EECS 776

Functional Programming and Domain Specific Languages

Professor Gill

The University of Kansas

August 29t 2016

Comprehensions

Comprehensions in Haskell are like set comprehensions in math.

{x|x+ [l..10], odd x }

GHCi> [x | x <= [1..10], odd x]
[1,3,5,7,2]

What might this do?

GHCi> [x * x | x <= [1..10], odd x]
72727

22016 Andrew Gill, 2/20, 192081 3

Primes

GHCi> let factors n

GHCi1i> factors 12
[2,3,4,6]

X <- [2..n-1], "mod

Now we can compute is a number is prime.

GHCi> let 1sPrime n

GHCi> i1isPrime 11
True
GHCi> 1sPrime 12

False

length (factors n)

We can also compute with groups of primes.

22016 Andrew Gill, 3720, 1920813

Primes (2

GHCi> let factors n = ‘mod” X 0]

GHCi> let 1sPrime n

X <= [2..n-1], n

(factors n)

[x|

length

We can also compute with groups of primes.

GHCi> filter 1sPrime [2..100]
2,3,5,7,11,13,17,19,23,2%9,31,37,41,43,4°7,53,59,061,067,71,73,79,83,89,97]
[2..12]

[True, True,False, True,False, True,False,False,False, True, False]
GHCi> [1f 1sPrime x then [2..50]]

GHCi> map 1sPrime

'x'" aelse '.' | x <-

M X eX. o e XeXe o e XXt o oXeoeeo KeXeweooa e o oXeXeoeXuueoaoe) A KeXeweooa X...X.

22016 Andrew Gill, 4/20, 192081 3

Primes improved

GHCi1i> :set +s
GHCi> 1sPrime 12345678

False

GHC1i> let i1sPrime n = length (factors n)

(8.98 secs, 2569789760 bytes)

0

How can we optimize this? The null function checks to see if a list is empty, so we use this instead of checking the length.

GHCi1i> let 1sPrime' n = null
GHCi> 1sPrime' 12345678

False
(0.01 secs, 2096496 bytes)

(factors n)

We turn off the timing with :unset.

GHCi> :unset +s

22016 Andrew Gill, 5/20, 192081 3

Testing primes improved

We want to check if isPrime and isPrime ' are equal.

GHC1i> let 1sPrime n = length (factors n) == 0

GHCi1i> let 1sPrime' n = null (factors n)

So how do we compare a function?

A function is equal if for all inputs, the result is always the same.

GHCi> and [i1sPrime' x == 1sPrime x | x <- [2..100]]

True

This is not comprehensive, but better than no tests. We will see how to do automatic random test-case generation later.

22016 Andrew Gill, /20, 192081 3

Problem: Haskell sessions are lost on exit

We can take our declarations, and put them into a file. Then load the file.

module Primes where

factors n = [x | Xx <- [2..n-1], n mod x == 0]
isPrime n = length (factors n) == 0
isPrime' n = null (factors n)

Note how the 1let has been dropped. This is because we only have declarations.

Back at the prompt, we can load this module.

Prelude> :1 Primes

[1 of 1] Compiling Primes (Primes.hs, i1nterpreted)
Ok, modules loaded: Primes.

*Primes> 1sPrime 12

False

22016 Andrew Gill, 7/20, 192081 3

Small Haskell Program

$ ghc --make Main.hs
[l of 1] Compiling Main (Main.hs, Main.o)

—-— This 1s a small Haskell program

module Main where
Linking Main

S ./Main Hello World
Hello
World

import System.Environment

main :: IO ()
main = do args <- getArgs

printArgs args

-— printArgs print to stdout the input list,
-— one line at a time.

printArgs :: [String] =-> IO ()
do putStrLn arg

printArgs args

printArgs (arg:args)

printArgs [] = return ()

22016 Andrew Gill, 8/20, 1920813

Types

Types are the distinguishing feature of Haskell-like languages

* What are types!?

42 :: Int

* What is type-checking and type-inference!
* Type-checking is checking if the types are self-consistent
* Type-inference is checking without being told what the types are

Most modern languages have some form of type-checking, some have type-inference

22016 Andrew Gill, 9720, 192081 3

Robin Milner

Robin was an outstanding and well-rounded computer scientist
* Machine-assisted proof construction (LCF)
* Design of typed programming languages (ML)
“Well-typed programs don't go wrong.”

