Math 122L

Additional Homework Problems

Prepared by Sarah Schott

Contents

Review of AP AB Differentiation Topics	4
L'Hopital's Rule and Relative Rates of Growth	4
Riemann Sums	5
Definition of the Definite Integral	5
MVT and FTC Part I	6
FTC Part II	6
U-Substitution	7
Integration by Parts	7
Partial Fractions	7
Improper Integrals	8
Introduction to Probability	8
Expected Value	9
Introduction to Sequences and Series	9
Probability and Geometric Series	10
Integral Test	10
Comparison Tests	11
Alternating Series and Absolute Convergence	12
Probability Distributions and Expected Value	13
Normal Distributions	14
Power Series	14
Representing Functions as Power Series	15
Taylor Polynomials	15
Taylor Series	15
Fourier Series Preparation	16
Fourier Series	16

Introduction to Differential Equations	17
Separation of Variables	17
Slope Fields and Euler's Method	18
Population Growth Models and Logistic Growth	18

Review of AP AB Differentiation Topics

1. Let $f(x) = x^2 + 4$.

- (a) Find the average rate of change over the interval [1,2].
- (b) Find the average rate of change over the interval [1,1.5].
- (c) Find the average rate of change over the interval [1,1.1].
- (d) Find the instantaneous rate of change at x = 1.
- 2. Suppose f is an invertible function such that both f and f^{-1} are differentiable. Recall that $f(f^{-1}(x)) = x$. Use implicit differentiation to find a formula for $\frac{d}{dx}(f^{-1}(x))$.
- 3. Suppose f(1) = 2, f'(1) = 3, $f^{-1}(1) = 1$, g(1) = 1, g'(1) = 4, and g''(1) = 5. Find the derivative of the following functions at x = 1:
 - (a) $\sqrt{f(x)}$
 - (b) $f\left(\sqrt{x}\right)$
 - (c) $(g(x))^2$
 - (d) $2^{g(x)}$
 - (e) $e^{f(x)g(x)}$
 - (f) $e^{f(g(x))}$
 - (g) $\frac{g(x)}{q'(x)}$

 - (h) $f^{-1}(x)$.
- 4. Let $f(x) = ax^2 + bx + c$. Suppose that f(1) = 7, and that the slope of the tangent lines to f at x = 2 and x = 4 are 12 and 20, respectively. Find a, b, and c.
- 5. Use the line tangent to $f(x) = \sqrt[3]{1+3x}$ at x = 0 to estimate $\sqrt[3]{1.03}$.

6. If
$$f(x) = \lim_{t \to x} \frac{\sec(t) - \sec(x)}{t - x}$$
, find $f'\left(\frac{\pi}{4}\right)$.

L'Hopital's Rule and Relative Rates of Growth

1. Suppose $\lim_{x \to a} f(x) = 0$, $\lim_{x \to a} g(x) = 0$, $\lim_{x \to a} r(x) = \infty$, and $\lim_{x \to a} s(x) = \infty$. For each of the following limits, decide whether or not it would be appropriate to use L'Hopital's Rule.

(a)
$$\lim_{x \to a} \frac{f(x)}{g(x)}$$

(b)
$$\lim_{x \to a} \frac{f(x)}{s(x)}$$

(c)
$$\lim_{x \to a} f(x) - g(x)$$

(d) $\lim_{x \to a} (f(x))^{g(x)}$ (e) $\lim_{x \to a} (r(x))^{f(x)}$ (f) $\lim_{x \to a} f(x)s(x)$

2. Find examples of functions f(x) and g(x) such that $\lim_{x\to\infty} f(x) = \infty$ and $\lim_{x\to\infty} g(x) = \infty$ such that:

(a)
$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = \infty$$

(b)
$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = 0$$

(c)
$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = 2$$

3. Find the mistake(s) in each of the following. Then solve the given limit correctly:

(a)
$$\lim_{x \to 0} \frac{\sin(x)}{x} = \lim_{x \to 0} \frac{x \cos(x) - \sin(x)}{x^2} = 0$$

(b)
$$\lim_{x \to 0} \frac{\cos(x)}{x} = \lim_{x \to 0} \frac{-\sin(x)}{1} = 0$$

(c)
$$\lim_{x \to \infty} \left(1 + \frac{1}{x}\right)^x = (1)^\infty = 1$$

Riemann Sums

- 1. Draw a function, f(x), in which the LHS(2) approximation of f(x) on [0, 2] is more accurate than the MPS(2) approximation.
- 2. For which class of functions are the left-hand and right-hand sums exact? Trapezoid rule?

