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One important property of proximal operator is that: the minimizer of a function is the
fixed point of the proximal operator of this function, and vice versa.

Lemma 1 (Fixed Point) The point x∗ minimizes a convex function f(·) if and only if
x∗ = Proxf (x∗)

Proof: “⇒” direction: If x∗ minimizes f , for any x ∈ domf , we have f(x∗) ≤ f(x).
Furthermore we have

f(x∗) +
1

2
‖x∗ − x∗‖22 ≤ f(x) +

1

2
‖x− x∗‖22. (1)

Recall that

Proxf (x∗) := argminu

1

2
‖u− x∗‖22 + f(u). (2)

By (1) it can be seen that x∗ is the minimizer of the optimization problem (2). Hence we
have x∗ = Proxf (x∗).

“⇐” direction: Recall that Proxf (x) := argminu
1
2
‖u − x‖22 + f(u). Hence we have for

any x ∈ domf , x̃ = Proxf (x) if and only if x− x̃ ∈ ∂f(x̃). Let us choose x = x̃ = x∗. Then
we have 0 ∈ ∂f(x∗), which means that x∗ is a minimizer of f(·).

We are going to introduce Monreau Decomposition. First we lay out the definition of
closed functions.

Definition 1 (Closed Function) A function f(·) is closed if its epigraph {(x, t)|f(x) ≤ t}
is a closed set.

In order to show that a function is closed, we can check whether its epgraph is closed
according to the definition. We can also check whether its all sublevel sets are closed. This
is suggested by the following lemma.

Lemma 2 A function f(·) is closed if and only if all its sublevel sets St(f) = {x ∈
domf |f(x) ≤ t} are closed sets.

Now we introduce the definition of Fenchel conjugate functions. In the rest of this class,
we simply refer to Fenchel conjugate functions as conjugate functions.

Definition 2 (Conjugate Function) The conjugate of a function f : Rd → R is

f ∗(y) := sup
x∈domf

[y>x− f(x)].
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In Definition 2, there is no requirement that f should be convex. In fact, we will show
that the conjugate f ∗ is a convex function no matter whether f is convex.

Lemma 3 For any function f : Rd → R, f ∗(·) is closed and convex.

Proof:[Proof of the convexity of f ∗] Define hx(y) = y>x− f(x). It can be seen that hx(y)
is convex for any x since it is a linear function of y. Recall that, pointwise supremum
is a convexity-preserving operator. Thus, we have supx∈domf hx(y) is convex in y. This
immediately implies that

sup
x∈domf

hx(y) = sup
x∈domf

y>x− f(x) = f ∗(y),

is convex in y.

Following are some examples of conjugate functions.

Example 1 f(x) = ‖x‖22/2. Then

f ∗(y) = sup
x

y>x− 1

2
‖x‖22. (3)

Denote g(x) = y>x − 1
2
‖x‖22 and x∗ = argmaxxg(x). We have ∇g(x∗) = 0. By calculation

we know ∇g(x) = y− x. Hence we have y− x∗ = 0, i.e., x∗ = y. Substituting this into (3)
yields

f ∗(y) = y>y − 1

2
‖y‖22 =

1

2
‖y‖22.

It is worth noting that in this example, f = f ∗.

Example 2 (Quadratic Function) If f(x) = 1
2
x>Ax + b>x + c, where A is positive

definite, then

f ∗(y) =
1

2
(y − b)>A−1(y − b)− c.

Remark 1 When b = 0, c = 0, f(x) = x>Ax/2 = ‖x‖2A/2, where ‖x‖A is the Mahalanobis
distance from x to 0 with matrix A. Then f ∗(y) = y>A−1y/2 = ‖y‖2A−1/2.

Proof: By the definition we have

f ∗(y) = sup
x

[
x>y −

(
1

2
x>Ax + b>x + c

)]
. (4)

Define g(x) := x>y − (1
2
x>Ax + b>x + c) and x∗ := argmaxxg(x). By the first order

optimality condition we have

0 = ∇g(x∗) = y −Ax∗ − b,
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which yields that x∗ = A−1(y − b). Substituting this into (4) gives

f ∗(y) = x∗>y −
(

1

2
x∗>Ax∗ + b>x∗ + c

)
= (y − b)>A−1y −

(
1

2
(y − b)>A−1AA−1(y − b) + b>A−1(y − b) + c

)
=

1

2
(y − b)>A−1(y − b)− c.

This completes the proof.

Example 3 (Negative Entropy) If f : Rd → R is defined as

f(x) =
d∑

i=1

xi log xi, domf = {x|xi > 0, i = 1, 2, . . . , d},

then f ∗(y) =
∑d

i=1 e
yi−1.

Proof: By definition we have

f ∗(y) = sup
x

(
x>y −

d∑
i=1

xi log xi

)

= sup
x

( d∑
i=1

xiyi −
d∑

i=1

xi log xi

)

=
d∑

i=1

sup
xi

[xiyi − xi log xi]. (5)

Define g(xi) = xiyi−xi log xi and x∗i = argmaxxi
g(xi). By the first order optimality condition

we have

0 = g′(x∗i ) = yi − log x∗i − x∗i
1

x∗i
= yi − log x∗i − 1.

Hence we have x∗i = eyi−1. Substituting this into (5) gives rise to

f ∗(y) =
d∑

i=1

yie
yi−1 − eyi−1 log eyi−1

=
d∑

i=1

eyi−1(yi − yi + 1) =
d∑

i=1

eyi−1.
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Example 4 (Negative Logarithm) Let f(x) = −
∑d

i=1 log xi. Then

f ∗(y) = −
d∑

i=1

log(−yi)− d.

Proof: By definition of f ∗(y) we have

f ∗(y) = sup
x

x>y +
d∑

i=1

log xi

=
d∑

i=1

sup
xi

xiyi + log xi. (6)

Define g(xi) := xiyi +log xi and x∗i := argmaxxi
g(xi). By the first order optimality condition

we have

0 = ∇g(x∗i ) = yi +
1

x∗i
,

which yields that x∗i = −1/yi. Substituting this into (6) gives

f ∗(y) =
d∑

i=1

sup
xi

xiyi + log xi

=
d∑

i=1

(
− 1 + log

(
− 1

yi

))

=
d∑

i=1

(
− 1− log(−yi)

)
= −

d∑
i=1

log(−yi)− d.

This completes the proof.

Example 5 (Matrix Logarithm) Let f(X) = − log det(X). Then

f ∗(Y) = − log det(−Y)− d.

Proof: By definition of f ∗(Y) we have

f ∗(Y) = sup
X

[
〈X,Y〉+ log det(X)

]
(7)

Define g(X) := 〈X,Y〉+ log det(X) and X∗ := argmaxXg(X). By the first order optimality
condition we have

0 = ∇g(X∗) = Y + X∗−1,
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which yields that X∗ = −Y−1. Substituting this into (7) gives

f ∗(Y) = 〈X∗,Y〉+ log det(X∗)

= 〈−Y−1,Y〉+ log det(−Y−1)

= −tr(Id×d) + log[det(−Y)]−1

= − log det(−Y)− d.

This completes the proof.

Based on the definitions and lemmas mentioned above, we are now ready to introduce
the definition of Moreau Decomposition.

Theorem 1 (Moreau Decomposition) If f is a convex function, then for any x ∈ domf

Proxf (x) + Proxf∗(x) = x,

where Proxf∗(x) is the proximal operator of the conjugate function of f , i.e., f ∗.

Theorem 1 reveals that Proxf and Proxf∗ are analogous to the orthogonal projection of a
point x on to a linear subspace S and its orthogonal complement S⊥.
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