* Models of concurrent computation (CCS, m -calculus)

He was awarded the Turing Award in 1991

Type systems in modern languages

Java - static typing JavaScript - dynamic typing
public int example (int x,double y) { function example (x,vy) {
String z = "Hello"; var z = "Hello";
} }
Statically typed languages are dependable but rigid Dynamically typed languages are flexible but unreliable

KU

22016 Andrew Gill, [1/20, [920=x813

The type system in Haskell

In Haskell, you can give the types of the values ...

sphereArea :: Double => Double
sphereArea r = 4 * p1 * r"2

... or let Haskell infer it ...

sphereArea r = 4 * p1 * r"2

The type says “take a Double, return aDouble”

SorisaDouble,and4 *pi *r~2isaDouble

Prelude> :1 Example.hs

*Main> sphereArea 5
314.1592653589793

22016 Andrew Gill, 12720, [920=x813

The type system in Haskell (GHCi

You can also give the type in GHCi ...

Prelude> let sphereArea :: Double -> Double ; sphereArea r = 4 * p1i * r"2
Prelude> :t areaOfSphere
areaOtfSphere :: Double -> Double

...or let GHCi infer it ...

Prelude> let sphereArea r = 4 * p1 * r"2
Prelude> :t

27277

22016 Andrew Gill, [3/20, [920=x813

Type inference

Parametric polymorphism is a sweet spot on the typing landscape.

* Static typing,
* with Polymorphic values (give you dynamic-like typing when you need it)
The type inference in Haskell is really powerful.
It is considered good form (and documentation) to write some types, and let Haskell figure the rest out.
Haskell is not guessing the types, it is inferring them.
An inferred type is a high form of truth, and inference is a crowning achievement of centuries of mathematics.
Caveat: In order to be work within this powerful system, many primitives

in Haskell have non-obvious types. There is always a reason why.

KU

Everything has a type

Everything has a type, and GHCi can tell you, using : t.

Basic characters have type Char.

Prelude> 'c'

I'C'l

Prelude> 'c' :: Char
I'C'l

Prelude> :t 'c¢'

'c¢' :: Char

Strings have type [Char], which means many chars. Strings are literally lists of characters.

Prelude> :t "Hello"
"Hello"™ :: [Char]

22016 Andrew Gill, [3/20, [920=x813

Type of a Number

Prelude> 1 :: Int
1

This is a C-style 32 or 64 bit number. (The Haskell spec says at least 29 bits + sign bit.)

Prelude> 1.0 :: Double
1

Prelude> 1.0 :: Float
1

Double and Float are 64 bit and 32 bit floating point numbers.

Prelude> 1 :: Integer
1

Integer hasanarbitrary precision.

22016 Andrew Gill, 16/20, [920=x813

Type-inference of a Number

Prelude> :t 1

1l :: Num a => a

What can this mean? There is clearly more than meets the eye.

You can always use the : : notation to fixa number asan Int, Float, etc.

Let us see some other examples, get back to basics, and come back to this.

22016 Andrew Gill, [7/20, [920=x813

Type-inference of a Function

Prelude> let f x = x
Prelude> :t £

277

What can you know about x. Nothing at all?
Literally, the type of £ is Vt.t —t. Haskell assumes the V in this example.

Prelude> :t £
f :: £ -> ¢

f takes anything, and returns (the same) anything.
Terminology: t is polymorphic, and £ is a polymorphic function.

In the type syntax, polymorphic arguments are lower case.

22016 Andrew Gill, [8/20, [920=x813

Type-inference of a Function

If we are more specific about arguments or results, the function will have a more specific type to reflect this.

Prelude> let f x = (x :: Int)
Prelude> :t £
f :: Int -> Int

Alternatively (Uses an extension ScopedTypeVariables ; originally not considered good form):

Prelude> :set -XScopedTypeVariables
Prelude> let f (x :: Int) = x
Prelude> :t £

f :: Int -> Int

Key observation: the original polymorphic function is the most general version of the function.

22016 Andrew Gill, [2/20, [920=x813

Types of key arithmetic functions

Prelude> :t (+)
(+) :: Num a => a -> a -> a

This means
* (+) takes two a values,
* and returns an a value,
* and a is a Num-thing.
* “Num a =>" means this is my constraint.
* “a =>” means this is what | pass as an argument.

Now, addition does add two numbers, to give a number.

22016 Andrew Gill, 20/20, [920=x813

