
SYS 6003: Optimization Fall 2016

Lecture 25

Instructor: Quanquan Gu Date: Nov 28th

Now we review the Moreau Decomposition and prove it.

Theorem 1 (Moreau Decomposition)

x = Proxf (x) + Proxf∗(x) for all x.

Proof: Let u = Proxf (x)

⇐⇒ x− u ∈ ∂f(u)

⇐⇒ u ∈ ∂f ∗(x− u)

⇐⇒ x− (x− u) ∈ ∂f ∗(x− u)

⇐⇒ x− u = Proxf∗(x)

⇐⇒ x = u + Proxf∗(x) = Proxf (x) + Proxf∗(x).

Theorem 2 (Extended Moreau Decomposition) For any λ > 0,

x = Proxλf (x) + λProxλ−1f∗(x/λ) for all x.

Proof:

x = Proxλf (x) + Prox(λf)∗(x)

= Proxλf (x) + λProxλ−1f∗(x/λ),

where the last equality follows from ”Right” Scalar Multiplication rule.

Example 1
f(x) = ‖x‖2

Proxtf (x) =

{
(1− t/‖x‖2)x, if ‖x‖2 > t

0, otherwise

Proof:

x = Proxtf (x) + Prox(tf)∗(x)

= Proxtf (x) + t · Prox(1/t)f∗(x/t).
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⇒ Proxtf (x) = x− t · Prox(1/t)f∗(x/t).

Since we know

f ∗(y) = δC(y) =

{
0, if ‖y‖2 ≤ 1

+∞, otherwise
,

where C = {y : ‖y‖2 ≤ 1}. Note that for t > 0, (1/t)f ∗(y) = (1/t)δC(y) = δC(y), we have

Prox(1/t)f∗(x/t) = ProxδC (x/t) = ΠC(x/t) =

{
x/‖x‖2 , if ‖x‖2 ≥ t

x/t , otherwise
.

Thus we have

Proxtf (x) = x− t · Prox(1/t)f∗(x/t)

=

{
x− t · x/‖x‖2, if ‖x‖2 ≥ t

x− t · x/t, otherwise

=

{
x(1− t/‖x‖2), if ‖x‖2 ≥ t

0, otherwise
.

Next we introduce the duality theory.
The standard form of constraint optimization problem:

p∗ = min
x
f(x)

subject to gi(x) ≤ 0, i = 1, 2, . . . ,m,

hi(x) = 0, i = 1, 2, . . . , n. (1)

where

gi(x) : inequality constraint

hi(x) : equality constraint

Remark 1 f, gi, hi do not need to be convex.

Definition 1 (Lagrangian Function) The Lagrangian function is defined as

L(x,λ,ν) = f(x) +
m∑
i=1

λigi(x) +
n∑
i=1

νihi(x)

where λ = (λ1, λ2, . . . , λn)>, µ = (µ1, µ2, . . . , µn)> with

λi : Lagrangian multiplier associated with gi(x) ≤ 0

νi : Lagrangian multiplier associated with hi(x) = 0
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Definition 2 (Lagrangian Dual Function) The Lagrangian dual function is defined as

d(λ,ν) = inf
x∈D

L(x,λ,ν), (2)

where D = domf ∩mi=1 domgi ∩nj=1 hj is the intersection of the domains of f , gi’s and hj’s.

Remark 2 The Lagrangian dual function d(λ,ν) is concave in (λ,ν). It can be proved by
using the fact that pointwise infimum preserves concavity.

Theorem 3 (Lower Bound Property) If λ ≥ 0, then d(λ,ν) ≤ p∗. Here λ ≥ 0 means
λi ≥ 0 for any 1 ≤ i ≤ m. p∗ is the minimum value of the constrained minimization problem.

Proof: For all feasible solution x, for any λ ≥ 0, we have

f(x) ≥ L(x,λ,ν) ≥ inf
x∈D

L(x,λ,ν) = d(λ, ν),

where the first inequality follows from the fact that gi(x) ≤ 0, λi ≥ 0 and hi(x) = 0. Taking
minimization over all feasible x of f(x), we get

p∗ ≥ d(λ,ν).

Next we introduce the Lagrangian dual problem (or dual problem for short), which is
based on Lagrangian dual function.

Definition 3 (Lagrangian dual problem) For a constrained minimization problem as
in (1) and the corresponding dual function as in (2), the dual problem is

d∗ = max
λ,ν

d(λ,ν), subject to λ ≥ 0. (3)

Remark 3 1. By lower bound property of d(λ,ν), the dual problem finds the best/tightest
lower bound for p∗.

2. The dual optimal value d∗ exists.

3. We say (λ,ν) are feasible dual variables if λ ≥ 0 and (λ,ν) ∈ dom d.

Theorem 4 (Weak Duality) The optimal value of the dual problem in (3) is always less
than or equal to the optimal value of the primal problem (1). In other wrods, d∗ ≤ p∗.

Proof: By Theorem 3, we have d(λ,ν) ≤ p∗. Taking maximization over all feasible (λ,ν)
on the left hand side of the inequality yields that d∗ ≤ p∗.

Note that weak duality holds in general.

Definition 4 (Strong Duality) We say the strong duality holds if d∗ = p∗ holds, w
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A natural question is when the strong duality holds. We will come back to this topic
later.

Example 2 (Least Norm Solution) Consider the constrained minimization problem

min
x

‖x‖22 subjectto Ax = b.

The Lagrangian function is

L(x,ν) = ‖x‖22 + ν>(Ax− b).

Taking minimization over x, we get the Lagrangian dual function

d(ν) = inf
x
L(x,ν) = min

x
‖x‖22 + ν>(Ax− b). (4)

By the first order condition, the minimizer x∗ satisfies 2x∗ + A>ν = 0, which yields that
x∗ = −A>ν/2. Substituting this solution to the optimization problem in (4), we get

d(ν) =
1

4
ν>AA>ν + ν>(−AA>ν/2− b) = −1

4
ν>AA>ν − b>ν.
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