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In last lecture, we introduced L-smooth functions and proved an important property of those
functions. We summarize and show more properties of L-smooth function as follows.

Lemma 1 (Properties of Smooth Functions) If f is L-smooth, then for any x,y ∈ Rd,
we have

(1) f(x) ≤ f(y) +∇f(y)>(x− y) +
L

2
‖x− y‖22;

(2) (∇f(x)−∇f(y))>(x− y) ≤ L‖x− y‖22.

If f is in addition convex, we have

(3) f(x) ≥ f(y) +∇f(y)>(x− y) +
1

2L
‖∇f(x)−∇f(y)‖22;

(4) (∇f(x)−∇f(y))>(x− y) ≥ 1

L
‖∇f(x)−∇f(y)‖22.

Remark 1 If f is twice differentiable, then there is an equivalent, and perhaps easier, defi-
nition of smoothness: f is smooth if there exists a constant L > 0 such that ∇2f(x) � LI,
where I is an identity matrix. In other words, the largest eigenvalue of the Hessian of f is
uniformly upper bounded by L everywhere.

Now we introduce strongly convex functions, which basically are convex functions that
subtracting a quadratic function from it remains convex.

Definition 1 (Strongly Convex Function) f(x) is µ-strongly convex if f(x)− µ‖x‖22/2
is convex, where µ > 0. The positive constant µ is called the modulus of strong convexity of
f .

Strongly convex functions also have several properties. We summarize them in the fol-
lowing lemma.

Lemma 2 (Properties of Strongly Convex Functions) If f is a µ-strongly convex
function, then for any x,y ∈ dom f , we have

(1) f(αx + (1− α)y) ≤ αf(x) + (1− α)y − µ

2
α(1− α)‖x− y‖22, for any α ∈ [0, 1];

(2) f(x) ≥ f(y) +∇f(y)>(x− y) +
µ

2
‖x− y‖22;

(3) (∇f(x)−∇f(y))>(x− y) ≥ µ‖x− y‖22;

(4) f(x) ≤ f(y) +∇f(y)>(x− y) +
1

2µ
‖∇f(x)−∇f(y)‖22;

(5) (∇f(x)−∇f(y))>(x− y) ≤ 1

µ
‖∇f(x)−∇f(y)‖22.
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As we can see, these properties are analogous to those of smooth functions, hence we
omit the proof here.

Remark 2 If f is twice differentiable, then there is an equivalent, and perhaps easier, def-
inition of strong convexity: f is strongly convex if there exists a constant µ > 0 such that
∇2f(x) � µI, where I is an identity matrix. In other words, the smallest eigenvalue of the
Hessian of f is uniformly lower bounded by µ everywhere.

Remark 3 Recall that if a function is L-smooth, the largest eigenvalue of the Hessian of f
is uniformly upper bounded by L everywhere. Thus, strongly convexity can be deemed as an
analogy to smoothness. By imposing strongly convexity and smoothness together, we basically
require that the smallest eigenvalue of the Hessian of f is bounded away from zero, and the
largest eigenvalue of the Hessian of f is bounded from above, i.e., µI � ∇2f(x) � LI. In
particular, we must have µ ≤ L for the same function f .

Recall that we have proved the following theorem regarding the convergence rate of
gradient descent method for L-smooth functions.

Theorem 1 If f is convex and L-smooth, then the gradient descent with stepsize η = 1/L
satisfies

f(xt+1)− f(x∗) ≤
L‖x1 − x∗‖

2t
.

In the proof of this theorem, we have also showed that the function value is monotonically
decreasing. We summarize it in the following lemma.

Lemma 3 Under the same conditions of Theorem 1, we have

f(xt+1)− f(xt) ≤ −
1

2L
‖∇f(xt)‖22.

In fact, we can show that not only the function value is monotonically decreasing, but
also the estimation error of the iterate is monotonically decreasing.

Lemma 4 Under the same conditions of Theorem 1, we have

‖xt+1 − x∗‖2 ≤ ‖xt − x∗‖2 − 1/L2 · ‖∇f(xt)‖22

We are going to prove it next time.
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