Definition of the Definite Integral

- If ∑^s_{k=r} f (-3 + k/2) (1/2) is the left-hand Riemann sum, with n = 8 rectangles, that approximates ∫²₋₂ f(x) dx, find r and s.
 Solve ∫²₁ (x² + x + 1) dx using the definition of the definite integral. Note that ∑ⁿ_{k=1} k = n(n+1)/2 and ∑ⁿ_{k=1} k² = n(n+1)(2n+1)/6.
- 3. Suppose function f passes through the following points:

x	0	2	4	6	8	10	12
f(x)	2	1	-1	2	5	8	5

- (a) Approximate $\int_{0}^{12} xf(x) dx$ using a Left-Hand Riemann sum with 6 rectangles. (b) Approximate $\int_{0}^{12} xf(x) dx$ using a Right-Hand Riemann sum with 3 rectangles. (c) Approximate $\int_{0}^{12} xf(x) dx$ using a Midpoint Riemann sum with 3 rectangles.
- 4. Consider a continuous function f(x). Using a Right-Hand Riemann sum, we could approximate $\int_{1}^{10} f(x) dx$ by $\sum_{k=1}^{10} f\left(1 + \frac{9k}{10}\right) \left(\frac{9}{10}\right)$. If we instead want to approximate $\int_{11}^{20} f(x) dx$ with the same number of rectangles, how should we adjust the Riemann sum?

MVT and FTC Part I

1. Evaluate the following limits:

(a)
$$\lim_{n \to \infty} \sum_{k=0}^{n-1} \sec^2 \left(\frac{-\pi}{4} + \frac{k\pi}{2n} \right) \frac{\pi}{2n}$$

(b)
$$\lim_{n \to \infty} \sum_{k=1}^n \left(\frac{1}{\sqrt{1 - \frac{k^2}{4n^2}}} \right) \frac{1}{2n}$$

- 2. Without using a calculator (or Maple), rank the following quantities from smallest to largest: $\int_{0}^{1} e^{x} dx, \qquad \sum_{k=1}^{10} \exp\left(\frac{(k-1)+(k)}{20}\right) \frac{1}{10}, \qquad \sum_{k=1}^{100} \exp\left(\frac{(k-1)+(k)}{200}\right) \frac{1}{100}$ 3. Evaluate $\lim_{n \to \infty} \frac{1^{2}+2^{2}+3^{2}+\dots+n^{2}}{n^{3}}$.
- 4. The following statements are FALSE. Prove this by providing a counterexample in each case.

(a) For any function
$$f(x)$$
, $\int_0^1 |f(x)| dx = \left| \int_0^1 f(x) dx \right|$.
(b) For any functions $f(x)$ and $g(x)$, $\int_0^1 f(x)g(x) dx = \int_0^1 f(x) dx \int_0^1 g(x) dx$.
(c) For any positive function $f(x)$, $\int_0^1 \sqrt{f(x)} dx = \sqrt{\int_0^1 f(x) dx}$.

FTC Part II

1. Suppose
$$f(x) = \int_0^x \left(\int_1^{\sin(t)} \sqrt{1+u^4} \, du \right) \, dt$$

- (a) Is f increasing or decreasing at $x = \pi$?
- (b) Find f''(x).
- 2. Find a function f such that $x^2 = 1 + \int_1^x \sqrt{1 + (f(t))^2} dt$ for all x > 1.

3. Find a function f(x), such that $f'(x) = \sin\left(e^{x^2}\right)$ and f(2) = 4.

U-Substitution

1. Let f(x) be a continuous function. Evaluate $\int_{\pi/2}^{3\pi/2} f(\cos(x)) \sin(x) dx$.

- 2. Let $f(x) = \frac{\ln(x)}{x}$.
 - (a) Find the average value of f(x) on $\left[\frac{1}{2}, 2\right]$.
 - (b) Find a value $\frac{1}{2} \le c \le 2$ at which f(x) equals its average value.

Integration by Parts

1. Suppose f(x) is twice differentiable. Find $\int f''(x) \ln(x) dx + \int \frac{f(x)}{x^2} dx$. Your answer should contain f but no integrals.

