Lecture 25
Instructor: Quanquan Gu
Now we review the Moreau Decomposition and prove it.
Theorem 1 (Moreau Decomposition)

$$
\mathbf{x}=\operatorname{Prox}_{f}(\mathbf{x})+\operatorname{Prox}_{f^{*}}(\mathbf{x}) \text { for all } \mathbf{x}
$$

Proof: Let $\mathbf{u}=\operatorname{Prox}_{f}(\mathbf{x})$

$$
\begin{aligned}
& \Longleftrightarrow \mathbf{x}-\mathbf{u} \in \partial f(\mathbf{u}) \\
& \Longleftrightarrow \mathbf{u} \in \partial f^{*}(\mathbf{x}-\mathbf{u}) \\
& \Longleftrightarrow \mathbf{x}-(\mathbf{x}-\mathbf{u}) \in \partial f^{*}(\mathbf{x}-\mathbf{u}) \\
& \Longleftrightarrow \mathbf{x}-\mathbf{u}=\operatorname{Prox}_{f^{*}}(\mathbf{x}) \\
& \Longleftrightarrow \mathbf{x}=\mathbf{u}+\operatorname{Prox}_{f^{*}}(\mathbf{x})=\operatorname{Prox}_{f}(\mathbf{x})+\operatorname{Prox}_{f^{*}}(\mathbf{x})
\end{aligned}
$$

Theorem 2 (Extended Moreau Decomposition) For any $\lambda>0$,

$$
\mathbf{x}=\operatorname{Prox}_{\lambda f}(\mathbf{x})+\lambda \operatorname{Prox}_{\lambda^{-1}} f^{*}(\mathbf{x} / \lambda) \text { for all } \mathbf{x} .
$$

Proof:

$$
\begin{aligned}
\mathbf{x} & =\operatorname{Prox}_{\lambda f}(\mathbf{x})+\operatorname{Prox}_{(\lambda f)^{*}}(\mathbf{x}) \\
& =\operatorname{Prox}_{\lambda f}(\mathbf{x})+\lambda \operatorname{Prox}_{\lambda^{-1} f^{*}}(\mathbf{x} / \lambda)
\end{aligned}
$$

where the last equality follows from "Right" Scalar Multiplication rule.

Example 1

$$
\begin{gathered}
f(\mathbf{x})=\|\mathbf{x}\|_{2} \\
\operatorname{Prox}_{t f}(\mathbf{x})= \begin{cases}\left(1-t /\|\mathbf{x}\|_{2}\right) \mathbf{x}, & \text { if }\|\mathbf{x}\|_{2}>t \\
0, & \text { otherwise }\end{cases}
\end{gathered}
$$

Proof:

$$
\begin{aligned}
\mathbf{x} & =\operatorname{Prox}_{t f}(\mathbf{x})+\operatorname{Prox}_{(t f)^{*}}(\mathbf{x}) \\
& =\operatorname{Prox}_{t f}(\mathbf{x})+t \cdot \operatorname{Prox}_{(1 / t) f^{*}}(\mathbf{x} / t) .
\end{aligned}
$$

$$
\Rightarrow \operatorname{Prox}_{t f}(\mathbf{x})=\mathbf{x}-t \cdot \operatorname{Prox}_{(1 / t) f^{*}}(\mathbf{x} / t)
$$

Since we know

$$
f^{*}(\mathbf{y})=\delta_{C}(\mathbf{y})= \begin{cases}0, & \text { if }\|\mathbf{y}\|_{2} \leq 1 \\ +\infty, & \text { otherwise }\end{cases}
$$

where $C=\left\{\mathbf{y}:\|\mathbf{y}\|_{2} \leq 1\right\}$. Note that for $t>0,(1 / t) f^{*}(\mathbf{y})=(1 / t) \delta_{C}(\mathbf{y})=\delta_{C}(\mathbf{y})$, we have

$$
\operatorname{Prox}_{(1 / t) f^{*}}(\mathbf{x} / t)=\operatorname{Prox}_{\delta_{C}}(\mathbf{x} / t)=\Pi_{C}(\mathbf{x} / t)= \begin{cases}\mathbf{x} /\|\mathbf{x}\|_{2} & , \text { if }\|\mathbf{x}\|_{2} \geq t \\ \mathbf{x} / t & \text {, otherwise }\end{cases}
$$

