SYS 6003: Optimization Fall 2016

Lecture 14

Instructor: Quanquan Gu Date: Oct 12t

Last time we introduced a class of functions which has Lipschitz continuous gradient,
and its property.

Lemma 1 Let a function f has L-Lipschitz continuous gradient over domf, then for any
X, y € domf, we have
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Proof: Let g(t) = f(y +t(x —y)). From calculus (the Fundamental Theorem of Calculus)
we know that

It then follows that
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where the inequality follows from the Cauchy-Schwartz inequality. Since f has L-Lipschitz
continuous gradient, we then have
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Now, we introduce a new class of functions, which is L-smooth. Although L-smooth is

a weaker condition than L-Lipschitz continuous gradient, it can be implied by L-Lipschitz
continuous gradient when a function is convex.

Definition 1 (L-smooth) A function f is L-smooth if for any x, y € domf, it holds that
L
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Remark 1 If f is twice differentiable, then there is an equivalent, and perhaps easier, defi-
nition of smoothness: f is smooth if there exists a constant L > 0 such that V2f(z) < LI,
where 1 is an identity matriz. In other words, the largest eigenvalue of the Hessian of f is
uniformly upper bounded by L everywhere.

Then, we turn to an important property of L-smooth functions.

Lemma 2 If a function f is L-smooth and convez, then for any x,y € domf, we have
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Proof: Define a function gy(x) = f(x) — f(y) — Vf(y)'(x —y). Since f(x) is convex,
gy(x) > 0. In particular, gy(y) = 0. Thus, we have

gy(y) = min gy (x) and Vg (y) = 0.
From the optimality of y, it then follows that
gy(y) < min gy (x —nVgy(x))

= min f(x = 1Vgy(x)) = f(y) = V(¥)" (x =nVgy(x) = ¥). (1)
By definition of L-smooth, we have
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It then follows from (1) that
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It is easy to show that the minimum solution 7 to the above quadratic function minimization
problem is gy (x) — || Vgy(x)||3/2L. Thus, from our definition of g, (x), it immediately follows
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Now, let’s go back to the gradient descent algorithm. We will show that if a function
is L-smooth and convex, then we have faster convergence rate when we apply the gradient
descent algorithm to optimize the function.



Theorem 1 If a function f is L-smooth and convex, then the gradient descent algorithm
with 0 < n < 1/L satisfies
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Proof: Let x™ = x;,; and x = x;. Since f is L-smooth, we have
L
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Note that x™ = x — nV f(x), it then follows that
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where the last inequality follows from 0 <7 < 1/L. Note that (2) implies that the function
value is monotonically decreasing.
In addition, since f(x) is convex,

fx) = f(x) + VI(x) (x —x). (3)
Combining (2) and (3), we get
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Substituting V f(x) in the above inequality with —(x —x"), we have
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Recall that —2a"b = ||a||3 + ||b||2 — ||la + b||3. Then, setting a = (x —x") and b = (x* — x)
gives
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Note that this inequality holds for any positive integer t. Specifically, we have
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Adding these inequalities gives
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Recall from (2) we have proven that the function value is monotonically decreasing, so
tf(xe01) < S0 f(x,). Therefore, the inequality above leads to
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Dividing both sides of this inequality by ¢ completes the proof. B