Partial Fractions

1. Evaluate the following:

(a)
$$\int \frac{1}{1-x} dx$$

(b)
$$\int \frac{x}{1-x} dx$$

(c)
$$\int \frac{1}{1-x^2} dx$$

(d)
$$\int \frac{x}{1-x^2} dx$$

(e)
$$\int \frac{1}{1+x^2} dx$$

(f)
$$\int \frac{1}{1+9x^2} dx$$

(g)
$$\int \frac{1}{9+x^2} dx$$

(h)
$$\int \arctan(x) dx$$

(i)
$$\int \frac{x}{e^{-x}} dx$$

(j)
$$\int \frac{1}{1+e^{-x}} dx$$

Improper Integrals

- 1. Evaluate $\int_0^\infty x^2 e^{-x^2} dx$, given that $\int_0^\infty e^{-x^2} dx = \frac{\sqrt{\pi}}{2}$.
- 2. Determine whether each of the following integrals converge or diverge by using the Comparison Theorem using the suggested comparison:

(a)
$$\int_{1}^{\infty} \frac{1}{x^{3}+1} dx$$
, comparing with $\int_{1}^{\infty} \frac{1}{x^{3}} dx$
(b) $\int_{1}^{\infty} \frac{2+e^{-x}}{x} dx$, comparing with $\int_{1}^{\infty} \frac{2}{x} dx$
(c) $\int_{0}^{\pi} \frac{\sin^{2}(x)}{\sqrt{x}} dx$, comparing with $\int_{0}^{\pi} \frac{1}{\sqrt{x}} dx$

3. Show that $\int_0^\infty \frac{1}{e^x} dx$ converges. Why can we not use this integral with the Comparison Test in order to show that $\int_0^\infty \frac{\arctan(x)}{2+e^x} dx$ converges? How can we adjust $\int_0^\infty \frac{1}{e^x} dx$ so that it is useful with the Comparison Test for $\int_0^\infty \frac{\arctan(x)}{2+e^x} dx$?

Introduction to Probability

- 1. Two events A and B are said to be mutually exclusive if the probability that they both occur is zero. Decide whether it is possible for two events to be both independent and mutually exclusive.
- 2. Show that $\mathbb{P}(A \cap B) \ge \mathbb{P}(A) + \mathbb{P}(B) 1$ for any two events A and B.
- 3. Suppose you row two fair *n*-sided dice. Find the probability of each of the following events:
 - (a) the maximum of the two numbers rolled is less than or equal to 4.

- (b) the maximum of the two numbers rolled is less than or equal to 5.
- (c) the maximum of the two numbers rolled is less than or equal to k, where $k \in \{1, 2..., n\}$.
- (d) the maximum of the two numbers rolled is exactly equal to k, where $k \in \{1, 2..., n\}$.

Expected Value

1. Suppose X is a random variable with just two possible values a and b. Find a formula for $\mathbb{P}(X = a)$ and for $\mathbb{P}(X = b)$ in terms of only a, b, and $\mu = \mathbb{E}[X]$.

Introduction to Sequences and Series

- 1. Let $a_k = e^{-k} + 1$
 - (a) Does $\{a_k\}_{k=1}^{\infty}$ converge or diverge? Explain.
 - (b) Does $\sum_{k=1}^{\infty} a_k$ converge or diverge? Explain.
- 2. Fill in the blank: $\sum_{k=1}^{\infty} a_k = \sum_{k=10}^{\infty} a_{\underline{}}$
- 3. Suppose $\sum_{n=1}^{\infty} a_n$ converges and that $a_n \neq 0$ for all $n \ge 1$. Show that $\sum_{n=1}^{\infty} \frac{1}{a_n}$ diverges.
- 4. Use partial fraction decomposition to show that $\sum_{n=1}^{\infty} \frac{3}{n(n+3)}$ converges, and find its sum.
- 5. Determine whether $\sum_{k=1}^{\infty} \left(\frac{k+1}{k}\right)^{k^2}$ converges or diverges.
- 6. The series $\sum_{k=1}^{\infty} a_k$ has partial sums S_n defined by

$$S_n = S_{n-1} + \cos(S_{n-1}) \qquad S_1 = 1$$

Suppose this series converges to a finite number, L where 0 < L < 4.

