SYS 6003: Optimization Fall 2016

Lecture 15

Instructor: Quanquan Gu Date: October 19", 2016

In last lecture, we introduced L-smooth functions and proved an important property of those
functions. We summarize and show more properties of L-smooth function as follows.

Lemma 1 (Properties of Smooth Functions) If f is L-smooth, then for any x,y € R%,
we have

(1) 60 < F3)+ VI 6= y) + 5 - vl
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If f is in addition convex, we have
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Remark 1 If f is twice differentiable, then there is an equivalent, and perhaps easier, defi-
nition of smoothness: f is smooth if there exists a constant L > 0 such that V2f(z) < LI,
where 1 is an identity matriz. In other words, the largest eigenvalue of the Hessian of f is
uniformly upper bounded by L everywhere.

Now we introduce strongly convex functions, which basically are convex functions that
subtracting a quadratic function from it remains convex.

Definition 1 (Strongly Convex Function) f(x) is pu-strongly convez if f(x) — ul||x||3/2
1s convex, where > 0. The positive constant p is called the modulus of strong convexity of

f.

Strongly convex functions also have several properties. We summarize them in the fol-
lowing lemma.

Lemma 2 (Properties of Strongly Convex Functions) If f is a p-strongly convex
function, then for any x,y € dom f, we have

D) flax+(1-a)y) < af(x)+ (1 - a)y - Sa(l - a)lx - y[3, for any a € [0, 1];
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As we can see, these properties are analogous to those of smooth functions, hence we
omit the proof here.

Remark 2 If f is twice differentiable, then there is an equivalent, and perhaps easier, def-
nition of strong convexity: f is strongly convez if there exists a constant p > 0 such that
V2f(z) = pl, where 1 is an identity matriz. In other words, the smallest eigenvalue of the
Hessian of f is uniformly lower bounded by p everywhere.

Remark 3 Recall that if a function is L-smooth, the largest eigenvalue of the Hessian of f
15 uniformly upper bounded by L everywhere. Thus, strongly convexity can be deemed as an
analogy to smoothness. By imposing strongly convexity and smoothness together, we basically
require that the smallest eigenvalue of the Hessian of f is bounded away from zero, and the
largest eigenvalue of the Hessian of f is bounded from above, i.e., ul < V2f(x) < L1. In
particular, we must have u < L for the same function f.

Recall that we have proved the following theorem regarding the convergence rate of
gradient descent method for L-smooth functions.

Theorem 1 If f is convex and L-smooth, then the gradient descent with stepsize n = 1/L
satisfies

Lijx — x|

Floxen) = fx) < 2

In the proof of this theorem, we have also showed that the function value is monotonically
decreasing. We summarize it in the following lemma.

Lemma 3 Under the same conditions of Theorem 1, we have

1 2
J(Xep1) = f(xe) < —ﬁ”Vf(Xt)Hz-

In fact, we can show that not only the function value is monotonically decreasing, but
also the estimation error of the iterate is monotonically decreasing.

Lemma 4 Under the same conditions of Theorem 1, we have
xes1 = X"z < flxe = %"l = 1/L% - [V f ()12

We are going to prove it next time.



