SYS 6003: Optimization Fall 2016

Instructor: Quanquan Gu Date: Sep 21"

Lecture 9

We continue to study convexity preserving operations for convex functions.

1.

Pointwise Maximum: If fi, fo, ..., fi, are convex, then f(x) = max{fi(x),..., fim(X)} is
convex on dom f =N, dom f;
Proof: For any x,y € dom f, and any « € [0, 1], we have

flax+ (1 —a)y) = max{fi(ax+ (1 — @)y), ..., fm(ax+ (1 — a)y)}
< maX{Oéf1<X) + (1 - Oé)f1<}’), ...,Oéfm(X) + (1 - a)fm(Y)}
= max [afi(x) + (1 — a) fi(y)].

1<i<m
Note that
max |ofi(x) + (1 —a) fi(y)]l < o max {fi(x)} + (1 —a) max {fi(y)}

= af(x) + (1 - a)f(y)

Thus, by definition, f(x) is convex. W

Example 1 (Piecewise affine function)

_ T )
f(x) = max a; x+b;,

where a;,x € R? and b; € R is convex.
Example 2 (Sum of 7 largest components of x € R4 1 <r <d) Let gu(x) =

T Xk, where T is a permutation of {1,...,d}. Note that there are at most d!
=1 (@)
permutations. The sum of r largest components of x:

f(x) = max g.x(x)

1<k<d!

s a convex function.

Pointwise Supremum: If f(x,y) is convex in x for each y € A, then

g(x) =sup f(x,y)
yeA

Is convex.
Proof: For any x;,x; € R? and any « € [0, 1], we have

glax; + (1 —a)xy) = 81613 flax; + (1 — a)x2,y).
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For any given € > 0, there exist a y., such that

sup f(ax; + (1 — a)xa,y) < flaxi + (1 — a)Xa, ye) + €.
yeA

By convexity of f in x, we have

flaxy + (1 —a)xa,y.) + e < af(xi,ye) + (1 —a)f(x2,y) + ¢
<a SUB f(x1,¥) + (1 —a) sup f(x2,y) +e

yeA
= ag(x1) + (1 —a)g(xz) €.
Let € — 0, then we obtain
gloxy + (1 — a)xz) < ag(x1) + (1 — a)g(x2).
By definition, g(x) is convex. B
Example 3 f(x) =sup ||x —y||2 is convex. To see that, let

yeC

9(x,y) = |lx -yl (1)

“IEllL

A=II-1]. (3)

where A is defined as

Since g(x,y) is a composition of {5 norm with affine function, it is convez in (X,y).
Then for each 'y € C, g(x,y) is conver in x. Thus, from the property of pointwise
supremum,

f(x) = Sup 9(x,y)

18 convez.

Example 4 (Maximum eigenvalue of a symmetric matrix) For any A € R¥¢
its maximum eigenvalue

AMA)=  sup x| Ax,

l[x[l2=1,x€R4

18 convez in A.

. Minimization over Some Variables: If f(x,y) is convex in (x,y) and C is a convex set,
then

g9(x) = inf f(x,y)

yeC

1S convex.



Example 5 The function dist(x,S) = infyes [|x — y||2, where S is a convex set, is
convet.

. Perspective of a function: If f : R — R is convex, then its perspective function
g:RYx R — R defined by g(x,t) = tf(x/t), with domain

dom g = {(x,t) : t > 0, x/t € dom f}

1S convex.

Proof: Consider the epigraphs of f and g:

epi(f) ={(x,s) : f(x) < s,x € dom [},
epi(g) = {(x,t,s) : f(x/t) < s/t,(x,t) € dom g}
{(x,t,s): f(x/t) < s/t,x/t €dom f,t>0}.

Thus, (x,t,s) € epi(g) if and only if (x/t,s/t) € epi(f). Define perspective function:

perp((x,t,s)) = (x,s)/t.

As we can see, epi(f) = perp(epi(g)). Since f is convex, its epigraph, epi(f), is
also convex. Thus, epi(g), which is the inverse image of epi(f) under the perspective
function, is convex. We then know that g is a convex function. B



