is convex if and only if its restriction to any line is convex" to prove that log determinant function is a concave function (i.e., negative log determinant function is convex).

Example 1 (Log Determinant Function) $f(\mathbf{X}) = \log \det(\mathbf{X})$ is concave, where \mathbf{X} is a positive definite matrix.

To see that, first define: $g(t) = \log \det(\mathbf{X} + t\mathbf{V})$, such that $\mathbf{X} + t\mathbf{V}$ is a positive definite matrix. Since \mathbf{X} is positive definite, there exists $\mathbf{X}^{1/2}$ such that $\mathbf{X} = \mathbf{X}^{1/2}\mathbf{X}^{1/2}$. We then have

$$g(t) = \log \det(\mathbf{X}^{\frac{1}{2}}\mathbf{X}^{\frac{1}{2}} + t\mathbf{X}^{\frac{1}{2}}\mathbf{X}^{-\frac{1}{2}}\mathbf{V}\mathbf{X}^{-\frac{1}{2}}\mathbf{X}^{\frac{1}{2}})$$
$$= \log \det(\mathbf{X}^{\frac{1}{2}}(\mathbf{I} + t\mathbf{X}^{-\frac{1}{2}}\mathbf{V}\mathbf{X}^{-\frac{1}{2}})\mathbf{X}^{\frac{1}{2}}).$$

Recall that $det(\mathbf{AB}) = det(\mathbf{A}) det(\mathbf{B})$, it then follows that

$$g(t) = \log \left(\det(\mathbf{X}) \det(\mathbf{I} + t\mathbf{X}^{-\frac{1}{2}}\mathbf{V}\mathbf{X}^{-\frac{1}{2}}) \right)$$

= log det(**X**) + log det(**I** + t**X**^{-\frac{1}{2}}\mathbf{V}\mathbf{X}^{-\frac{1}{2}}). (1)

Note that **X** and **X** + t**V** are positive semidefinite, so are $\mathbf{X}^{-1/2}$ and $\mathbf{I} + t\mathbf{X}^{-1/2}\mathbf{V}\mathbf{X}^{-1/2}$. Assume the eigenvalues of $\mathbf{X}^{-1/2}\mathbf{V}\mathbf{X}^{-1/2}$ are $\lambda_1, \lambda_2, \dots, \lambda_d$, then

$$\log \det(\mathbf{I} + t\mathbf{X}^{-\frac{1}{2}}\mathbf{V}\mathbf{X}^{-\frac{1}{2}}) = \log \prod_{i=1}^{d} (1 + t\lambda_i) = \sum_{i=1}^{d} \log(1 + t\lambda_i).$$

Combining this with (1) gives

$$g(t) = \log \det(\mathbf{X}) + \sum_{i=1}^{d} \log(1 + t\lambda_i).$$

Notice that the second order derivative of -g(t) is

$$-g''(t) = \sum_{i=1}^{d} \frac{\lambda_i^2}{(1+t\lambda_i)^2} \ge 0.$$

Thus, -g(t) is convex, so is $-f(\mathbf{X})$. We then know that $f(\mathbf{X})$ is concave.

Remark 1 In the above proof, we do not require V to be positive definite. We only require $\mathbf{X} + t\mathbf{V}$ to be positive definite. Therefore, $\lambda_1, \ldots, \lambda_d$ are not necessarily positive. But $1 + t\lambda_1, \ldots, 1 + t\lambda_d$ are positive.

Remark 2 The negative log determinant function is often used as a regularization term in optimization problem, to make \mathbf{X} positive semidefinite implicitly.

Definition 1 (Sublevel set)

$$L_C(f) = \left\{ \mathbf{x} : f(\mathbf{x}) \le C, \mathbf{x} \in \mathbf{dom}(f) \right\},\$$

where C is a constant.

The following theorem states that the sublevel set of a convex function is a convex set.

Theorem 1 If f is convex, then $L_C(f)$ is convex.

Proof: For any $\mathbf{x}_1, \mathbf{x}_2 \in L_C(f)$ and any $\alpha \in [0, 1]$, we have

$$f(\alpha \mathbf{x}_1 + (1 - \alpha)\mathbf{x}_2) \le \alpha f(\mathbf{x}_1) + (1 - \alpha)f(\mathbf{x}_2) \le \alpha C + (1 - \alpha)C = C,$$

which implies that $\alpha \mathbf{x}_1 + (1 - \alpha) \mathbf{x}_2 \in L_C(f)$. So, $L_C(f)$ is a convex set.

Note that Theorem 1 gives a necessary condition for convex functions. In other words, the converse of Theorem 1 does not necessarily hold. Quasi convex set is an example to show that why the the converse is not true.

Definition 2 (Quasi-convex) $f : \mathbb{R}^d \to \mathbb{R}$ is a Quasi-convex function if, (i) its domain **dom** f is a convex set; (ii) its sublevel set is a convex set for any $C \in \mathbb{R}$.