- (a) Find $\lim_{k \to \infty} a_k$. (b) Find $\sum_{k=1}^{\infty} a_k$.
- 7. Consider the sequence $\{a_k\}_{k=1}^{\infty}$, where $a_k = \frac{1}{k}$.

- (a) Draw a plot of this sequence, together with the graph of the function $f(x) = \frac{1}{x}$. To draw the sequence, draw rectangles with width one, and height a_k .
- (b) Use your graph to determine which of the following relations is correct:

$$\sum_{k=1}^{n} \frac{1}{k} \le \int_{1}^{n} \frac{1}{x} \, dx \qquad \qquad \sum_{k=1}^{n} \frac{1}{k} = \int_{1}^{n} \frac{1}{x} \, dx \qquad \qquad \sum_{k=1}^{n} \frac{1}{k} \ge \int_{1}^{n} \frac{1}{x} \, dx$$
(c) Find $\lim_{n \to \infty} \int_{1}^{n} \frac{1}{x} \, dx$.

(d) What can you concludes about the convergence/divergence of $\{a_k\}_{k=1}^{\infty}$?

Probability and Geometric Series

1. Find the sum of $\sum_{k=1}^{\infty} \frac{1}{e^{2k-1}}$.

2. Find two divergent series,
$$\sum_{k=1}^{\infty} a_k$$
 and $\sum_{k=1}^{\infty} b_k$ such that $\sum_{k=1}^{\infty} (a_k + b_k)$ converges

- 3. Find two convergent series, $\sum_{k=1}^{\infty} a_k$ and $\sum_{k=1}^{\infty} b_k$ such that $\sum_{k=1}^{\infty} \left(\frac{a_k}{b_k}\right)$ diverges.
- 4. Evaluate the following limits.

(a)
$$\lim_{n \to \infty} \sum_{k=1}^{n} \left(e^{1 + \frac{2k}{n}} \right) \left(\frac{2}{n} \right)$$

(b)
$$\lim_{n \to \infty} \sum_{k=1}^{n} 2 \left(\frac{1}{e} \right)^{k+1} \left(\frac{e}{2} \right)^{k}$$

Integral Test

- 1. Consider the series $\sum_{k=1}^{\infty} \frac{1}{2^k}$.
 - (a) Draw the graph of $f(x) = \frac{1}{2^x}$ for $0 \le x \le 10$.

(b) On your graph from (a), draw rectangles that represent $\sum_{k=1}^{10} \frac{1}{2^k}$ and indicate that $\sum_{k=1}^{10} \frac{1}{2^k} \leq \int_0^{10} \frac{1}{2^x} dx$.

(c) Use the Integral Test to show that $\sum_{k=1}^{\infty} \frac{1}{2^k}$ converges.

(d) Find the sum of
$$\sum_{k=1}^{\infty} \frac{1}{2^k}$$

- 2. Suppose f(x) is positive, continuous, and decreasing, and that $a_k = f(k)$ for all $k \ge 1$. Given that $\int_0^{\infty} f(x) dx$ diverges and that $\int_1^{\infty} f(x) dx$ converges, what can you conclude about $\sum_{k=1}^{\infty} a_k$? What is the best upper bound we can find on $\sum_{k=1}^{\infty} a_k$, if we know $\int_1^{\infty} f(x) dx = 10$?
- 3. For each of the following series, determine why the Integral Test cannot be used.

(a)
$$\sum_{k=1}^{\infty} \frac{1}{k!}$$

(b)
$$\sum_{k=1}^{\infty} \arctan(k)$$

(c)
$$\sum_{k=1}^{\infty} \sin(n)$$

Comparison Tests

1. Special cases of the Limit Comparison Theorem.

iv. If
$$\sum_{n=1}^{\infty} b_n$$
 diverges, then $\sum_{n=1}^{\infty} a_n$ must diverge.

2. Determine whether the following series converge or diverge:

(a)
$$\sum_{k=1}^{\infty} \ln(k)$$

(b)
$$\sum_{k=1}^{\infty} \frac{k}{\ln(k)}$$

(c)
$$\sum_{k=1}^{\infty} \frac{\ln(k)}{k}$$

(d)
$$\sum_{k=1}^{\infty} \ln\left(\frac{1}{k}\right)$$

(e)
$$\sum_{k=1}^{\infty} \ln\left(\frac{k+1}{k}\right)$$

Alternating Series and Absolute Convergence

1. Suppose that the series $\sum_{k=1}^{\infty} a_k$ converges and that $a_k > 0$ for all $k \ge 1$. Decide whether the following series converge or diverge, and explain why.

