
SYS 6003: Optimization Fall 2016

Lecture 9

Instructor: Quanquan Gu Date: Sep 21th

We continue to study convexity preserving operations for convex functions.

1. Pointwise Maximum: If f1, f2, ..., fm are convex, then f(x) = max{f1(x), ..., fm(x)} is
convex on dom f = ∩mi=1dom fi
Proof: For any x,y ∈ dom f , and any α ∈ [0, 1], we have

f(αx + (1− α)y) = max{f1(αx + (1− α)y), ..., fm(αx + (1− α)y)}
≤ max{αf1(x) + (1− α)f1(y), ..., αfm(x) + (1− α)fm(y)}
= max

1≤i≤m
[αfi(x) + (1− α)fi(y)].

Note that

max
1≤i≤m

[αfi(x) + (1− α)fi(y)] ≤ α max
1≤i≤m

{fi(x)}+ (1− α) max
1≤i≤m

{fi(y)}

= αf(x) + (1− α)f(y).

Thus, by definition, f(x) is convex.

Example 1 (Piecewise affine function)

f(x) = max
1≤i≤m

a>i x + bi,

where ai,x ∈ Rd and bi ∈ R is convex.

Example 2 (Sum of r largest components of x ∈ Rd, 1 ≤ r ≤ d) Let gπk(x) =∑r
i=1 xπk(i), where πk is a permutation of {1, ..., d}. Note that there are at most d!

permutations. The sum of r largest components of x:

f(x) = max
1≤k≤d!

gπk(x)

is a convex function.

2. Pointwise Supremum: If f(x,y) is convex in x for each y ∈ A, then

g(x) = sup
y∈A

f(x,y)

is convex.
Proof: For any x1,x2 ∈ Rd, and any α ∈ [0, 1], we have

g(αx1 + (1− α)x2) = sup
y∈A

f(αx1 + (1− α)x2,y).
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For any given ε > 0, there exist a yε, such that

sup
y∈A

f(αx1 + (1− α)x2,y) ≤ f(αx1 + (1− α)x2,yε) + ε.

By convexity of f in x, we have

f(αx1 + (1− α)x2,yε) + ε ≤ αf(x1,yε) + (1− α)f(x2,yε) + ε

≤ α sup
y∈A

f(x1,y) + (1− α) sup
y∈A

f(x2,y) + ε

= αg(x1) + (1− α)g(x2) + ε.

Let ε→ 0, then we obtain

g(αx1 + (1− α)x2) ≤ αg(x1) + (1− α)g(x2).

By definition, g(x) is convex.

Example 3 f(x) = sup
y∈C
‖x− y‖2 is convex. To see that, let

g(x,y) = ‖x− y‖2 (1)

=

∥∥∥∥A [xy
]∥∥∥∥

2

, (2)

where A is defined as

A =
[
I,−I

]
. (3)

Since g(x,y) is a composition of `2 norm with affine function, it is convex in (x,y).
Then for each y ∈ C, g(x,y) is convex in x. Thus, from the property of pointwise
supremum,

f(x) = sup
y∈C

g(x,y)

is convex.

Example 4 (Maximum eigenvalue of a symmetric matrix) For any A ∈ Rd×d,
its maximum eigenvalue

λ(A) = sup
‖x‖2=1,x∈Rd

x>Ax,

is convex in A.

3. Minimization over Some Variables: If f(x,y) is convex in (x,y) and C is a convex set,
then

g(x) = inf
y∈C

f(x,y)

is convex.

2



Example 5 The function dist(x,S) = infy∈S ||x − y||2, where S is a convex set, is
convex.

4. Perspective of a function: If f : Rd → R is convex, then its perspective function
g : Rd × R→ R defined by g(x, t) = tf(x/t), with domain

dom g = {(x, t) : t > 0, x/t ∈ dom f}

is convex.

Proof: Consider the epigraphs of f and g:

epi(f) = {(x, s) : f(x) ≤ s,x ∈ dom f},
epi(g) = {(x, t, s) : f(x/t) ≤ s/t, (x, t) ∈ dom g}

= {(x, t, s) : f(x/t) ≤ s/t,x/t ∈ dom f, t > 0}.

Thus, (x, t, s) ∈ epi(g) if and only if (x/t, s/t) ∈ epi(f). Define perspective function:

perp((x, t, s)) = (x, s)/t.

As we can see, epi(f) = perp(epi(g)). Since f is convex, its epigraph, epi(f), is
also convex. Thus, epi(g), which is the inverse image of epi(f) under the perspective
function, is convex. We then know that g is a convex function.
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