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Now we introduce the calculation rules for conjugate functions.

1. Separable sum

f( [zj ) = g(x1) + h(x2),

we have

f*( H ) — g (y2) +6°(72)

Y2

Remark 1 f(x) = g(x) + h(x) does not imply f*(y) = ¢*(y) + h*(y).

2. Scaling Multiplication
For any o > 0, f(x) = ag(x), we have

!
“Right” Scalar Multiplication
For any o > 0,
X
o) = (%),

we have

3. Addition to Affine Function

f(x)=g(x)+a'x+b,

we have

4. Translation of Argument

we have




5. Composition with Invertible Linear Mapping
A is an invertible matrix,

f(x) = g(Ax),

we have
fy)=9 ([A‘l]Ty>-

6. Infimal Convolution

we have
) =9 +r(y)

Next we introduce the second conjugate functions (i.e., the conjugate of conjugate func-
tion).

Definition 1 (The Second Conjugate)

fx)= sup x'y— f*(y)
yedomf*

is called the second conjugate function of f.

Example 1

1
2

1

1
Fo) =Sl 1) = llyllz, ) = Sl

Theorem 1 We have
1. f** 1s closed and conver,
2. f*(x) < f(x) for all x,
3. If f is closed and convex, then

7 (x) = f(x) for all x.

Proof:

1. Due to the property of conjugate function when considering f*.



2. By Fenchel’s inequality, for all x,y we have

fx)+ f(y) = xy.

=x'y — f(y) < f(x). (1)

Be definition,

[H(x)= sup x'y— f(y)
yedomf*

_ Te _ f*
= Juax x'y—f (¥)

=x'y" = f*(y")

By (1) we have
x'y* = f1(y") < f(x). (2)
Thus we have

f*(x) < f*(x), for all x.

3. By Separating Hyperplane Theorem. We omit its proof here.

Next we present a theorem regarding the connection between conjugate function and
subdifferential.

Theorem 2 If f is closed and convex, then
y€9f(x) = x€0f(y) &= x'y=f(x)+f(y)
Proof: If y € 0f(x), we have

fy)= sup y'u—f(u)= max y'u-— f(u),

ucdomf ucdomf

where the second equality is due to the closeness and convexity of f. By the optimality
condition of the above optimization problem, u* = x is the global minimizer if and only if

0y x— f(x)]=y—0f(x) < y€df(x)

Therefore, f*(y) =y x — f(x).
For any v, we have

Fv) = supvTu— f(u) > vTx— f(x) = vIx — y x4y x — f(x)

=y +v-y)'x



In other words, for any v, we have

V)= ffy)+(v—y)'x (3)

By the definition of subgradient, we have x € df*(y).

Now we have shown that y € 0f(x) = f(x)+ f*(y) = x'y = x € 0f*(y). It remains
to show x € 0f*(y) = y € df(x). To show this, by second conjugate function and its
property, f**(x) = f(x). By repeating the above argument, we have

x €0f (y) =y €0f"(x) =0f(x).
This completes the proof. B

The conjugate function of a strongly convex function is a smooth function (i.e., has
Lipschitz continuous gradient). The following theorem shows this point.

Theorem 3 If f is closed and p-strongly convex, then
(1) f* is defined for all y, i.e., domf* = R

(2) [* is differentiable everywhere, and

Vf*(y) = argmax(y'x — f(x)).
(3) V f* is Lipschitz continuous with parameter 1/u, i.e.,

/ 1 /
IV (y) = V() < ;Hy —¥'la Vy.y.

Proof: (1) By the definition of conjugate function,

ffy)= suwp y'x—f(x)= max y'x— f(x).

xedomf xedom f

For any y, the above maximization has a unique maximizer, since f is strongly convex.
Therefore, f* exists for every y.

(2) By Theorem 2, x maximizes y' x — f(x) if and only if y € df(x), which is equivalent
to x € Of*(y). Since x is a unique maximizer, df*(y) contains only one element, which

of*(y) ={Vf(y)} = {x}.

This implies that f* is a differentiable function, and

Vf*(y)=x=arg max y u— f(u).

uedom f

(3) Since f(x) is p-strongly convex, we have

y =¥ x=x) > pllx =%, Vxxy€df(x)y €df(x). (4)



By Theorem 2 we have x € df*(y),x’ € f*(y’'). In addition, by (2), we must have x =
Vf*(y) and x' = Vf*(y’). Submitting this into (4) gives

(y =y) (V) = V) 2wV (y) = VEE)IE
By Cauchy-Schwartz inequality, we have

IV ) =V ly =¥l = (y=y) (Vf(y) = V) 2wl V) = Vs

which immediately yields

IVF*(y) = V(52 < %ny —

This completes the proof. B