(a)
$$\sum_{k=1}^{\infty} \frac{a_k}{k}$$

(b)
$$\sum_{k=1}^{\infty} \frac{1}{a_k}$$

(c)
$$\sum_{k=1}^{\infty} a_k^2$$

(d)
$$\sum_{k=1}^{\infty} (-1)^k a_k$$

- 2. Consider the series $\frac{1}{2^2} \frac{1}{2^3} + \frac{1}{3^2} \frac{1}{3^3} + \frac{1}{4^2} \frac{1}{4^3} + \frac{1}{5^2} \frac{1}{5^3} + \cdots$. Why can we not use the Alternating Series Test here? Determine whether the series converges or diverges.
- 3. Consider the series $\frac{1}{2^2} + \frac{1}{3^2} \frac{1}{4^2} \frac{1}{5^2} + \frac{1}{6^2} + \frac{1}{7^2} \frac{1}{8^2} \frac{1}{9^2} + \cdots$. Why can we not use the Alternating Series Test here? Determine whether the series converges or diverges.
- 4. Consider the series $\sum_{k=1}^{\infty} \frac{(-1)^k}{k^p}$. For which values of p does this series:

- (a) converge absolutely?
- (b) converge conditionally?
- (c) diverge?
- 5. Find an upper bound on the error incurred when using:

(a)
$$\sum_{k=1}^{10} \frac{1}{k^2}$$
 to approximate $\sum_{k=1}^{\infty} \frac{1}{k^2}$.
(b) $\sum_{k=1}^{10} \frac{(-1)^k}{k^2}$ to approximate $\sum_{k=1}^{\infty} \frac{(-1)^k}{k^2}$.

- 6. What is wrong with the following arguments?
 - (a) Because $\lim_{k \to \infty} \frac{k}{2k+1} \neq 0$ and $\frac{(k+1)}{2(k+1)+1} \nleq \frac{k}{2k+1}$, the series $\sum_{k=1}^{\infty} \frac{(-1)^k k}{2k+1}$ diverges by the Alternating Series Test.
 - (b) Because $\frac{\cos(k)}{k^2+1} \le \frac{1}{k^2}$ and $\sum_{k=1}^{\infty} \frac{1}{k^2}$ converges (as a p-series with p = 2 > 1), the series $\sum_{k=1}^{\infty} \frac{\cos(k)}{k^2+1}$ converges by the Comparison Test.

Ratio Test

- 1. If $a_k > 0$ and $\lim_{k \to \infty} \frac{a_k}{a_{k+1}} = 2$, find $\lim_{k \to \infty} a_k$.
- 2. Let 0 < p, q < 1. Why can't the Ratio Test be used on $p + q + p^2 + q^2 + p^3 + q^3 + \cdots$? Show that this series converges, and find its sum.
- 3. Consider the series $\sum_{k=1}^{\infty} \frac{x^k}{k}$.
 - (a) Use the Ratio Test to show that this series converges for |x| < 1.
 - (b) Note that the Ratio Test gives no information for $x = \pm 1$. Use other methods to determine whether or not the series converges at these two values of x.

Probability Distributions and Expected Value

1. Consider the following function:

$$f(x) = \begin{cases} 0 & \text{if } -\infty < x < -1\\ ax & \text{if } -1 \le x < 0\\ bx^3 & \text{if } 0 \le x < 1\\ 0 & \text{if } 1 \le x < \infty \end{cases}$$

- (a) Find the values of constants a and b that make f(x) a probability density function with $\mathbb{E}[X] = \frac{4}{15}$.
- (b) With the constants you found in (a), find the median of this distribution.

Normal Distributions

- 1. Let X be a random variable that is normally distributed with mean 10 and standard deviation 2. Solve the following without a calculator.
 - (a) If $\mathbb{P}(X > a) = 0.1$, then decide whether the following are true or false:
 - *a* > 10
 - a > 12
 - *a* > 14
 - (b) Find $\mathbb{P}(6 \le X \le 12)$.

