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In the following, we will introduce another convexity preserving operation: composition
with scalar function.

Theorem 1 Let g : Rd → R and h : R→ R, define f(x) = h(g(x)), where

dom f = {x ∈ dom g | g(x) ∈ dom h}.

we have:

1) f is convex if g is convex, h is convex and h̃ is nondecreasing.

2) f is convex if g is concave, h is convex and h̃ is nonincreasing.

Proof: f is convex if g is convex, h is convex and h̃ is nondecreasing. For any x,y ∈
dom f, α ∈ [0, 1]
Since g is convex and h is nondecreasing,

f(αx + (1− α)y) = h̃(g(αx + (1− α)y))

≤ h̃(αg(x) + (1− α)g(y)).

Since h is convex, h̃ is also convex. We have

h̃(αg(x) + (1− α)g(y)) ≤ αh̃(g(x)) + (1− α)h̃(g(y))

= αf(x) + (1− α)f(y).

Therefore, f(αx + (1 − α)y) ≤ αf(x) + (1 − α)f(y). By the definition of convex function,
we conclude that f is a convex function.

Remark 1 In the above statements, the monotonic conditions on h̃ rather than h are nec-
essary. In the proof of this argument, we cannot write: for any x,y ∈ dom f , and any
α ∈ [0, 1], f(αx + (1 − α)y) = h(g(αx + (1 − α)y)), because this actually may not be true,
since even though g(x) ∈ dom h, g(y) ∈ dom h, we may have g(αx + (1 − α)y) /∈ dom h.
However, g(αx + (1− α)y) must belong to dom h̃. Thus, we can write f(αx + (1− α)y) =
h̃(g(αx + (1− α)y)).

Remark 2 To give a specific example, consider: f(x) = h(g(x)) where g(x) = x2 with

dom g = R and h(x) = x with dom h = [1, 4]. In this example, h̃ is not nondecreasing, so
f(x) is not convex. In fact, we can show that here f(x) = x2 with dom f = [−2,−1]∪ [1, 2].

Now let us see some examples of convex functions, which can be verified by the rule of
composition with scalar function.
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Example 1 f(x) = exp(g(x)) is convex if g : Rd → R is convex.

Example 2 f(x) = 1/g(x) is convex if g : Rd → R is concave and positive. To see that,

notice that h(x) = 1/x is convex where dom h = [0,+∞] and h̃ is nonincreasing.

Next, we generalize the scalar composition to Vector Composition. The proof for
the following theorem is similar to the proof in the scalar composition case and is therefore
omitted.

Theorem 2 Let g : Rd → Rm and h : Rm → R, define

f(x) = h(g(x)) = h(g1(x), g2(x), . . . , gm(x))

we have:

1) f is convex if gi(x) is convex, h is convex and h̃ is nondecreasing in each augment.

2) f is convex if gi(x) is concave, h is convex and h̃ is nonincreasing in each augment.

Example 3 f(x) =
∑m

i=1 log(gi(x)) is concave if gi : Rd → R’s are concave and positive.

Example 4 f(x) = log
∑m

i=1 exp(gi(x)) is convex if gi : Rd → R’s are convex.

So far, we have discussed the following concepts:

1) general form of optimization problem;

2) local and global minimum;

3) convex sets;

4) convex functions.

Staring from here, we will begin to study some important algorithms in convex optimization.
We start with the following general unconstrained convex optimization problem:

min
x∈Rd

f(x),

where f(x) is convex.
The gradient descent algorithm is probably one of the most widely used algorithms for

convex optimization. It is shown in Algorithm 1. In the algorithm, ηt is the step size, which
is indexed by t, and may or may not depend on t. In other words, the step size ηt could be
either fixed or time varying.

The following theorem gives the convergence rate of the gradient descent algorithms for
convex and differential functions with bounded gradient and with fixed step size.

2



Algorithm 1 Gradient Descent
1: Input: ηt, T
2: Initialization: x1

3: for t = 1 to T do
4: xt+1 = xt − ηt∇f(xt)
5: end for
6: Output: xT+1

Theorem 3 If f : Rd → R is convex and differentiable, and f has bounded gradient, i.e.,
‖∇f(x)‖2 ≤ G for all x ∈ Rd and some G > 0. then the gradient descent with ηt = η =
R/(G

√
T ) satisfies

f
( 1

T

∑T
t=1 xt

)
− f(x∗) ≤ RG√

T
,

where x∗ = arg min f(x) is the global minimum point and R = ‖x1 − x∗‖2.

Proof: Since f(x) is convex, by the first order condition, we have

f(xt)− f(x∗) ≤ ∇f(xt)
T (xt − x∗)

=
1

η
(xt − xt+1)

T (xt − x∗)

=
1

2η
(‖xt − xt+1‖22 + ‖xt − x∗‖22 − ‖xt+1 − x∗‖22),

where the first equality follows from the updating rule of the gradient descent algorithm
and the second one is from the identity: 2x>y = ‖x‖22 + ‖y‖22 − ‖x − y‖22. By definition,
xt − xt+1 = −η∇f(xt), it then follows that

f(xt)− f(x∗) ≤ 1

2η
(‖η∇f(xt)‖22 + ‖xt − x∗‖22 − ‖xt+1 − x∗‖22)

=
1

2η
(‖xt − x∗‖22 − ‖xt+1 − x∗‖22) +

η

2
‖∇f(xt)‖22

≤ 1

2η
(‖xt − x∗‖22 − ‖xt+1 − x∗‖22) +

η

2
G2,

where the last inequality follows from the fact that f is G-Lipschitz and Lemma ??.
Note that this inequality holds for any positive integer t. Specifically, we have

f(x1)− f(x∗) ≤ 1

2η
(‖x1 − x∗‖22 − ‖x2 − x∗‖22) +

η

2
G2,

f(x2)− f(x∗) ≤ 1

2η
(‖x2 − x∗‖22 − ‖x3 − x∗‖22) +

η

2
G2,

...

f(xT )− f(x∗) ≤ 1

2η
(‖xT − x∗‖22 − ‖xT+1 − x∗‖22) +

η

2
G2.
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Adding these inequalities gives

T∑
t=1

f(xt)− Tf(x∗) ≤ 1

2η
(‖x1 − x∗‖22 − ‖xT+1 − x∗‖22) +

Tη

2
G2

≤ 1

2η
‖x1 − x∗‖22 +

Tη

2
G2

=
1

2η
R2 +

Tη

2
G2,

which can be rewritten as

1

T

T∑
i=1

f(xt)− f(x∗) ≤ 1

2ηT
R2 +

η

2
G2.

Since f(x) is convex, we have f
(∑T

t=1 xt/T
)
≤
∑T

t=1 f(xt)/T . Then,

f

(
1

T

T∑
t=1

xt

)
− f(x∗) ≤ 1

2ηT
R2 +

η

2
G2.

Since the above inequality holds for any η > 0 and the right-hand side is minimized when
η = R/G

√
T , it follows that

f

(
1

T

T∑
t=1

xt

)
− f(x∗) ≤ RG√

T
.
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