
Analyzing and Improving a BitTorrent Network’s
Performance Mechanisms

Ashwin R. Bharambe Cormac Herley Venkata N. Padmanabhan
Carnegie Mellon University Microsoft Research Microsoft Research

Abstract— In recent years, BitTorrent has emerged as a very
scalable peer-to-peer file distribution mechanism. While early
measurement and analytical studies have verified BitTorrent’s
performance, they have also raised questions about various
metrics (upload utilization, fairness, etc.), particularly in settings
other than those measured. In this paper, we present a simulation-
based study of BitTorrent. Our goal is to deconstruct the system
and evaluate the impact of its core mechanisms, both individually
and in combination, on overall system performance under a
variety of workloads. Our evaluation focuses on several important
metrics, including peer link utilization, file download time, and
fairness amongst peers in terms of volume of content served.

Our results confirm that BitTorrent performs near-optimally
in terms of uplink bandwidth utilization, and download time
except under certain extreme conditions. We also show that
low bandwidth peers can download more than they upload to
the network when high bandwidth peers are present. We find
that the rate-based tit-for-tat policy is not effective in preventing
unfairness. We show how simple changes to the tracker and a
stricter, block-based tit-for-tat policy, greatly improves fairness.

I. I NTRODUCTION

BitTorrent [1] has recently emerged as a very scalable P2P
content distribution tool. In a P2P system like BitTorrent,
peers not only download content from the server but also
serve it to other peers. Thus the serving capacity of the
system grows with the number of nodes, making the system
potentially self-scaling. In BitTorrent, a file is broken down
into a large number of blocks and peers can start serving other
peers as soon as they have downloaded their first block. Peers
preferentially download blocks that are rarest among their local
peers so as to maximize their usefulness to other peers. These
strategies allow BitTorrent to use bandwidthbetweenpeers
(i.e., perpendicular bandwidth[2]) effectively and handle flash
crowds well. In addition, BitTorrent incorporates a tit-for-
tat (TFT) incentive mechanism, whereby nodes preferentially
upload to peers from whom they are able to download at a
fast rate in return.

The soundness of these architectural choices is borne out
by the success of the system in actual deployment. Recent
measurement and analytical studies [3–5] (discussed in Section
III) indicate that BitTorrent scales well with system size
and has performed well in real large-scale file distributions.
However, we believe that these studies leave a number of
questions unanswered. For example:

• Izal et al. [3] reported that clients observed high download
rates. However, was this optimal? Could BitTorrent have
achieved even higher bandwidth utilization in this setting?

• Does BitTorrent’s Local Rarest First (LRF) policy for
picking new blocks to download from peers effectively
avoid the last block problem?

• How effective is BitTorrent’s TFT policy in avoiding un-
fairnessi.e., a node uploads much less than it downloads?
Fairness can be important to encourage peer participation,
for instance, in settings where the ISP charges users based
on upload traffic volume.

• Previous studies have assumed that at least a fraction of
nodes perform altruistic uploading even after finishing
their downloads. However, if nodes depart as soon as
they finish, is the stability or scalability of the system
hurt significantly?

The answers depend on a number of parameters that Bit-
Torrent uses. It would be difficult, if not impossible, to control
such a large space of possibilities in an analytical or live
measurement setting. Hence, in this paper, we attempt to an-
swer these questions using a simulator which models the data-
plane of BitTorrent.1 We believe our study is complementary
to previous BitTorrent studies. Our principal findings are as
follows:

First, we find BitTorrent to be remarkably robust and
scalable at ensuring high uplink bandwidth utilization. It scales
well as the number of nodes increases, keeping the load on the
origin server bounded, even when nodes depart immediately
after completing their downloads. The LRF policy performs
better than alternative block-choosing policies in a wide range
of environments (e.g., flash crowd, post-flash crowd situations,
small network sizes, etc.) By successfully getting rid of the last
block problem, it provides a simpler alternative to previously
proposed source coding strategies, e.g., Digital Fountain [6].

Second, we find that BitTorrent shows sub-optimal behavior
in certain “extreme” workloads:

1) The bandwidth of the origin server is a precious re-
source, especially when it is scarce. It is important that
server deliveruniquepackets to the network at least as
quickly as they can be diffused among the peers. We
present a simple way of ensuring this.

2) BitTorrent’s rate based TFT mechanisms donot pre-
vent unfairness in terms of the data served by nodes,
especially in node populations with heterogeneous band-
widths. We demonstrate that clustering of similar nodes
using bandwidth matchingis key to ensuring fairness

1We do not consider control-plane issues such as the performance of the
centralizedtracker used for locating peers.

without sacrificing uplink bandwidth utilization.
3) BitTorrent’s LRF policy “equalizes” the replication rate

of all blocks. Hence, in a setting where there is a wide
range in the fraction of a file that different nodes already
possess (say because nodes that have downloaded a
file partially rejoin during a subsequent flash crowd),
BitTorrent is not very effective at allowing nodes who
have most of a file to rapidly find the few blocks that
they are missing.

In addition to elaborating on these findings, we present
simple yet effective techniques to alleviate the unfairness in
BitTorrent.

The main focus of our evaluation is on BitTorrent’s perfor-
mance in flash-crowd scenarios. We believe that such scenarios
are a critical test for systems such as BitTorrent, since it
is such overload conditions that make provisioning a server-
based content distribution system hard and make peer-to-peer
alternatives such as BitTorrent seem appealing. That said, we
do consider a few alternative scenarios as well.

The rest of the paper is organized as follows: in Section II,
we present a brief overview of the BitTorrent system. Sec-
tion III discusses related analytical and measurement-based
studies. Section IV describes our simulation environment and
the evaluation metrics. More details about our methodology
can be found in [7]. The main contribution of our work
appears in Sections V through VIII, where we present a
simulation-based evaluation of BitTorrent under a variety of
configurations and workloads. We conclude in Section IX.

II. B ITTORRENTOVERVIEW

BitTorrent [1] is a P2P application whose goal is to enable
fast and efficient distribution of large files by leveraging the
upload bandwidth of the downloading peers. The basic idea
is to divide the file into equal-sizedblocks (typically 32-256
KB in size) and have nodes download the blocks from multiple
peers concurrently. The blocks are further subdivided intosub-
blocks to enablepipelining of requests so as to mask the
request-response latency [8].

Corresponding to each large file available for download
(called a torrent), there is a central component called the
tracker that keeps track of the nodes currently in the system.
The tracker receives updates from nodes periodically (every
30 minutes) as well as when nodes join or leave the torrent.