Thus we have

$$
\begin{aligned}
\operatorname{Prox}_{t f}(\mathbf{x}) & =\mathbf{x}-t \cdot \operatorname{Prox}_{(1 / t) f^{*}}(\mathbf{x} / t) \\
& = \begin{cases}\mathbf{x}-t \cdot \mathbf{x} /\|\mathbf{x}\|_{2}, & \text { if }\|\mathbf{x}\|_{2} \geq t \\
\mathbf{x}-t \cdot \mathbf{x} / t, & \text { otherwise }\end{cases} \\
& = \begin{cases}\mathbf{x}\left(1-t /\|\mathbf{x}\|_{2}\right), & \text { if }\|\mathbf{x}\|_{2} \geq t \\
0, & \text { otherwise }\end{cases}
\end{aligned}
$$

Next we introduce the duality theory.
The standard form of constraint optimization problem:

$$
\begin{gather*}
p^{*}=\min _{\mathbf{x}} f(\mathbf{x}) \\
\text { subject to } g_{i}(\mathbf{x}) \leq 0, i=1,2, \ldots, m \\
h_{i}(\mathbf{x})=0, i=1,2, \ldots, n \tag{1}
\end{gather*}
$$

where

$$
\begin{aligned}
& g_{i}(\mathbf{x}): \text { inequality constraint } \\
& h_{i}(\mathbf{x}): \text { equality constraint }
\end{aligned}
$$

Remark $1 f, g_{i}, h_{i}$ do not need to be convex.
Definition 1 (Lagrangian Function) The Lagrangian function is defined as

$$
L(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\nu})=f(\mathbf{x})+\sum_{i=1}^{m} \lambda_{i} g_{i}(\mathbf{x})+\sum_{i=1}^{n} \nu_{i} h_{i}(\mathbf{x})
$$

where $\boldsymbol{\lambda}=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right)^{\top}, \boldsymbol{\mu}=\left(\mu_{1}, \mu_{2}, \ldots, \mu_{n}\right)^{\top}$ with
$\lambda_{i}:$ Lagrangian multiplier associated with $g_{i}(\mathbf{x}) \leq 0$
$\nu_{i}:$ Lagrangian multiplier associated with $h_{i}(\mathbf{x})=0$

Definition 2 (Lagrangian Dual Function) The Lagrangian dual function is defined as

$$
\begin{equation*}
d(\boldsymbol{\lambda}, \boldsymbol{\nu})=\inf _{\mathbf{x} \in \mathcal{D}} L(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\nu}), \tag{2}
\end{equation*}
$$

where $\mathcal{D}=\operatorname{dom} f \cap_{i=1}^{m} \operatorname{dom} g_{i} \cap_{j=1}^{n} \mathbf{h}_{j}$ is the intersection of the domains of f, g_{i} 's and h_{j} 's.
Remark 2 The Lagrangian dual function $d(\boldsymbol{\lambda}, \boldsymbol{\nu})$ is concave in $(\boldsymbol{\lambda}, \boldsymbol{\nu})$. It can be proved by using the fact that pointwise infimum preserves concavity.

Theorem 3 (Lower Bound Property) If $\boldsymbol{\lambda} \geq 0$, then $d(\boldsymbol{\lambda}, \boldsymbol{\nu}) \leq p^{*}$. Here $\boldsymbol{\lambda} \geq 0$ means $\lambda_{i} \geq 0$ for any $1 \leq i \leq m . p^{*}$ is the minimum value of the constrained minimization problem.