Power Series

1. Determine whether each of the following is a power series.

(a)
$$\sum_{k=0}^{\infty} x^{-k}$$

(b)
$$\sum_{k=0}^{\infty} \frac{x^k}{k!}$$

(c)
$$\sum_{k=0}^{\infty} k^x$$

(d)
$$\sum_{k=0}^{\infty} (x-k)^2$$

(e)
$$\sum_{k=0}^{\infty} (-1)^k x^{2k}$$

- 2. Suppose we know $\sum_{k=0}^{\infty} c_k x^k$ has radius of convergence 2.
 - (a) What is $\lim_{k \to \infty} \frac{|c_{k+1}|}{|c_k|}$?
 - (b) What is the radius of convergence of $\sum_{k=0}^{\infty} c_k (x-1)^k$?

- (c) What is the radius of convergence of $\sum_{k=0}^{\infty} c_k x^{2k}$?
- 3. Find a power series that has interval of convergence:
 - (a) (1,3)
 - (b) [1,3)
 - (c) (1,3]
 - (d) [1,3]

Representing Functions as Power Series

1. Find the mistake(s) in the following:

(a)
$$\frac{1}{(1+x)^2} = \left(\frac{1}{1+x}\right)^2 = \left(\sum_{k=0}^{\infty} (-1)^k x^k\right)^2 = \sum_{k=0}^{\infty} x^{2k}$$

(b) $\frac{d}{dx} \left(\sum_{k=0}^{\infty} (3x)^k\right) = \sum_{k=0}^{\infty} k(3x)^{k-1}$
(c) $\int \sum_{k=0}^{\infty} (-1)^k x^k \, dx = \sum_{k=0}^{\infty} \frac{(-1)^{k+1} x^{k+1}}{k+1}$

Taylor Polynomials

- 1. Find the Taylor polynomial, centered at x = a, of degree n for each of the following functions (you can use these derivations for the homework from section 8.8):
 - (a) $f(x) = \sin(x), a = \pi/6, n = 4$
 - (b) $f(x) = e^{x^2}, a = 0, n = 3$
 - (c) $f(x) = \ln(1+2x), a = 1, n = 3$
 - (d) $f(x) = x\sin(x), a = 0, n = 4$
 - (e) $f(x) = x \ln(x), a = 1, n = 3$
- 2. Give an example of a function f(x), such that the Taylor polynomial of degree 4 of f is the same as the Taylor polynomial of degree n for all n > 4.
- 3. The table below gives information about a continuous function f(x):

f(0)	f'(0)	f''(0)	f'''(0)	$f^{(4)}(0)$
0	1	-3	7	-15

- (a) Use a 4th degree Taylor polynomial to estimate f(0.1).
- (b) Use a 4th degree Taylor polynomial to estimate $\int_0^{0.5} f(x) dx$.

Taylor Series

- 1. Find a power series representation for $\ln(1+x)$ centered about x = 0 in two different ways:
 - (a) by relating it back to the function $\frac{1}{1-x}$
 - (b) by deriving its Taylor series
- 2. Use Taylor series to find the 10th derivative of $f(x) = \sin(x^2)$ at x = 0.

3. Find the sum of
$$\sum_{k=1}^{\infty} \frac{ke^{-2}2^{k-1}}{k!}$$

4. Let $f(t) = te^t$.

- (a) Find the Taylor series for f(t) centered at t = 0.
- (b) Use your answer to (a) to find the Taylor series representation, about x = 0, for $\int_{0}^{x} f(t) dt$.
- (c) Use part (b) to prove that $\frac{1}{2} + \frac{1}{3} + \frac{1}{4(2!)} + \frac{1}{5(3!)} + \frac{1}{6(4!)} + \dots = 1.$

Fourier Series Preparation

1. Use Maple to compute each of the following for various integers m and n:

(a)
$$\int_{-\pi}^{\pi} a \, dx$$

(b)
$$\int_{-\pi}^{\pi} \sin(mx) dx$$

(c)
$$\int_{-\pi}^{\pi} \cos(mx) dx$$

(d)
$$\int_{-\pi}^{\pi} \sin^{2}(mx) dx$$

(e)
$$\int_{-\pi}^{\pi} \cos^{2}(mx) dx$$

(f)
$$\int_{-\pi}^{\pi} \cos(mx) \sin(mx) dx$$

(g)
$$\int_{-\pi}^{\pi} \sin(nx) \sin(mx) dx$$

(h)
$$\int_{-\pi}^{\pi} \cos(nx) \cos(mx) dx$$

(i)
$$\int_{-\pi}^{\pi} \cos(nx) \sin(mx) dx$$

Fourier Series

- 1. Give an example of a function, f(x), such that the Fourier series for f(x) is exactly equal to f(x).
- 2. Suppose f(x) has Fourier series

$$\frac{1}{2} + \sum_{k=1}^{\infty} \frac{2}{(2k-1)\pi} \sin\left((2k-1)x\right)$$