Nodes in the system are eitherseeds, i.e., nodes that have a
complete copy of the file and are willing to serve it to others,
or leechers, i.e., nodes that are still downloading the file but are
willing to serve the blocks that they already have to others.2

When a new node joins a torrent, it contacts the tracker to
obtain a list containing a random subset of the nodes currently
in the system (both seeds and leechers). The new node then
attempts to establish connections to about 40 existing nodes,
which then become itsneighbors. If the number of neighbors
of a node ever dips below 20, the node contacts the tracker
again to obtain a list of additional peers it could connect to.

2In the rest of the paper, unless otherwise specified, we will use the terms
“node” and “leecher” interchangeably.

Each node looks for opportunities to download blocks from
and upload blocks to its neighbors. In general, a node has a
choice of several blocks that it could download. It employs
a local rarest first (LRF)policy in picking which block to
download: it tries to download the block that is least replicated
among its neighbors.

A tit-for-tat (TFT) policy is employed to guard against free-
riding: a node preferentially uploads to neighbors that provide
it the best download rates. Each node limits the number of
concurrent uploads to a small number, typically 5. Seeds have
nothing to download, but they follow a similar policy: they
upload to up to 5 nodes that have the highest download rate.

The mechanism used to limit the number of concurrent
uploads is calledchoking, which is the temporary refusal of
a node to upload to a neighbor. Only the connections to the
chosen neighbors (up to 5) areunchokedat any point in time.
A node reevaluates the download rate that it is receiving from
its neighbors every 10 seconds to decide whether a currently
unchoked neighbor should be choked and replaced with a
different neighbor.

BitTorrent also incorporates anoptimistic unchokepolicy,
wherein a node, in addition to the normal unchokes described
above, unchokes a randomly chosen neighbor regardless of
the download rate achieved from that neighbor. Optimistic
unchokes are typically performed every 30 seconds. This
mechanism allows nodes to discover neighbors offering higher
download rates, as well as enables new nodes to obtain their
first block.

III. R ELATED WORK

There have been analytical as well as measurement-based
studies of the BitTorrent system. At the analytical end, Qiu and
Srikant [5] have considered a simple fluid model of BitTorrent.
Their main findings are: (a) the system scales very well, i.e.
the average download time is not dependent on the node arrival
rate, and (b) file sharing is very effective, i.e. there is a high
likelihood that a node holds a block that is useful to its peers.

Izal et al. [3] and Pouwelse et al. [4] present measurement-
based studies of BitTorrent based on tracker logs of different
torrents. The main findings of these studies are: (a) the average
download rate is consistently high; (b) as soon as a node has
obtained a few chunks, it is able to start uploading to its peers
(the local rarest first policy works); (c) the node download
and upload rates are positively correlated (tit-for-tat policy
works); and (d) nodes might not stay on in the system (as
seeds) after completing their download. So it is the few long-
lived seeds that are critical for file availability. Accordingly,
in our experiments, we simulate a small number of long-lived
seeds, with leechers departing as soon as they have finished
downloading.

Gkantsidis and Rodriguez [9] present a simulation-based
study of a BitTorrent-like system. They show results indicating
that the download time of a BitTorrent-like system is not
optimal, especially in settings where there is heterogeneity in
node bandwidth. They go on to propose a network coding [10]
based scheme called Avalanche that alleviates these problems.

Our study differs from previous studies of BitTorrent in
the following important ways: first, while the analytical study
reported in [5] presents the steady state scalability properties
of BitTorrent, it ignores a number of important BitTorrent
parameters (e.g., node degree (d), maximum concurrent up-
loads (u)), and environmental conditions (e.g., seed bandwidth,
etc.) that could affect uplink bandwidth utilization. Second,
previous studies only briefly allude to free-riding; in this paper,
we quantify systematic unfairness in BitTorrent and present
mechanisms to alleviate it.

Finally, there have been a number of proposals for peer-
to-peer content distribution systems that employ a BitTorrent-
like swarming approach (although at least some of these were
proposed independently of BitTorrent). The innovations in
these proposals include the use of erasure coding (e.g., [2]),
adaptive strategies for peer selection (e.g., Slurpie [11]), and
a combination of the two (e.g., Bullet [12] and Bullet’ [13]).
While some of the techniques we evaluate here overlap with
those presented in this body of work, we believe that our
analysis is able to uncover the impact of each technique
individually in the context of BitTorrent, something that is
hard to do with new and different systems that incorporate
a number of new techniques. Also, the issue of fairness that
we focus on has not received much attention in this previous
work.

IV. M ETHODOLOGY

To explore aspects of BitTorrent that are difficult to study
using traces of real torrents [3, 4] or analysis [5], we use a
simulation-based approach for understanding and deconstruct-
ing BitTorrent performance. Such an approach provides the
flexibility of carefully controlling the configuration parameters
of the various BitTorrent mechanisms, or even selectively
turning off certain mechanisms and replacing them with
alternatives. This would be difficult or even impossible to
achieve using live Internet measurement techniques (e.g., using
tracker logs [3, 4] or by participating in a live-torrent). Thus,
while certain interactions specific to a real deployment will
be missed, we believe the abstraction is rich enough to expose
most details that are relevant to our experiments. We briefly
describe our simulator and define the metrics used in our
evaluation. More details can be found in [7].

A. Simulator Details

Our discrete-event simulator models peer activity (joins,
leaves, block exchanges) as well as many of the associated
BitTorrent mechanisms (local rarest first, tit-for-tat, etc.) in
detail. We have made the software available [14]. The network
model associates a downlink and an uplink bandwidth for each
node, which allows modeling asymmetric access networks.
The simulator uses these bandwidth settings to appropriately
delay the blocks exchanged by nodes. The delay calculation
takes into account the number of flows that are sharing the
uplink or downlink at either end, which may vary with time.
Doing bandwidth-sensitive delay computation for each block
transmission is expensive enough that we have to limit the

maximum scale of our experiments to 8000 nodes on a P4
2.7GHz, 1GB RAM machine.

Given the computational complexity of even the simple
model above, we decided to simplify our network model in the
following ways. First, we do not model network propagation
delay, which is relevant only for the small-sized control pack-
ets (e.g., the packets used by nodes to request blocks from their
neighbors). We believe that this simplification does not have
a significant impact on our results because (a) the download
time is dominated by the data traffic (i.e., block transfers),
and (b) BitTorrent’s pipelining mechanism (Section II) masks
much of the control traffic latency in practice. Second, we
do not model the packet-level dynamics of TCP connections.
Instead, we make the assumption that connections traversing a
link share the link bandwidth equally, with the share of each
connection fluctuating as the number of connections varies.
Note that BitTorrent’s store-and-forward mode of operation at
the granularity of blocks is unaffected by this simplification.
Although this simplification means that TCP “anomalies” (e.g.,
timeouts) are not modeled, we believe that the relatively long
length of the connections mitigates this issue. Note that, while
an individual block in BitTorrent may not be very long (32-
256 KB), data flow is kept as continuous as possible using
pipelining of block requests. Finally, we do not model shared
bottleneck links in the interior of the network. We assume
that the bottleneck link is either the uplink of the sending
node or the downlink of the receiving node. While Akella et
al. [15] characterize bandwidth bottlenecks in the interior of
the network, their study specifically ignores edge-bottlenecks
by conducting measurements only from well-connected sites
(e.g., academic sites). The interior-bottlenecks they find are
generally fast enough (≥ 5 Mbps) that the edge-bottleneck is
likely to dominate in most realistic settings. Hence we believe
that our focus on just edge-bottlenecks is reasonable.