Proof: For all feasible solution \mathbf{x}, for any $\boldsymbol{\lambda} \geq 0$, we have

$$
f(\mathbf{x}) \geq L(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\nu}) \geq \inf _{\mathbf{x} \in \mathcal{D}} L(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\nu})=d(\lambda, \nu)
$$

where the first inequality follows from the fact that $g_{i}(\mathbf{x}) \leq 0, \lambda_{i} \geq 0$ and $h_{i}(\mathbf{x})=0$. Taking minimization over all feasible \mathbf{x} of $f(\mathbf{x})$, we get

$$
p^{*} \geq d(\boldsymbol{\lambda}, \boldsymbol{\nu})
$$

Next we introduce the Lagrangian dual problem (or dual problem for short), which is based on Lagrangian dual function.

Definition 3 (Lagrangian dual problem) For a constrained minimization problem as in (1) and the corresponding dual function as in (2), the dual problem is

$$
\begin{equation*}
d^{*}=\max _{\boldsymbol{\lambda}, \boldsymbol{\nu}} \quad d(\boldsymbol{\lambda}, \boldsymbol{\nu}), \quad \text { subject to } \quad \boldsymbol{\lambda} \geq 0 \tag{3}
\end{equation*}
$$

Remark 3 1. By lower bound property of $d(\boldsymbol{\lambda}, \boldsymbol{\nu})$, the dual problem finds the best/tightest lower bound for p^{*}.
2. The dual optimal value d^{*} exists.
3. We say $(\boldsymbol{\lambda}, \boldsymbol{\nu})$ are feasible dual variables if $\boldsymbol{\lambda} \geq 0$ and $(\boldsymbol{\lambda}, \boldsymbol{\nu}) \in \operatorname{dom} d$.

Theorem 4 (Weak Duality) The optimal value of the dual problem in (3) is always less than or equal to the optimal value of the primal problem (1). In other wrods, $d^{*} \leq p^{*}$.

Proof: By Theorem 3, we have $d(\boldsymbol{\lambda}, \boldsymbol{\nu}) \leq p^{*}$. Taking maximization over all feasible $(\boldsymbol{\lambda}, \boldsymbol{\nu})$ on the left hand side of the inequality yields that $d^{*} \leq p^{*}$.

Note that weak duality holds in general.
Definition 4 (Strong Duality) We say the strong duality holds if $d^{*}=p^{*}$ holds, w

A natural question is when the strong duality holds. We will come back to this topic later.

Example 2 (Least Norm Solution) Consider the constrained minimization problem

$$
\min _{\mathbf{x}} \quad\|\mathbf{x}\|_{2}^{2} \quad \text { subjectto } \quad \mathbf{A x}=\mathbf{b} .
$$

The Lagrangian function is

$$
L(\mathbf{x}, \boldsymbol{\nu})=\|\mathbf{x}\|_{2}^{2}+\boldsymbol{\nu}^{\top}(\mathbf{A} \mathbf{x}-\mathbf{b})
$$

Taking minimization over \mathbf{x}, we get the Lagrangian dual function

$$
\begin{equation*}
d(\boldsymbol{\nu})=\inf _{\mathbf{x}} L(\mathbf{x}, \boldsymbol{\nu})=\min _{\mathbf{x}}\|\mathbf{x}\|_{2}^{2}+\boldsymbol{\nu}^{\top}(\mathbf{A} \mathbf{x}-\mathbf{b}) . \tag{4}
\end{equation*}
$$

By the first order condition, the minimizer \mathbf{x}^{*} satisfies $2 \mathbf{x}^{*}+\mathbf{A}^{\top} \boldsymbol{\nu}=0$, which yields that $\mathbf{x}^{*}=-\mathbf{A}^{\top} \boldsymbol{\nu} / 2$. Substituting this solution to the optimization problem in (4), we get

$$
d(\nu)=\frac{1}{4} \boldsymbol{\nu}^{\top} \mathbf{A} \mathbf{A}^{\top} \boldsymbol{\nu}+\boldsymbol{\nu}^{\top}\left(-\mathbf{A} \mathbf{A}^{\top} \boldsymbol{\nu} / 2-\mathbf{b}\right)=-\frac{1}{4} \boldsymbol{\nu}^{\top} \mathbf{A} \mathbf{A}^{\top} \boldsymbol{\nu}-\mathbf{b}^{\top} \boldsymbol{\nu} .
$$

