SYS 6003: Optimization

Fall 2016

Lecture 9

Instructor: Quanquan Gu

Date: Sep 21th

We continue to study convexity preserving operations for convex functions.

1. Pointwise Maximum: If $f_1, f_2, ..., f_m$ are convex, then $f(\mathbf{x}) = \max\{f_1(\mathbf{x}), ..., f_m(\mathbf{x})\}$ is convex on **dom** $f = \bigcap_{i=1}^m \mathbf{dom} \ f_i$

Proof: For any $\mathbf{x}, \mathbf{y} \in \mathbf{dom} \ f$, and any $\alpha \in [0, 1]$, we have

$$f(\alpha \mathbf{x} + (1 - \alpha)\mathbf{y}) = \max\{f_1(\alpha \mathbf{x} + (1 - \alpha)\mathbf{y}), ..., f_m(\alpha \mathbf{x} + (1 - \alpha)\mathbf{y})\}$$

$$\leq \max\{\alpha f_1(\mathbf{x}) + (1 - \alpha)f_1(\mathbf{y}), ..., \alpha f_m(\mathbf{x}) + (1 - \alpha)f_m(\mathbf{y})\}$$

$$= \max_{1 \leq i \leq m} [\alpha f_i(\mathbf{x}) + (1 - \alpha)f_i(\mathbf{y})].$$

Note that

$$\max_{1 \le i \le m} [\alpha f_i(\mathbf{x}) + (1 - \alpha) f_i(\mathbf{y})] \le \alpha \max_{1 \le i \le m} \{ f_i(\mathbf{x}) \} + (1 - \alpha) \max_{1 \le i \le m} \{ f_i(\mathbf{y}) \}$$
$$= \alpha f(\mathbf{x}) + (1 - \alpha) f(\mathbf{y}).$$

Thus, by definition, $f(\mathbf{x})$ is convex.

Example 1 (Piecewise affine function)

$$f(\mathbf{x}) = \max_{1 \le i \le m} \mathbf{a}_i^{\mathsf{T}} \mathbf{x} + b_i,$$

where $\mathbf{a}_i, \mathbf{x} \in \mathbb{R}^d$ and $b_i \in \mathbb{R}$ is convex.

Example 2 (Sum of r largest components of $\mathbf{x} \in \mathbb{R}^d$, $1 \le r \le d$) Let $g_{\pi^k}(\mathbf{x}) = \sum_{i=1}^r \mathbf{x}_{\pi^k(i)}$, where π^k is a permutation of $\{1,...,d\}$. Note that there are at most d! permutations. The sum of r largest components of \mathbf{x} :

$$f(\mathbf{x}) = \max_{1 \le k \le d!} g_{\pi^k}(\mathbf{x})$$

is a convex function.

2. Pointwise Supremum: If $f(\mathbf{x}, \mathbf{y})$ is convex in \mathbf{x} for each $\mathbf{y} \in \mathcal{A}$, then

$$g(\mathbf{x}) = \sup_{\mathbf{y} \in \mathcal{A}} f(\mathbf{x}, \mathbf{y})$$

is convex.

Proof: For any $\mathbf{x}_1, \mathbf{x}_2 \in \mathbb{R}^d$, and any $\alpha \in [0, 1]$, we have

$$g(\alpha \mathbf{x}_1 + (1 - \alpha)\mathbf{x}_2) = \sup_{\mathbf{y} \in \mathcal{A}} f(\alpha \mathbf{x}_1 + (1 - \alpha)\mathbf{x}_2, \mathbf{y}).$$

For any given $\epsilon > 0$, there exist a \mathbf{y}_{ϵ} , such that

$$\sup_{\mathbf{v}\in\mathcal{A}} f(\alpha \mathbf{x}_1 + (1-\alpha)\mathbf{x}_2, \mathbf{y}) \le f(\alpha \mathbf{x}_1 + (1-\alpha)\mathbf{x}_2, \mathbf{y}_{\epsilon}) + \epsilon.$$

By convexity of f in \mathbf{x} , we have

$$f(\alpha \mathbf{x}_1 + (1 - \alpha)\mathbf{x}_2, \mathbf{y}_{\epsilon}) + \epsilon \leq \alpha f(\mathbf{x}_1, \mathbf{y}_{\epsilon}) + (1 - \alpha)f(\mathbf{x}_2, \mathbf{y}_{\epsilon}) + \epsilon$$

$$\leq \alpha \sup_{\mathbf{y} \in \mathcal{A}} f(\mathbf{x}_1, \mathbf{y}) + (1 - \alpha) \sup_{\mathbf{y} \in \mathcal{A}} f(\mathbf{x}_2, \mathbf{y}) + \epsilon$$

$$= \alpha g(\mathbf{x}_1) + (1 - \alpha)g(\mathbf{x}_2) + \epsilon.$$

Let $\epsilon \to 0$, then we obtain

$$g(\alpha \mathbf{x}_1 + (1 - \alpha)\mathbf{x}_2) \le \alpha g(\mathbf{x}_1) + (1 - \alpha)g(\mathbf{x}_2).$$

By definition, $g(\mathbf{x})$ is convex.