We also make one simplification in modeling BitTorrent
itself. We ignore theendgame mode[8], which is used by
BitTorrent to make the end of a download faster by allowing
a node to request the sub-blocks it is looking for in parallel
from multiple peers. This is inconsequential to our study
because: (a) the endgame mode has no effect on steady-state
performance, and (b) it does not help with the “last block”
problem which we study in Section VI-C. Recall that the last
block problem occurs when a node has difficultyfindinga peer
that possesses the last block, increasing the overall download
time significantly in many distribution systems. Since the
endgame mode assumes the availability of the last block at
multiple peers it plays no role in removing this potential
bottleneck.

B. Metrics

We quantify the effectiveness of BitTorrent in terms of the
following metrics:

Link utilization: We use the mean utilization of the peers’
uplinks and downlinks over time as the main metric for
evaluating BitTorrent’s efficacy. The utilization at any point

in time is computed as the ratio of the aggregate traffic
flow on all uplinks/downlinks to the aggregate capacity of all
uplinks/downlinks in the system;i.e., the ratio of the actual
flow to the maximum possible.

Notice that if all the uplinks in the system are saturated, the
system as a whole is serving data at the maximum possible
rate. While downlink utilization is also an important metric to
consider, the asymmetry of most Internet access links makes
the uplink the key determinant of performance. Also, by
design, duplicate file blocks (i.e., blocks that a leecher already
has) are never downloaded. Note that a small amount of uplink
bandwidth could be “wasted” in BitTorrent due to duplicate
sub-block requests during endgame mode; however, as noted
above, we do not model this mode. Hence, themean download
time for leechers is inversely related to the average uplink
utilization. Because of this and the fact that observed uplink
utilization is easier to compare against the optimal value (i.e.,
100%), we do not explicitly report the mean download time
for most of our experiments.

Fairness:The system should be fair in terms of the number
of blocks served by the individual nodes. No node should
be compelledto upload much more than it has downloaded.
Nodes thatwillingly serve the system as seeds are, of course,
welcome, but deliberate free-riding should not be possible.
Fairness is important for there to be an incentive for nodes to
participate, especially in settings where ISPs charge based on
uplink usage or uplink bandwidth is scarce.

We quantify fairness using thenormalized count of file
blocks uploaded by a node, i.e., the number of blocks uploaded
divided by the number of blocks in the file. So, for example,
a normalized load of 1.5 means that the node serves a volume
of data equivalent to 1.5 copies of the file. We also use the
normalized count of blocks served to quantify the load on the
seed(s) in the system.

Optimality: Throughout this paper we will refer to a system
as having optimal utilization if it achieves the maximum
possible link utilization, and having complete fairness if every
leecher downloads as many blocks as it uploads. We will
refer to the system as being optimal on the whole if it has
optimal utilizationas well ascomplete fairness. Note that a
heterogeneous setting can have differing degrees of fairness
for the same level of bandwidth utilization.

V. EXPERIMENT OVERVIEW

A. Workload Derived from a Real Torrent

In order to set the stage for the experiments to follow, we
first examine how our simulator performs under a realistic
workload. We consider two important workload parameters:
(a) node arrival pattern, and (b) uplink and downlink band-
width distribution. To derive realistic arrival patterns, we
use the tracker log for the Redhat 9 distribution torrent [3].
Table I describes the distribution of peer bandwidth, which
was derived from the Gnutella study reported in [16]. While
discretizing the CDFs presented in [16], we excluded the tail
of the distribution. This means that (a) dial-up modems are

eliminated, since it is unlikely that they will participate in
such large downloads, and (b) very high bandwidth nodes are
eliminated, making the setting more bandwidth constrained.
We set the seed bandwidth to 6000 kbps.

Downlink (kbps) Uplink (kbps) Fraction of nodes
784 128 0.2
1500 384 0.4
3000 1000 0.25
10000 5000 0.15

TABLE I: Bandwidth distribution of nodes derived from the
actual distribution of Gnutella nodes [16].

In order to make the simulations tractable, we made two
changes. First, we used a file size of 200 MB (with a block
size 256 KB), which is much smaller than the actual size of
the Redhat torrent (1.7 GB). This means the download time
for a node is smaller and the number of nodes in the system
at any single point is also correspondingly smaller. Second,
we present results only for thesecondday of the flash crowd.
This day witnesses over 10000 node arrivals; however, due
to the smaller file download time, the maximum number of
active nodes in the system at any time during our simulations
was about 300.

The simulation results can be summarized as follows:
The observed uplink utilization was91%; this means that
the overall upload capability of the network is almost fully
utilized. However, this comes at the cost of considerable skew
in load across the system. The seed serves approximately
127 copies of the file into the network. Worse, some clients
uploaded6.26 times as many blocks as they downloaded,
which represents significant unfairness. These results lead to
a number of interesting questions:

1) How robust is the high uplink utilization to variations in
system configuration and workload, e.g., differing num-
ber of seeds and leechers, join-leave patterns, bandwidth
distribution, etc.?

2) Can the fairness of the system be improved without
hurting link utilization?

3) How well does the system perform when there is het-
erogeneity in terms of the extent to which leechers have
completed their download e.g., new nodes coexisting
with nodes that have already completed most of their
download?

4) How sensitive is system performance to parameters such
as the node degree (i.e., the number of neighbors of a
node) and the maximum number of concurrent uploads?

To answer these questions, we present a detailed simulation-
based study of BitTorrent in the sections that follow.

B. Road-map of Experiments

Unless otherwise specified, we use the following default
settings in our experiments:

• File size: 100 MB (400 blocks of 256 KB each)
• Number of initial seeds: 1 (the origin server, which stays

on throughout the duration of the experiment)
• Seed uplink bandwidth: 6000 Kbps

• Number of leechers that join the system (n): 1000
• Leecher downlink/uplink bandwidth: 1500/400 kbps
• Join/leave process: a flash crowd where all leechers join

within a 10-second interval. Leechers depart as soon as
they finish downloading.

