
SYS 6003: Optimization Fall 2016

Lecture 14

Instructor: Quanquan Gu Date: Oct 12th

Last time we introduced a class of functions which has Lipschitz continuous gradient,
and its property.

Lemma 1 Let a function f has L-Lipschitz continuous gradient over domf , then for any
x, y ∈ domf , we have

|f(x)− f(y)−∇f(y)>(x− y)| ≤ L

2
‖x− y‖22.

Proof: Let g(t) ≡ f
(
y + t(x− y)

)
. From calculus (the Fundamental Theorem of Calculus)

we know that ∫ 1

0

g′(t)dt = g(1)− g(0) = f(x)− f(y).

It then follows that

|f(x)− f(y)−∇f(y)>(x− y)|

=
∣∣∣ ∫ 1

0

∇f(y + t(x− y))>(x− y)dt−∇f(y)>(x− y)
∣∣∣

=
∣∣∣ ∫ 1

0

(
∇f(y + t(x− y))−∇f(y)

)>
(x− y) dt

∣∣∣
≤
∣∣∣ ∫ 1

0

∥∥∇f(y + t(x− y))−∇f(y)
∥∥
2
·
∥∥x− y

∥∥
2
dt
∣∣∣,

where the inequality follows from the Cauchy-Schwartz inequality. Since f has L-Lipschitz
continuous gradient, we then have

|f(x)− f(y)−∇f(y)>(x− y)| ≤
∣∣∣L‖x− y‖22

∫ 1

0

tdt
∣∣∣

=
L

2
‖x− y‖22.

Now, we introduce a new class of functions, which is L-smooth. Although L-smooth is
a weaker condition than L-Lipschitz continuous gradient, it can be implied by L-Lipschitz
continuous gradient when a function is convex.

Definition 1 (L-smooth) A function f is L-smooth if for any x, y ∈ domf , it holds that

f(x) ≤ f(y) +∇f(y)>(x− y) +
L

2
‖x− y‖22.
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Remark 1 If f is twice differentiable, then there is an equivalent, and perhaps easier, defi-
nition of smoothness: f is smooth if there exists a constant L > 0 such that ∇2f(x) � LI,
where I is an identity matrix. In other words, the largest eigenvalue of the Hessian of f is
uniformly upper bounded by L everywhere.

Then, we turn to an important property of L-smooth functions.

Lemma 2 If a function f is L-smooth and convex, then for any x,y ∈ domf , we have

f(x) ≥ f(y) +∇f(y)>(x− y) +
1

2L
‖∇f(x)−∇f(y)‖22.

Proof: Define a function gy(x) ≡ f(x) − f(y) − ∇f(y)>(x − y). Since f(x) is convex,
gy(x) ≥ 0. In particular, gy(y) = 0. Thus, we have

gy(y) = min
x
gy(x) and ∇gy(y) = 0.

From the optimality of y, it then follows that

gy(y) ≤ min
η
gy(x− η∇gy(x))

= min
η
f
(
x− η∇gy(x)

)
− f(y)−∇f(y)>

(
x− η∇gy(x)− y

)
. (1)

By definition of L-smooth, we have

f
(
x− η∇gy(x)

)
≤ f(x) +∇f(x)>

(
− η∇gy(x)

)
+
L

2
‖η∇gy(x)‖22.

It then follows from (1) that

gy(y) ≤ min
η
f(x) +∇f(x)>

(
− η∇gy(x)

)
+
L

2
‖η∇gy(x)‖22

− f(y)−∇f(y)>
(
x− y − η∇gy(x)

)
= min

η
gy(x) +

L

2
‖η∇gy(x)‖22 − η∇gy(x)>

(
∇f(x)−∇f(y)

)
= min

η
gy(x) +

L

2
η2‖∇gy(x)‖22 − η‖∇gy(x)‖22.

It is easy to show that the minimum solution η to the above quadratic function minimization
problem is gy(x)−‖∇gy(x)‖22/2L. Thus, from our definition of gy(x), it immediately follows

0 ≤ f(x)− f(y)−∇f(y)>(x− y)− 1

2L
‖∇f(x)−∇f(y)‖22.

Now, let’s go back to the gradient descent algorithm. We will show that if a function
is L-smooth and convex, then we have faster convergence rate when we apply the gradient
descent algorithm to optimize the function.
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Theorem 1 If a function f is L-smooth and convex, then the gradient descent algorithm
with 0 ≤ η ≤ 1/L satisfies

f(xt+1)− f(x∗) ≤ ‖x1 − x∗‖22
2ηt

.

Proof: Let x+ ≡ xt+1 and x ≡ xt. Since f is L-smooth, we have

f(x+) ≤ f(x) +∇f(x)>(x+ − x) +
L

2
‖x+ − x‖22.

Note that x+ = x− η∇f(x), it then follows that

f(x+) ≤ f(x) +∇f(x)>
(
− η∇f(x)

)
+
L

2
‖ − η∇f(x)‖22

= f(x)−
(

1− Lη

2

)
η‖∇f(x)‖22

≤ f(x)− 1

2
η‖∇f(x)‖22, (2)

where the last inequality follows from 0 ≤ η ≤ 1/L. Note that (2) implies that the function
value is monotonically decreasing.

In addition, since f(x) is convex,

f(x∗) ≥ f(x) +∇f(x)>(x∗ − x). (3)

Combining (2) and (3), we get

f(x+) ≤ f(x∗)−∇f(x)>(x∗ − x)− 1

2
η‖∇f(x)‖22.

Substituting ∇f(x) in the above inequality with
1

η
(x− x+), we have

f(x+) ≤ f(x∗)− 1

η
(x− x+)>(x∗ − x)− 1

2
η
∥∥1

η
(x− x+)

∥∥2
2

= f(x∗)− 1

η
(x− x+)>(x∗ − x)− 1

2η

∥∥(x− x+)
∥∥2
2
.

Recall that −2a>b = ‖a‖22 + ‖b‖22−‖a + b‖22. Then, setting a = (x− x+) and b = (x∗− x)
gives

f(x+) ≤ f(x∗) +
1

2η

(
‖x− x+‖22 + ‖x∗ − x‖22 − ‖x+ − x∗‖22

)
− 1

2η

∥∥(x− x+)
∥∥2
2

= f(x∗) +
1

2η

(
‖x− x∗‖22 − ‖x+ − x∗‖22

)
.

Note that this inequality holds for any positive integer t. Specifically, we have

f(xt+1)− f(x∗) ≤ 1

2η

(
‖xt − x∗‖22 − ‖xt+1 − x∗‖22

)
,

...

f(x2)− f(x∗) ≤ 1

2η

(
‖x1 − x∗‖22 − ‖x2 − x∗‖22

)
.
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Adding these inequalities gives

t+1∑
i=2

f(xi)− tf(x∗) ≤ 1

2η

(
‖x1 − x∗‖22 − ‖xt+1 − x∗‖22

)
≤ 1

2η

(
‖x1 − x∗‖22

)
.

Recall from (2) we have proven that the function value is monotonically decreasing, so
tf(xt+1) ≤

∑t+1
i=2 f(xi). Therefore, the inequality above leads to

tf(xt+1)− tf(x∗) ≤ ‖x1 − x∗‖22
2η

Dividing both sides of this inequality by t completes the proof.
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