- (a) What is the period of f?
- (b) What is the average value of f(x) on the interval $[-\pi, \pi]$?
- (c) What is $\int_{-\pi}^{\pi} f(x) \cos(3x) dx$? (d) What is $\int_{-\pi}^{\pi} f(x) \sin(3x) dx$?

3. Prove the following statement: If $f(x) = a_0 + \sum_{k=1}^{\infty} a_k \cos(kx) + \sum_{k=1}^{\infty} b_k \sin(kx)$, then

$$b_4 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin(4x) \ dx.$$

Introduction to Differential Equations

1. Find all functions f such that f' is continuous and for all x

$$[f(x)]^{2} = 100 + \int_{0}^{x} \left((f(t))^{2} + (f'(t))^{2} \right) dt$$

2. Suppose that f(x) is a solution to the initial value problem $\frac{dy}{dx} = 2x - y$, y(1) = 5.

- (a) If f(a) = -4 and f'(a) = -2, what is a?
- (b) Is f increasing or decreasing at x = 1?
- (c) Find f''(x).
- (d) If f(4) = 2, does f have a critical point, and inflection point, or neither at x = 4?
- 3. Recall that we have already learned how to differentiate a power series. Use this to show that $\sum_{k=0}^{\infty} \frac{(-1)^k x^{2k}}{(2k)!}$ is a solution to the initial value problem $\frac{d^2 y}{dx^2} = -y$, y(0) = 1.
- 4. Let f be a function such that
 - f(0) = 1
 - f'(0) = 1
 - f(a+b) = f(a)f(b) for all a and b

Prove that f'(x) = f(x). Consequently, as we've seen in class, f(x) must equal e^x .

Separation of Variables

1. Suppose you forgot the Product Rule for differentiation, and instead thought $\frac{d}{dx}(f(x)g(x)) = \left(\frac{d}{dx}(f(x))\right) \left(\frac{d}{dx}(g(x))\right).$ You get lucky, and get the correct answer for $\frac{d}{dx}(f(x)g(x))$ when $f(x) = e^{x^2}$. What was g(x)?

Slope Fields and Euler's Method

1. Recall that an equilibrium solution to a differential equation is a solution that is constant. Some equilibrium solutions can be classified as either **stable** or **unstable**. If solutions curves tend toward an equilibrium solution, we call that a stable equilibrium. If solution curves tend away from an equilibrium solution, we call that an unstable equilibrium. Consider the differential equation:

$$\frac{dy}{dx} = 0.5y(y-4)(2+y)$$

- (a) What are the equilibrium solutions of this differential equation?
- (b) Sketch the slopefield.
- (c) Classify each equilibrium solution as stable, unstable, or neither.

(d) If
$$y(0) = 6$$
, what is $\lim_{x \to \infty} y(x)$?

- (e) If y(0) = -1, what is $\lim_{x \to \infty} y(x)$?
- 2. Consider the initial value problem $\frac{dy}{dt} = e^{y^3}$, $y(0) = y_0$
 - (a) Find $\frac{d^2y}{dt^2}$.
 - (b) Using Euler's method with n = 10 steps to estimate y(2), would you over or under estimate the true value of y(2)? Why?
 - (c) Suppose you now use Euler's method with n = 100 steps in order to estimate y(2). Would this approximation be greater than or less than the approximation discussed in (b)? Explain.

Population Growth Models and Logistic Growth

1. The table below gives the percentage, P, of households with a VCR, as a function of t in years.

t	1978	1979	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989	1990	1991
P	0.3	0.5	1.1	1.8	3.1	5.5	10.6	20.8	36.0	48.7	58	64.6	71.9	71.9

(a) Explain why a logistic model is reasonable for this data.

- (b) Use the data to estimate the point of inflection of P. What limiting value does this point of inflection predict?
- (c) As it turns out, the best model for this data is

$$P(t) = \frac{75}{1 + 316.75e^{-0.699t}}$$

What limiting value does this model predict?