• Number of neighbors of each node (degreed): 7.
• Maximum number of concurrent upload transfers (u): 5

The key parameters that affect the evolution of a torrent are:
(1) the number of seed(s) and their serving capacity, (2) the
number of leechers that wish to download, (3) the policies
that nodes use to swap blocks among themselves, (4) the
distribution of node upload/download capacities, and (5) the
arrival/departure pattern of the leechers.

We start in Section VI by examining only (1), (2) and (3).
That is, we consider a homogeneous setting where all leechers
have the same downlink/uplink bandwidth (1500/400 Kbps
by default, as noted above), and arrive in a flash crowd. We
explore the impact of the number of leechers, the number of
initial seeds, aggregate bandwidth of seeds, etc. This section
also evaluates BitTorrent’s LRF policy for picking blocks. We
wish to point out that, although we use a small node degree
(d = 7), our results are not affected at higher node degrees.
We present results with a small node degree to emphasize
BitTorrent’s resilience with respect to this parameter.

Then in Section VII we examine (4) and turn to a het-
erogeneous flash-crowd setting where there is a wide range
in leecher bandwidth. We consider 3 kinds of connectivity
for leechers: high-end cable (6000/3000 Kbps), high-end DSL
(1500/400 Kbps), and low-end DSL (784/128 Kbps).

Finally, in Section VIII, we turn to (5) and consider work-
loads other than a pure flash-crowd scenario. In particular, we
consider cases where leechers with very different download
“objectives” coexist in the system. For instance, new nodes
in the post-flash crowd phase compete with nodes that have
already downloaded most of the blocks. Likewise, an old node
that reconnects during the start of a new flash crowd to finish
the remaining portion of its download competes with new
nodes that start their downloads.

VI. H OMOGENEOUSENVIRONMENT

In this section, we study the performance of BitTorrent
in a setting consisting of a homogeneous (with respect to
bandwidth) collection of leechers. Figures presented in this
section and the next (Sec. VII) represent the results of a single
simulation run, since the differences across multiple runs were
found to be statistically insignificant.

A. Number of nodes

First we examine the performance of the system with
increasing network size. We vary the number of nodes that
join the system from 50 to 8000. All nodes join during a
10 second period, and remain in the system until they have
completed the download. Figure 1a shows that upload capacity
utilization (see Section IV) is close to 100% regardless of
system size. Utilization is a little short of 100% because
of the start-up phase when nodes are unable to utilize their

uplinks effectively. The high uplink utilization indicates that
the system is performing almost optimally in terms of mean
download time. The downlink utilization, on the other hand,
is considerably lower. This is expected given the asymmetric
access links of the leechers.

Another important measure of scalability is how the work
done by the seed varies with the number of leechers. We
measure this in terms of the normalized number of blocks
served,i.e., the number of blocks served divided by the number
of blocks in one full copy of the file. Ideally, we would like
the work done by the seed to remain constant or increase
very slowly with system size. Figure 1b shows that this is
actually the case. The normalized number of blocks served by
the seed rises sharply initially (as seen from the extreme left of
Figure 1b) but then flattens out. The initial rise indicates that
the seed is called upon to do much of the serving when the
system size is very small, but once the system has a critical
mass of 50 or so nodes, peer-to-peer serving becomes very
effective and the seed has to do little additional work even as
the system size grows to 8000.

In summary, BitTorrent performance scales very well with
increasing system size both in terms of bandwidth utilization
and the work done by the seed.

B. Number of seeds and bandwidths of seeds

Next we consider the impact of numbers of seeds and
aggregate seed bandwidth on the performance of BitTorrent.
We first consider the case where there is a single seed, and
then move on to the case of multiple seeds.

Figure 1c shows the mean upload utilization as the band-
width of a single seed varies from 200 Kbps to 1000 Kbps.
The “nosmartseed” curve corresponds to default BitTorrent
behavior. We see that upload utilization is very low (under
40%) when the seed bandwidth is only 200 Kbps. This is not
surprising since the low seed bandwidth is not sufficient to
keep the uplink bandwidth of the leechers (400 Kbps) fully
utilized, at least during the start-up phase. However, even when
the seed bandwidth is increased to 400 or 600 Kbps, the upload
utilization is still considerably below optimal.

Part of the reason for poor upload utilization is that seed
bandwidth is wasted serving duplicate blocks prematurelyi.e.,
even before one full copy of the file has been served. We
find that about 50% of the blocks are served prematurely
when the seed bandwidth is 400 kbps. Thus, despite the LRF
policy, multiple nodes connected to the seed can operate in
an uncoordinated manner and independently request the same
block.

Once identified, there is a simple fix for this problem.
We have implemented asmartseedpolicy, which has two
components: (a) The seed does not choke a leecher to which
it has transferred an incomplete block. This maximizes the
opportunity for leechers to download and hence serve complete
blocks. (b) For connections to the seed, the LRF policy is
replaced with the following: among the blocks that a leecher
is looking for, the seed serves the one that it has served
the least. This policy improves the diversity of blocks in

 20

 40

 60

 80

 100

 120

 1000 2000 3000 4000 5000 6000 7000 8000

M
ea

n
ut

ili
za

tio
n

ov
er

 ti
m

e
(%

)

Number of nodes

Upload
Download

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 1000 2000 3000 4000 5000 6000 7000 8000

N
or

m
al

iz
ed

 #
bl

oc
ks

Number of nodes

 0

 20

 40

 60

 80

 100

 120

 200 400 600 800 1000

M
ea

n
up

lo
ad

 u
til

iz
at

io
n

(%
)

Seed bandwidth (kbps)

nosmartseed
smartseed

(a) (b) (c)

Fig. 1: (a) Mean upload and download utilization of the system as the flash-crowd size increases. (b) Contribution of the seed node
for different sized flash-crowds. (c) Change in upload utilization as bandwidth of the seed is varied.

the system, and also prevents premature serving of duplicate
blocks. This results in a noticeable improvement in upload
utilization, especially when seed bandwidth is limited and pre-
cious (Figure 1c). It is interesting to note that some BitTorrent
clients have independently and recently incorporated a similar
fix, called the “super-seed” mode [17].

 0

 20

 40

 60

 80

 100

 120

 200 300 400 500 600 700 800 900 1000

M
ea

n
up

lo
ad

 u
til

iz
at

io
n

(%
)

Aggregate bandwidth of seed(s) (kbps)

Multiple independent seeds
Single seed

Fig. 2: Upload utilization for a single seed versus multiple
independent seeds.

