
SYS 6003: Optimization Fall 2016

Lecture 24

Instructor: Quanquan Gu Date: Nov 21st

Now we introduce the calculation rules for conjugate functions.

1. Separable sum

f

([
x1

x2

])
= g(x1) + h(x2),

we have

f ∗
([

y1

y2

])
= g∗(y1) + g∗(y2).

Remark 1 f(x) = g(x) + h(x) does not imply f ∗(y) = g∗(y) + h∗(y).

2. Scaling Multiplication
For any α > 0, f(x) = αg(x), we have

f ∗(y) = αg∗
(y

α

)
.

“Right” Scalar Multiplication
For any α > 0,

f(x) = αg
(x

α

)
,

we have

f ∗(y) = αg∗(y).

3. Addition to Affine Function

f(x) = g(x) + a>x + b,

we have

f ∗(y) = g∗(y − a)− b.

4. Translation of Argument

f(x) = g(x− b),

we have

f ∗(y) = g∗(y)− b>y.
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5. Composition with Invertible Linear Mapping
A is an invertible matrix,

f(x) = g(Ax),

we have

f ∗(y) = g∗
(

[A−1]>y
)
.

6. Infimal Convolution

f(x) = inf
x=u+v

(
g(u) + h(v)

)
,

we have

f ∗(y) = g∗(y) + h∗(y).

Next we introduce the second conjugate functions (i.e., the conjugate of conjugate func-
tion).

Definition 1 (The Second Conjugate)

f ∗∗(x) = sup
y∈domf∗

x>y − f ∗(y)

is called the second conjugate function of f .

Example 1

f(x) =
1

2
‖x‖22, f ∗(y) =

1

2
‖y‖22, f ∗∗(x) =

1

2
‖x‖22.

Theorem 1 We have

1. f ∗∗ is closed and convex,

2. f ∗∗(x) ≤ f(x) for all x,

3. If f is closed and convex, then

f ∗∗(x) = f(x) for all x.

Proof:

1. Due to the property of conjugate function when considering f ∗.
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2. By Fenchel’s inequality, for all x,y we have

f(x) + f ∗(y) ≥ x>y.

⇒ x>y − f ∗(y) ≤ f(x). (1)

Be definition,

f ∗∗(x) = sup
y∈domf∗

x>y − f ∗(y)

= max
y∈domf∗

x>y − f ∗(y)

= x>y∗ − f ∗(y∗)

By (1) we have

x>y∗ − f ∗(y∗) ≤ f(x). (2)

Thus we have

f ∗∗(x) ≤ f ∗(x), for all x.

3. By Separating Hyperplane Theorem. We omit its proof here.

Next we present a theorem regarding the connection between conjugate function and
subdifferential.

Theorem 2 If f is closed and convex, then

y ∈ ∂f(x) ⇐⇒ x ∈ ∂f ∗(y) ⇐⇒ x>y = f(x) + f ∗(y).

Proof: If y ∈ ∂f(x), we have

f ∗(y) = sup
u∈domf

y>u− f(u) = max
u∈domf

y>u− f(u),

where the second equality is due to the closeness and convexity of f . By the optimality
condition of the above optimization problem, u∗ = x is the global minimizer if and only if

0 ∈ ∂[y>x− f(x)] = y − ∂f(x) ⇐⇒ y ∈ ∂f(x).

Therefore, f ∗(y) = y>x− f(x).
For any v, we have

f ∗(v) = sup
u

v>u− f(u) ≥ v>x− f(x) = v>x− y>x + y>x− f(x)

= f ∗(y) + (v − y)>x.
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In other words, for any v, we have

f ∗(v) ≥ f ∗(y) + (v − y)>x. (3)

By the definition of subgradient, we have x ∈ ∂f ∗(y).
Now we have shown that y ∈ ∂f(x) =⇒ f(x)+f ∗(y) = x>y =⇒ x ∈ ∂f ∗(y). It remains

to show x ∈ ∂f ∗(y) =⇒ y ∈ ∂f(x). To show this, by second conjugate function and its
property, f ∗∗(x) = f(x). By repeating the above argument, we have

x ∈ ∂f ∗(y) =⇒ y ∈ ∂f ∗∗(x) = ∂f(x).

This completes the proof.

The conjugate function of a strongly convex function is a smooth function (i.e., has
Lipschitz continuous gradient). The following theorem shows this point.

Theorem 3 If f is closed and µ-strongly convex, then

(1) f ∗ is defined for all y, i.e., domf ∗ = Rd.

(2) f ∗ is differentiable everywhere, and

∇f ∗(y) = arg max
x

(y>x− f(x)).

(3) ∇f ∗ is Lipschitz continuous with parameter 1/µ, i.e.,

‖∇f ∗(y)−∇f ∗(y′)‖2 ≤
1

µ
‖y − y′‖2, ∀ y,y′.

Proof: (1) By the definition of conjugate function,

f ∗(y) = sup
x∈domf

y>x− f(x) = max
x∈domf

y>x− f(x).

For any y, the above maximization has a unique maximizer, since f is strongly convex.
Therefore, f ∗ exists for every y.

(2) By Theorem 2, x maximizes y>x− f(x) if and only if y ∈ ∂f(x), which is equivalent
to x ∈ ∂f ∗(y). Since x is a unique maximizer, ∂f ∗(y) contains only one element, which

∂f ∗(y) = {∇f ∗(y)} = {x}.

This implies that f ∗ is a differentiable function, and

∇f ∗(y) = x = arg max
u∈domf

y>u− f(u).

(3) Since f(x) is µ-strongly convex, we have

[y − y′]>(x− x′) ≥ µ‖x− x′‖22, ∀ x,x′,y ∈ ∂f(x),y′ ∈ ∂f(x′). (4)
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By Theorem 2 we have x ∈ ∂f ∗(y),x′ ∈ ∂f ∗(y′). In addition, by (2), we must have x =
∇f ∗(y) and x′ = ∇f ∗(y′). Submitting this into (4) gives

(y − y′)>(∇f ∗(y)−∇f ∗(y′)) ≥ µ‖∇f ∗(y)−∇f ∗(y′)‖22.

By Cauchy-Schwartz inequality, we have

‖∇f ∗(y)−∇f ∗(y′)‖2 · ‖y − y′‖2 ≥ (y − y′)>(∇f ∗(y)−∇f ∗(y′)) ≥ µ‖∇f ∗(y)−∇f ∗(y′)‖22.

which immediately yields

‖∇f ∗(y)−∇f ∗(y′)‖2 ≤
1

µ
‖y − y′‖2.

This completes the proof.
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