Note that convex function is quasi convex, but the converse is not necessarily true. An example of quasi-convex function is the linear fractional function.

Example 2 (Linear Fractional Function)

$$f(\mathbf{x}) = \frac{\mathbf{a}^{\top}\mathbf{x} + b}{\mathbf{c}^{\top}\mathbf{x} + u}$$

is quasi-convex, where $\mathbf{x}, \mathbf{a}, \mathbf{c} \in \mathbb{R}^d, b, u \in \mathbb{R}$, $\mathbf{dom}(f) = {\mathbf{x} : \mathbf{c}^\top \mathbf{x} + u \ge 0}$. Note that $\mathbf{dom}(f)$ is a half space and so is convex. For any real number α , consider the sublevel set:

$$L_{\alpha}(f) = \left\{ \mathbf{x} : \frac{\mathbf{a}^{\top} \mathbf{x} + b}{\mathbf{c}^{\top} \mathbf{x} + u} \le \alpha \right\}$$
$$= \left\{ \mathbf{x} : \mathbf{a}^{\top} \mathbf{x} + b \le \alpha \mathbf{c}^{\top} \mathbf{x} + \alpha u \right\}$$
$$= \left\{ \mathbf{x} : \left(\mathbf{a} - \alpha \mathbf{c} \right)^{\top} \mathbf{x} + b - \alpha u \le 0 \right\}$$

It is clear that $L_{\alpha}(f)$ is a half space. Hence it is a convex set.

A concept which is very likely to be confused with sublevel set is epigraph.

Definition 3 (Epigraph) Epigraph of function f is $epi(f) = \{(\mathbf{x}, t) : f(\mathbf{x}) \le t\}$.

The following theorems states that the convexity of a function and its epigraph are equivalent. They can be derived from one another.

Theorem 2 Function f is convex if and only if its epigraph is a convex set.

Proof: (i) " \Rightarrow " : f is convex \Rightarrow its epigraph is convex. For any

$$\begin{pmatrix} \mathbf{x}_1 \\ t_1 \end{pmatrix}, \begin{pmatrix} \mathbf{x}_2 \\ t_2 \end{pmatrix} \in \mathbf{epi}(f),$$

and any $\alpha \in [0, 1]$, we want to show

$$\alpha \begin{pmatrix} \mathbf{x}_1 \\ t_1 \end{pmatrix} + (1-\alpha) \begin{pmatrix} \mathbf{x}_2 \\ t_2 \end{pmatrix} = \begin{pmatrix} \alpha \mathbf{x}_1 + (1-\alpha) \mathbf{x}_2 \\ \alpha t_1 + (1-\alpha) t_2 \end{pmatrix} \in \mathbf{epi}(f).$$

This is easy to prove since we have

$$f(\alpha \mathbf{x}_1 + (1-\alpha)\mathbf{x}_2) \le \alpha f(\mathbf{x}_1) + (1-\alpha)f(\mathbf{x}_2) \le \alpha t_1 + (1-\alpha)t_2$$

(ii) " \Leftarrow " The epigraph of f is convex \Rightarrow f is convex.

We want to show that $f(\alpha \mathbf{x}_1 + (1 - \alpha)\mathbf{x}_2) \leq \alpha f(\mathbf{x}_1) + (1 - \alpha)f(\mathbf{x}_2)$. Let us choose $t_1 = f(\mathbf{x}_1), t_2 = f(\mathbf{x}_2)$, then $(\mathbf{x}_1, t_1), (\mathbf{x}_2, t_2) \in \mathbf{epi}(f)$. By the convexity of $\mathbf{epi}(f)$, we have

$$\alpha \begin{pmatrix} \mathbf{x}_1 \\ t_1 \end{pmatrix} + (1 - \alpha) \begin{pmatrix} \mathbf{x}_2 \\ t_2 \end{pmatrix} \in \mathbf{epi}(f), \quad i.e., \quad \begin{pmatrix} \alpha \mathbf{x}_1 + (1 - \alpha) \mathbf{x}_2 \\ \alpha t_1 + (1 - \alpha) t_2 \end{pmatrix} \in \mathbf{epi}(f),$$

which implies that $f(\alpha \mathbf{x}_1 + (1 - \alpha)\mathbf{x}_2) \leq \alpha t_1 + (1 - \alpha)t_2 = \alpha f(\mathbf{x}_1) + (1 - \alpha)f(\mathbf{x}_2)$. Due to the arbitrariness of $\mathbf{x}_1, \mathbf{x}_2$ and α , we know $f(\mathbf{x})$ is indeed convex.