Finally, Figure 2 compares the cases of having a single seed
and having multiple independent seeds, each with 200 Kbps
bandwidth, such that the aggregate seed bandwidth is the same
in both cases. All seeds employ the smartseed policy. The
upload utilization suffers in the case of multiple seeds because
the independent operation of the seeds results in duplicate
blocks being served by different seeds, despite the smartseed
policy employed by each seed.

In summary, we find that seed bandwidth is a precious
resource and it is important not to waste it on duplicate
blocks until all blocks have been served at least once. The
“smartseed” policy, which modifies LRF and the choking
policy for the seeds’ connections, results in a noticeable
improvement in system performance.

C. Block choosing policy and Node degree

Next we address the question of the block choosing policy.
As mentioned earlier, the LRF policy is considered as one
of the key aspects of BitTorrent. Here, we investigate its
importance under various conditions. We assume that the seed
employs thesmartseedstrategy introduced in the previous
section.

Before describing our experiments let us quickly revisit the
intuition behind the LRF policy. Since any rare block will
automatically be requested by many leechers, it is unlikely to

remain rare for long. For example, if a rare block is possessed
by only one leecher, it will be among the first blocks requested
by any nodes unchoked by that leecher. This, of course,
decreases its rareness until it is as common in the network
as any other block. This should reduce the coupon collector
or “last block problem” that has plagued many file distribution
systems [6]. These arguments are qualitative. The goal of this
section is to measure how well LRF actually performs.

We investigate 3 issues. First, we compare LRF with an
alternative block choosing policy in which each leecher asks
for a block picked at random from the set that it does not yet
possess but that is held by its neighbors. Second, we examine
how the effectiveness of LRF varies as the seed bandwidth is
varied. Since a high-bandwidth seed delivers more blocks to
the network, the risk of blocks becoming rare is lower. Third,
we examine the impact of varying the node degree,d, which
defines the size of the neighborhood used for searching in the
LRF and random policies.

Figure 3a summarizes the results with regard to the fol-
lowing issues: (a) randomvs. LRF, (b) low seed bandwidth
(400 kbps)vs.high seed bandwidth (6000 kbps), and (c) node
degree,d = 4, 7, and15. In all cases, the leechers had down/up
bandwidths of 1500/400 kbps. Observe that the low bandwidth
seed has only as much upload capacity as one of the leechers.

The general trend is that uplink utilization improves with
increases in both seed bandwidth and node degree. When node
degree is low (d = 4), leechers have a very restricted local
view. So LRF is not effective in evening out the distribution
of blocks at a global level, and performs no better than the
random policy. However, when node degree is even moderately
large (d = 7 or 15) and seed bandwidth is low, LRF
outperforms the random policy by ensuring greater diversity
in the set of blocks held in the system. Finally, when the
seed bandwidth is high, the seed’s ability to inject diverse
blocks into the system improves utilization and also eliminates
the performance gap between LRF and the random policy.
Thus, LRF makes a difference only when node degree is large
enough to make the local neighborhood representative of the
global state and seed bandwidth is low.

In Figure 3b, we graph the average number ofinteresting
connections available to each leecher in the network for the
case ofd = 7. The connection between a node and its peer
is called interesting if the node can send useful data to its

 0

 20

 40

 60

 80

 100

 120

 140

d = 15d = 7d = 4

M
e

a
n

 u
p

lo
a

d
 u

til
iz

a
tio

n
 (

%
)

Size of neighbor set (d)

lobw-rand
lobw-LR

hibw-rand
hibw-LR

 0

 2

 4

 6

 8

 10

 0 500 1000 1500 2000 2500

N
um

be
r o

f i
nt

er
es

tin
g

co
nn

ec
tio

ns

Time (seconds)

lobw-rand
lobw-LR

hibw-rand
hibw-LR

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 340 350 360 370 380 390 400

B
lo

ck
 in

te
r-

a
rr

iv
a

l t
im

e
 (

se
c)

Block number (ordinal)

lobw-rand
lobw-LR

(a) (b) (c)

Fig. 3: (a) Upload utilization for LRF and Random policies for different values of the node degree,d. (b) Variation of the number
of interestingconnections over time ford = 7. (c) Inter-arrival times for blocks at the tail end of the file; each point represents the
mean time to receive thekth block, where the mean is taken over all nodes.

peer. As stated in the caption, each point here represents the
mean number of interesting connections (averaged over all
the nodes in the system) at a particular point in time. Observe
that in the high seed bandwidth case there is little difference
between the LRF and the random block choosing policies
(the top 2 curves in Figure 3b). In the low seed bandwidth
case the difference is very pronounced. With the LRF policy,
the number ofinterestingconnections is significantly higher,
especially towards the end of the download. This underlines
the importance of the LRF policy in the case where seed
bandwidth is low.

Next we plot in Figure 3c the inter-arrival time between
blocks in the case of a low-bandwidth seed. This is the time
between the receipt of consecutive distinct blocks, averaged
across all nodes. We plot this for both the LRF and the random
block choosing policies, withd = 7 in both cases. Recall that
the file size is 400 blocks, so the figure only shows the inter-
arrival time of the last few blocks. The sharp upswing in the
curve corresponding to the random policy clearly indicates the
last-block problem. There is no such upswing with LRF.

In summary, our results indicate that the LRF policy pro-
vides significant benefit when seed bandwidth is low and node
degree is large enough for the local neighborhood of a node
to be representative of the global state. Nevertheless, we find
that the node degree needed for LRF to be effective is quite
modest relative to the total number of nodes in the system.
Specifically, in a configuration with 8000 nodes, we find that
LRF is effective ford = 7, which corresponds to each node
having direct visibility to a neighborhood that represents only
0.09% of the system. However, given the scaling limitations
of our simulator, we are not in a position to extrapolate this
result to larger system sizes.

D. Concurrent Uploads

In BitTorrent, each node uploads to no more than a fixed
number of nodes (u = 5, by default) at a time. This fixed
upload degree limit presents two potential problems. First, hav-
ing too many concurrent uploads delays the availability of full
blocks to the network. That is, if a leecher’s upload capacity
is divided betweenu nodes, there can be a considerable delay
before any of them has a complete block that they can start
serving to others. Second, low peer downlink bandwidth can

constrain uplink utilization. That is, a leecher uploading to a
peer can find itsupload pipe underutilized if the receiving
node actually becomes the bottleneck on the transfer (i.e., has
insufficient availabledownloadbandwidth to receive as rapidly
as the sender can transmit).