Example 3 $f(\mathbf{x}) = \sup_{\mathbf{y} \in \mathcal{C}} \|\mathbf{x} - \mathbf{y}\|_2$ is convex. To see that, let

$$g(\mathbf{x}, \mathbf{y}) = \|\mathbf{x} - \mathbf{y}\|_2 \tag{1}$$

$$= \left\| \mathbf{A} \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \end{bmatrix} \right\|_{2}, \tag{2}$$

where A is defined as

$$\mathbf{A} = \begin{bmatrix} \mathbf{I}, -\mathbf{I} \end{bmatrix}. \tag{3}$$

Since $g(\mathbf{x}, \mathbf{y})$ is a composition of ℓ_2 norm with affine function, it is convex in (\mathbf{x}, \mathbf{y}) . Then for each $\mathbf{y} \in \mathcal{C}$, $g(\mathbf{x}, \mathbf{y})$ is convex in \mathbf{x} . Thus, from the property of pointwise supremum,

$$f(\mathbf{x}) = \sup_{\mathbf{y} \in \mathcal{C}} g(\mathbf{x}, \mathbf{y})$$

is convex.

Example 4 (Maximum eigenvalue of a symmetric matrix) For any $\mathbf{A} \in \mathbb{R}^{d \times d}$, its maximum eigenvalue

$$\lambda(\mathbf{A}) = \sup_{\|\mathbf{x}\|_2 = 1, \mathbf{x} \in \mathbb{R}^d} \ \mathbf{x}^{\top} \mathbf{A} \mathbf{x},$$

is convex in **A**.

3. Minimization over Some Variables: If $f(\mathbf{x}, \mathbf{y})$ is convex in (\mathbf{x}, \mathbf{y}) and C is a convex set, then

$$g(\mathbf{x}) = \inf_{\mathbf{y} \in \mathcal{C}} f(\mathbf{x}, \mathbf{y})$$

is convex.

Example 5 The function $\operatorname{dist}(\mathbf{x}, \mathcal{S}) = \inf_{\mathbf{y} \in \mathcal{S}} ||\mathbf{x} - \mathbf{y}||_2$, where \mathcal{S} is a convex set, is convex.

4. Perspective of a function: If $f: \mathbb{R}^d \to \mathbb{R}$ is convex, then its perspective function $g: \mathbb{R}^d \times \mathbb{R} \to \mathbb{R}$ defined by $g(\mathbf{x}, t) = t f(\mathbf{x}/t)$, with domain

$$\mathbf{dom}\ g = \{(\mathbf{x}, t) : t > 0, \ \mathbf{x}/t \in \mathbf{dom}\ f\}$$

is convex.

Proof: Consider the epigraphs of f and g:

$$\begin{split} \mathbf{epi}(f) &= \{ (\mathbf{x}, s) : f(\mathbf{x}) \leq s, \mathbf{x} \in \mathbf{dom} \ f \}, \\ \mathbf{epi}(g) &= \{ (\mathbf{x}, t, s) : f(\mathbf{x}/t) \leq s/t, (\mathbf{x}, t) \in \mathbf{dom} \ g \} \\ &= \{ (\mathbf{x}, t, s) : f(\mathbf{x}/t) \leq s/t, \mathbf{x}/t \in \mathbf{dom} \ f, t > 0 \}. \end{split}$$

Thus, $(\mathbf{x}, t, s) \in \mathbf{epi}(g)$ if and only if $(\mathbf{x}/t, s/t) \in \mathbf{epi}(f)$. Define perspective function:

$$perp((\mathbf{x}, t, s)) = (\mathbf{x}, s)/t.$$

As we can see, $\mathbf{epi}(f) = \mathrm{perp}(\mathbf{epi}(g))$. Since f is convex, its epigraph, $\mathbf{epi}(f)$, is also convex. Thus, $\mathbf{epi}(g)$, which is the inverse image of $\mathbf{epi}(f)$ under the perspective function, is convex. We then know that g is a convex function.