So far, we have learned different proof techniques for convex functions, which are summarized as follows

- 1) By definition
- 2) By first-order condition: $f(\mathbf{y}) \ge f(\mathbf{x}) + \nabla f(\mathbf{x})^{\top} (\mathbf{y} \mathbf{x})$
- 3) By second-order condition: $\nabla^2 f(\mathbf{x}) \succeq 0$
- 4) By restriction of a function to any line)
- 5) By epigraphy(Theorem 2)

Before I am going to introduce one more proof technique for convex functions, I first introduce the extended value extension of a convex function.

Recall the definition of convex function: A function $f : \mathbb{R}^d \to \mathbb{R}$ is convex if **dom** f is convex, and for any $\mathbf{x}, \mathbf{y} \in \mathbf{dom} f$ and any $\alpha \in [0, 1]$ we have

$$f(\alpha \mathbf{x} + (1 - \alpha)\mathbf{y}) \le \alpha f(\mathbf{x}) + (1 - \alpha)f(\mathbf{y})$$

As can be seen, we require **dom** f is a convex set, and the inequality holds for any $\mathbf{x}, \mathbf{y} \in$ **dom** f. In order to simplify the notation, we introduce the extended value extension of convex functions, which extends the domain of a convex function $f : \mathbb{R}^d \to \mathbb{R}$ from **dom** fto \mathbb{R}^d . **Definition 4 (Extended Value Extension)** Suppose $f : \mathbb{R}^d \to \mathbb{R}$ is convex, the extended value extension of f, denoted by \tilde{f} is:

$$\tilde{f}(\mathbf{x}) = \begin{cases} f(\mathbf{x}), & \text{if } \mathbf{x} \in \mathbf{dom} f\\ \infty, & \text{if } \mathbf{x} \notin \mathbf{dom} f \end{cases}.$$
(2)

Now if a function $f : \mathbb{R}^d \to \mathbb{R}$ is convex, we have for any $\mathbf{x}, \mathbf{y} \in \mathbb{R}^d$ and any $\alpha \in [0, 1]$,

$$\tilde{f}(\alpha \mathbf{x} + (1 - \alpha)\mathbf{y}) \le \alpha \tilde{f}(\mathbf{x}) + (1 - \alpha)\tilde{f}(\mathbf{y}).$$

In addition, extended value extension will simplify the argument in some proofs. We will see it in some lectures.

Now, I am going to introduce another proof technique for convex functions, which is based on convexity preserving operation.

Convexity Preserving Operations for Convex Functions

- 1. Nonnegative Scaling: αf is convex, if f is convex and $\alpha \geq 0$.
- 2. Sum: $f_1 + f_2$ is convex in **dom** $f_1 \cap$ **dom** f_2 , if f_1 is convex and f_2 is convex.
- 3. Composition with affine function: If f is convex, then $f(\mathbf{Ax} + \mathbf{b})$ is convex in $\{\mathbf{x} | \mathbf{Ax} + \mathbf{b} \in \mathbf{dom} f\}$.

Example 3 $f(\mathbf{x}) = -\sum_{i=1}^{m} \log(b_i - \mathbf{a}_i^{\top} \mathbf{x})$, where $\mathbf{a}_i \in \mathbb{R}^d$, $\mathbf{x} \in \mathbb{R}^d$, and $b_i \in \mathbb{R}$ is convex.

Example 4 $f(\mathbf{x}) = \|\mathbf{A}\mathbf{x} + \mathbf{b}\|_2$ is convex.

4. Pointwise Maximum: If $f_1, f_2, ..., f_m$ are convex, then $f(\mathbf{x}) = \max\{f_1(\mathbf{x}), ..., f_m(\mathbf{x})\}$ is convex on **dom** $f = \bigcap_{i=1}^m \mathbf{dom} f_i$ **Proof:** For any $\mathbf{x}, \mathbf{y} \in \mathbf{dom} f$, and any $\alpha \in [0, 1]$, we have

$$f(\alpha \mathbf{x} + (1 - \alpha)\mathbf{y}) = \max\{f_1(\alpha \mathbf{x} + (1 - \alpha)\mathbf{y}), ..., f_m(\alpha \mathbf{x} + (1 - \alpha)\mathbf{y})\}$$

$$\leq \max\{\alpha f_1(\mathbf{x}) + (1 - \alpha)f_1(\mathbf{y}), ..., \alpha f_m(\mathbf{x}) + (1 - \alpha)f_m(\mathbf{y})\}$$

$$= \max_{1 \leq i \leq m} [\alpha f_i(\mathbf{x}) + (1 - \alpha)f_i(\mathbf{y})].$$

Note that

$$\max_{1 \le i \le m} [\alpha f_i(\mathbf{x}) + (1 - \alpha) f_i(\mathbf{y})] \le \alpha \max_{1 \le i \le m} \{f_i(\mathbf{x})\} + (1 - \alpha) \max_{1 \le i \le m} \{f_i(\mathbf{y})\}$$
$$= \alpha f(\mathbf{x}) + (1 - \alpha) f(\mathbf{y}).$$

Thus, by definition, $f(\mathbf{x})$ is convex.