Figure 4 graphs the mean upload utilization as a function
of the maximum number of concurrent uploads permitted (i.e.,
u) for low and high bandwidth seeds. We show the results
both with and without thesmartseedfix. (Since u can be
no more thand, we usedd = 60 rather than 7 in this
experiment, to allow us to explore a wide range of settings for
u.) Without thesmartseedfix, as u increases, the probability
that duplicate data is requested from the seed increases causing
link utilization to drop. The drop in utilization is very severe
when seed bandwidth is low, since in such cases, as we
have seen before, good performance critically depends on the
effective utilization of the seed’s uplink. We see utilization
dropping gradually even when thesmartseedfix is applied.
The reason is that a largeu causes the seed’s uplink to get
fragmented, increasing the time it takes for a node to fully
download a block that it can then serve to others.

Thus, an adaptive strategy for maintaining the number of
concurrent connections such as in [11, 13] may be able to
achieve the right balance.

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 5 10 15 20

M
ea

n
up

lo
ad

 u
til

iz
at

io
n

(%
)

Max. #concurrent uploads

lobw-nosmart
lobw-smart

hibw-nosmart
hibw-smart

Fig. 4: Utilization for different values of the maximum number
of concurrent uploads (u).

VII. H ETEROGENEOUSENVIRONMENT

In this section, we study the behavior of BitTorrent when
node bandwidth is heterogeneous. As described in Section IV-
B, a key concern in such environments is fairness in terms
of the volume of data served by nodes. Recall that in the

workload derived from Redhat torrent log (Section V-A),
some nodes uploaded 6.26 times as many blocks as they
downloaded. Such unfairness is undesirable, especially since
uplink bandwidth is generally a scarce resource. BitTorrent im-
plements only arate-basedTFT policy, which can still result in
unfairness in terms of the volume of data served. This section
quantifies the extent of the problem and presents mechanisms
that enforce stricter fairness without hurting uplink utilization
significantly.

A node in BitTorrent unchokes those peers from whom it
is getting the best download rate. The goal of this policy is
to match up nodes with similar bandwidth capabilities. For
example, a high-bandwidth node would likely receive the best
download rate from other high-bandwidth nodes, and so would
likely be uploading to such high-bandwidth nodes in return. To
help nodes discover better peers, BitTorrent also incorporates
an optimistic unchoke mechanism. However, this mechanism
significantly increases the chance that a high bandwidth node
unchokes and transfers data to nodes with poorer connectivity.
Not only can this lead to decrease in uplink utilization (since
the download capacity of the peer can become the bottleneck),
it can also result in the high bandwidth node serving a larger
volume of data than it receives in return. This also implies that
the download times of lower bandwidth nodes will improve at
the cost of higher bandwidth nodes.

We consider two simple mechanisms that can potentially re-
duce such unfairness: (a) Quick bandwidth estimation (QBE),
and (b) Pairwise block-level TFT. Note that enforcing fairness
implies that the download time of a node will be inversely
related to itsupload capacity (assuming that its uplink is
slower than its downlink).

A. Quick Bandwidth Estimation

In BitTorrent, optimistically unchoked peers are rotated
every 30 seconds. The assumption here is that 30 seconds
is a long enough duration to establish a reverse transfer
and ascertain the upload bandwidth of the peer in consider-
ation. Furthermore, BitTorrent estimates bandwidth only on
the transfer of blocks; since all of a node’s peers may not
have interesting data at a particular time, opportunity for
discovering good peers is lost.

Instead, if a node were able to quickly estimate the upload
bandwidth for all itsd peers, optimistic unchokes would not
be needed. The node could simply unchoke theu peers out of
a total ofd that offer the highest upload bandwidth.

In practice, a quick albeit approximate bandwidth estimate
could be obtained using lightweight schemes based on the
packet-pair principle [18] that incur much less overhead than
a full block transfer. Also, the history of past interactions with
a peer can be used to estimate its upload bandwidth.

In our experiments here, we neglect the overhead of QBE
and effectively simulate an idealized bandwidth estimation
scheme whose overhead is negligible relative to that of a block
transfer.

B. Pairwise Block-Level Tit-for-Tat

The basic idea here is to enforce fairness directly in terms
of blocks transferred rather than depending on rate-based TFT
to match peers based on their upload rates. Suppose that node
A has uploadedUab blocks to nodeB and downloadedDab

blocks from B. With pairwise block-level TFT,A allows a
block to be uploaded toB if and only if Uab ≤ Dab + ∆,
where ∆ represents the unfairness threshold on this peer-
to-peer connection. This ensures that the maximum number
of extra blocks served by a node (in excess of what it has
downloaded) is bounded byd∆, where d is the size of its
neighborhood. Note that with this policy in place, a connection
is (un)choked depending on whether the above condition is
satisfied or not. Also, there is no need for the choker to be
invoked periodically.

Thus, provided that∆ is at least one (implying that new
nodes can start exchanges), this policy replaces the optimistic
unchoke mechanism and bounds the disparity in the volume
of content served. However, it is important to note that there
is a trade-off here. The block-level TFT policy may place a
tighter restriction on data exchanges between nodes. It may
so happen, for example, that a node refuses to upload to any
of its neighbors because the block-level TFT constraint is not
satisfied, reducing uplink utilization. We quantify this trade-off
in the evaluation presented next.

C. Results

We now present performance results for vanilla BitTorrent
as well as the new mechanisms described above with respect
to three metrics: (a) mean upload utilization (Figures 5 and 7);
and (b) unfairness as measured by the (normalized) maximum
number of blocks served by a node (Figures 6 and 8). All
experiments in this section use the following settings: a flash-
crowd of 1000 nodes joins the torrent during the first 10
seconds. In each experiment, there are an equal number of
nodes with high-end cable modem (6000 Kbps down; 3000
Kbps up), high-end DSL (1500 Kbps down; 400 Kbps up), and
low-end DSL (784 Kbps down; 128 Kbps up) connectivity. We
vary the bandwidth of the seed from 800 Kbps to 6000 Kbps.
Seeds always utilize thesmartseedfix.

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 10 20 30 40 50 60

M
ea

n
up

lo
ad

 u
til

iz
at

io
n

(%
)

Node degree (d)

Vanilla BitTorrent
Quick BW Estimation

Pairwise TFT (Delta=2)

Fig. 5: Mean upload utilization for (a) vanilla BitTorrent, (b)
BitTorrent with QBE, and (c) with the pairwise block-level TFT
policy.

Figure 5 shows the mean upload utilization of BitTorrent
and other policies in a heterogeneous setting, as a function
of node degree. We find that utilization is sub-optimal in

many cases, and especially low with pairwise block-level TFT,
when the node degree is low (d = 7). The reason is that
when the node degree is low, high-bandwidth nodes sometimes
have only low-bandwidth peers as neighbors. This restricts the
choice of nodes that the high-bandwidth node can serve to such
low-bandwidth nodes, despite the QBE heuristic. A bandwidth
bottleneck at thedownlink of the low-bandwidth peer would
reduce the uplink utilization at the high-bandwidth node. This
degradation is particularly severe with pairwise block-level
TFT, since in this case the high-bandwidth node is constrained
to upload at a rate no greater than theuplink speed of its
low-bandwidth peers. In all cases, uplink utilization improves
as the node degree becomes larger, since the chances of a
high-bandwidth node being stuck with all low-bandwidth peers
decreases.

