SYS 6003: Optimization Fall 2016

Lecture 23

Instructor: Quanquan Gu Date: Nov 16"

First we review the convergence rate of proximal gradient descent algorithm for solving:
miny f(x) + h(x).

Table 1: Convergence rate of proximal gradient descent algorithms for different convex func-
tions.

f(x) h(x) Convergence rate
convex and smooth simple convex O(1/7T)

strongly convex and smooth | simple convex | O ((1 — %)T)

Recall that we have introduced the definition of conjugate function:

fy)= sup [x'y—f(x).

xEdom f

Now we introduce an important inequality describing the properties of conjugate function.

Lemma 1 (Fenchel’s Inequality) For any x € dom f,y € dom f* we have

fx) + f(y) = xy.

Proof: By definition,

f(y)= sup x'y— f(x)

xedom f
>x'y — f(x)
Thus
fx) + f(y) > xy.
|

Following is an example of Lemma 1.

Example 1
1

. 1
=Sl £ = 5ly13

f(x)

By Fenchel’s inequality we have
1 1
§||XH§ + 5”)’”3 >x'y
1 2
= Slx-yli>0

1



In the remaining of this lecture, we continue to show the Fenchel conjugate of some
frequently encountered functions.

Example 2 (Indicator Function of Convex Set C)
0 ,ifxed T
oc(x) = , Wy =sup X'y,
c(x) {+OO ifxdC c(y) SUp Xy
where C' is a conver set.

Proof: By definition,
S5(y) = sup X'y —do(x)
xedom ¢

= max { supx'y, supx'y — oo}
xeC x¢C

=sup x'y.
xeC

Before we show another example of calculating the conjugate function, we first introduce
the dual norm.

Definition 1 (Dual norm) The dual norm of norm ||||, denoted by ||||«, is defined as

Iyl = sup x"y.

[[x[[<1
By the definition of dual norm, we can prove that | - ||z is the dual norm of itself.
Proof: Let |- || = || - |l2. Then for any y € R?,

Iylls = sup x'y < sup [x[l2-[lylla < sup [yl = [lyl-.
Ixla<1 Ixl2<1 Ixl<1

where the first inequality follows from Cauchy-Schwartz inequality and the second inequality
follows from the constraint that ||x||; < 1. It remains to show ||y||. > ||y||2. To show this,
we choose x = y/||lyll2- It is easy to show that ||x||2 = 1. Then

T 2
y Iyl

Iyl = sup xTy > xTy = Ly =¥ _ o
e vl = Tyl

Since we have both |ly|l. < |ly|l2 and ||y« > [|y|l2, we must have

1yl = [lyll-

This completes the proof. B



Example 3 (Norm) Let f(x) = ||x||. Then its conjugate function is

(0 i Iyl <t
Fy) {+m,#|mu>1’

where || - ||« is the dual norm of |||,

Remark 1 [t is worth noting that in this example, f*(y) is the indicator function of the
unit norm ball of || - ||, which is defined as {y : ||y|l. < 1}.

Remark 2 If || - || = || - ||2, then || - ||« = || - ||2- Thus

S0 iyl <t
f””—{+m,ﬁ|wﬁ>1

IfFll - =l - ll, then || - |« = || - [|oo- Thus

R () if |yllee <1
‘Hw_{+m»#Hﬂm>1

In general, if |- || = || - ||y, then || - ||« = || - |, where 1/p+1/q = 1. Therefore

o 0 iyl <1
‘”w_{+w,#HWwﬂ

Proof:[Proof of Example 3] By the definition of Fenchel conjugate,

f*(y) = sup x"y — [[x]|. (1)
x€R4
Note that the domain of a norm is the whole space. By Hélder’s inequality, x "y < ||x||- ||y«
Substituting this result to (1) gives rise to

S (y) < sup [Ix| -y [l = [1x[] = [Ix[I([ly[l = 1).
x€R?
Case 1: ||y||« < 1. Immediately we have f*(y) < ||x]|(||y|l« —1) < 0 since ||x|| > 0. Next
we show that this bound is achievable: choosing x = 0, by (1) we have

7(y) = sup Xy = x| = xy — x| =0Ty —0 =0.
x€eR

Hence we have f*(y) = 0 for any |ly|. < 1.

Case 2: |ly|l. > 1. By the definition of dual norm we have [ly|. = supj,<;x'y > 1.
Therefore, there exists an xo such that ||xo]| < 1 and xJy > 1. Hence xJy — [|xo]| is a
number strictly larger than 0.

Let x' = tx¢, where t is a positive number. By the definition of f*(-), for any ¢ > 0,

f'(y) = sup x'y = |x[| > x""y — [|¥]| = txgy — [[txo]
xeR

= t(xyy — [|xol])- (2)



Because x, y — ||xo|| is strictly positive, when ¢ — oo, the right hand side of (2) tends to be
positive infinity. Therefore f*(y) = +oo.
Combining Case 1 and Case 2, we have

oo [0 i yl<1
/ <y>—{ oo, if |lyll. > 1