 0

 2

 4

 6

 8

 10

 0 10 20 30 40 50 60

M
ax

 #
bl

oc
ks

 s
er

ve
d

(N
or

m
al

iz
ed

)

Node degree (d)

Vanilla BitTorrent
Quick BW Estimation

Pairwise TFT (Delta=2)

Fig. 6: Maximum number of blocks (normalized by file size)
served by any node during an experiment for various policies.

The interaction between high-bandwidth nodes and their
low-bandwidth peers also manifests itself in terms of a dis-
parity in the volume of data served by nodes. Figure 6 plots
the maximum number of blocks served by a node normalized
by the number of blocks in the file. The seed node is not
included while computing this metric. We would like to point
out that Jain’s fairness index [19], computed over the number
of blocks served by each node, is consistently close to 1 for all
schemes, implying that the schemes are fair “on the whole”.

However, as Figure 6 shows, some nodes can still be very
unlucky, serving more than 7 times as many blocks as they
receive in certain situations. All of these unlucky nodes are
in fact high-bandwidth nodes. The pairwise block-level TFT
policy eliminates this unfairness by design. Figure 6 bears this
out. Also, the QBE heuristic reduces unfairness significantly
when the node degree is large enough that block transfers
between bandwidth-mismatched nodes can be avoided.

Bandwidth-matching tracker policy:To alleviate the prob-
lems resulting from block transfers between bandwidth-
mismatched nodes, we investigate a newbandwidth-matching
tracker policy. The idea here is for the tracker to return to a
new node a set of candidate neighbors with similar bandwidth
to it. This can be accomplished quite easily in practice by
having nodes report their bandwidth to the tracker at the time
they join. (We ignore the possibility of nodes gaming the
system by lying about their bandwidth.) Having bandwidth-
matched neighbors would avoid the problems arising from
bandwidth-mismatched pairings.

Care is needed in designing this policy. Having the tracker

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 10 20 30 40 50 60

M
ea

n
up

lo
ad

 u
til

iz
at

io
n

(%
)

Node degree (d)

Vanilla BitTorrent
Quick BW Estimation

Pairwise TFT (Delta=2)

Fig. 7: Upload utilization with the bandwidth-matching tracker
policy. Compare Figure 5.

 0

 2

 4

 6

 8

 10

 0 10 20 30 40 50 60

M
ax

 #
bl

oc
ks

 s
er

ve
d

(N
or

m
al

iz
ed

)

Node degree (d)

Vanilla BitTorrent
Quick BW Estimation

Pairwise TFT (Delta=2)

Fig. 8: Number of blocks served (normalized by file-size) with
the bandwidth-matching tracker policy. Compare Figure 6.

strictly return only a list of bandwidth-matched peers runs the
risk of significantly diminishing the resilience of the peer-to-
peer graph, by having only tenuous links between “clouds”
of bandwidth-matched nodes. In fact, we have found several
instances in our experiments where groups of clients were dis-
connected from the rest of the network and the disconnection
did not heal quickly because the tracker, when queried, would
often return a list of peers that are also in the disconnected
component.

To avoid this problem, we employ a hybrid policy where the
tracker returns a list of peers, 50% of which are bandwidth-
matched with the requester and 50% are drawn at random. The
former would enable the querying node to find bandwidth-
matched neighbors whereas the latter would avoid the discon-
nection problem.

Figures 7 and 8 show the upload utilization and fairness
metrics, respectively, with the (hybrid) bandwidth-matched
tracker policy in place. We find a significant improvement in
both metrics across a range of values of node degree, as can
be seen by comparing Figures 7 and 5, and Figures 8 and 6.

In summary, we find that a bandwidth-unaware tracker com-
bined with the optimistic unchoke mechanism in BitTorrent
results in nodes with disparate bandwidths communicating
with each other. This results in lower uplink utilization and
also creates unfairness in terms of volume of data served
by nodes. However, it is possible to obtain a reasonable
combination of high upload utilization and good fairness
with simple modifications to BitTorrent. Whereas the pairwise
block-level TFT policy achieves excellent fairness and good
upload utilization, the QBE heuristic achieves excellent upload
utilization and good fairness. The hybrid bandwidth-matching
tracker policy is critical to both.

VIII. O THER WORKLOADS

Thus far we have focused on the performance of BitTor-
rent in flash-crowd scenarios. While a flash-crowd setting is
important, it also has the property that each node is typically
in “sync” with its peers in terms of the degree of completion
of its download. For instance, all nodes join the flash crowd
at approximately the same time and with none of the blocks
already downloaded.

However, there are situations, such as the post-flash-crowd
phase, where there may be a greater diversity in the degree
of completion of the download across the peers. This in turn
would result in a divergence in the download goals of the
participating nodes — those that are starting out have a wide
choice of blocks that they could download whereas nodes that
are nearing the completion of their download are looking for
specific blocks that they are missing.

Here we consider two extremes of the divergent goals
scenario. In the first case, a small number of new nodes join
when the bulk of the existing nodes are nearing the completion
of their download. This might reflect a situation where new
nodes join in the post-flash-crowd phase. In the second case,
a small number of nodes that have already completed the bulk
of their download at some point in the past rejoin the system
during a subsequent flash crowd to complete their download.
The majority of their peers in this case would be nodes that
have not downloaded much of the file.

A. Performance of Nodes in the Post-Flash Crowd Phase

A post flash-crowd scenario is different from a flash-crowd
in that there may be a wide range in the fraction of the
download completed by each node. Nodes that have been
present in the system longer are typically looking for a more
specific set of blocks. Thus, it may be harder for a newcomer to
establish a TFT exchange with such older nodes, which could
lead to increased download times as well as greater load on
the seed. Our goal here is to investigate whether this problem
actually happens and how severe it is.

We start with a flash crowd of 1000 nodes joining in the
first 10 seconds of the experiment. Then, a batch of 10 nodes
is introduced into the system at 1800 seconds, when the flash-
crowd nodes have finished downloading approximately 80%
of the file-blocks. All nodes have down/up bandwidths of
1500/400 Kbps. We use two settings for seed bandwidth: 800
Kbps (low) and 6000 Kbps (high). The seed node utilizes the
smartseedfix.

Figure 9 plots the number ofinterestingoutgoing connec-
tions over time, averaged over all newly joined nodes,until
all the flash-crowd nodes leave. An outgoing connection is
deemed interesting if the node in question has some block that
its peer needs. Note that the newcomer would be interested
in content from almost all its peers during the first several
seconds since it does not have any block to start with. Thus,
for every interesting connection, the newcomer can establish
a TFT exchange with its peer.

Figure 9 shows that a newcomer is quickly able to gather
blocks that are interesting to at least a few of its peers, as

 0

 10

 20

 30

 40

 50

 0 100 200 300 400

#I
nt

er
es

tin
g

co
nn

ec
tio

ns
(o

ut
go

in
g)

Time (seconds)

lobw-LRF
hibw-LRF

Fig. 9: Number of interestingoutgoing connections of a randomly
sampled post flash-crowd node for (a) low-bandwidth seed, and
(b) high-bandwidth seed.

seen from the non-zero count of interesting connections in the
figure. The reason that a newcomer is quickly able to establish
interesting connections to its peers is as follows: ifp is the
probability that a downloaded block is interesting to some
neighbor, and if this probability is the same and independent
for each neighbor, then the probability that a downloaded
block is useful to at least one neighbor is1− (1− p)d. This
probability increases very quickly withd, even ifp is relatively
small. Thus, while a large degree,d, may not be necessary for
a flash-crowd situation, it is important for ensuring effective
TFT exchanges for new nodes that join in the post-flash-crowd
phase.

B. Performance of Pre-seeded Nodes

We now consider the case where a small number of nodes
which have already completed the bulk of their download
(i.e., nodes that have been “pre-seeded” with the bulk of the
blocks) rejoin the system during a subsequent flash crowd to
complete their download. The key question is whether and to
what extent such pre-seeded nodes are penalized because they
are looking for specific blocks whereas the majority of nodes
in the system are interested in most of the blocks (since they
have few blocks).

Again, we start with a flash-crowd of 1000 nodes joining in
the first 10 seconds. After that, a new node is introduced every
200 seconds into the system. Each new node is pre-seeded with
a random selection ofk% blocks – this simulates a situation
where the node completedk% of its download, disconnected,
and then re-joined during a subsequent flash-crowd to finish
its download. Ideally, a node that is pre-seeded withk% of the
blocks should take approximately(1− k

100)T time to download
the remaining blocks, whereT is the mean time to download
the entire file. (T = 2000 seconds, for this setting.) However, a
pre-seeded node could take longer because the specific blocks
that it is looking for may be hard to find, a penalty that we
would like to quantify.

Figure 10 plots the ratio of actual download time to the ideal
download time for such a “pre-seeded” node that joined 200
seconds into the flash crowd, for different values ofk. A ratio
close to 1.0 indicates that a pre-seeded node does not have to
wait substantially longer than ideal. We use a seed bandwidth
of 6000 Kbps in this experiment; thus, the seed has injected at
least one copy of each block into the system at approximately

 0

 1

 2

 3

 4

 5

 6

BitTorrent + FECBitTorrent

D
ow

nl
oa

d
tim

e
ra

tio

Mechanism

75% blocks
85% blocks
95% blocks

Fig. 10: Download time ratios for a pre-seeded node introduced
into the system at 200 seconds into the flash crowd.

135 seconds.
From the bars labeled “BitTorrent” in Figure 10, we see

that as the number of blocks required by the pre-seeded node
decreases, the likelihood of the node taking longer than ideal
to finish increases.3

There are two reasons for this behavior: first, each block
takes a non-trivial amount of time to spread out from the seed
to every node in the system. The maximum possible fanout of
this distribution tree is bounded byu = 5 (refer Section V-B).
Furthermore, the degreed of the pre-seeded node determines
how quickly it can “intercept” this distribution tree. The
second reason is that a pre-seeded node is looking for specific
blocks, and would like these blocks to be replicated quickly.
However, BitTorrent’s LRF policy dictates that all blocks get
replicated equally so that none remains rare. This “resource-
sharing” across blocks decreases the distribution rate of the
specific blocks desired by the pre-seeded node, resulting in
larger download times.

Notice that pre-seeded nodes are delayed basically because
they are looking forspecific blocks. If the source were to
employ Forward Error Correction (FEC) [20]4 and inject
a large number ofequivalentcoded blocks into the system,
pre-seeded nodes would have a greater choice of blocks to
download and hence should be able to reduce the download
time penalty. Note that injecting additional blocks does not
waste seed bandwidth since every unique block uploaded by
the seed is equally useful. We repeated the above experiment
with the source introducing 100% additional FEC-encoded
blocks. As shown in the bars labeled “BitTorrent+FEC” in
Figure 10, the download time ratio with FEC are substantially
lower. The download time ratio is close to 1.0 fork = 75%
and85%, and well under 2.0 even whenk = 95%.

Summary

Our experiments with the divergent goals scenarios indicates
that BitTorrent tends to “equalize” the performance of newly
joined nodes that have fewer or more blocks than the average
node. The ones that have fewer blocks are “pulled up” since
the LRF mechanism is able to ensure that the new nodes

3Note that this increase is in theratio of the actual to ideal download times,
not in the absolute difference between these times.

4With FEC, the source blocks are augmented with coded blocks, such that
the possession of a threshold number of blocks, whether source or coded, is
sufficient to recover the original content.

quickly become effective in TFT exchanges. The ones that
have a larger number of blocks get “pulled down” (even if
the penalty is not much in terms of absolute time) because
the LRF policy does not preferentially replicate the specific
blocks that such nodes are looking for. A simple application
of source-based FEC can significantly reduce the severity of
this problem.

IX. SUMMARY AND CONCLUSION

In this paper, we have described a series of experiments
aimed at analyzing and understanding the performance of
BitTorrent in a range of scenarios. We focused our attention on
two main metrics: utilization of the upload capacity of nodes,
and (un)fairness in terms of the volume of data served by
nodes. Our emphasis on fairness stems from the belief that any
systematic unfairness in a P2P network is quickly exploited,
reducing the effectiveness of the overall network.

Our findings are summarized as follows:(a) BitTorrent’s
rate-based Tit-For-Tat (TFT) policy fails to prevent unfairness
across nodes in terms of volume of content served. This
unfairness arises principally in heterogeneous settings when
high bandwidth peers connect to low bandwidth ones.(b)
The combination of pairwise block-level TFT (Section VII-
B) and the bandwidth matching tracker (Section VII-C) almost
eliminates the unfairness of BitTorrent with a modest decrease
in utilization. (c) It is critical to conserve seed bandwidth,
especially when it is scarce; it is important that the seed
node serve unique blocks at first (which it alone can do) to
ensure diversity in the network, rather than serve duplicate
blocks (a function that can be performed equally well by the
leechers).(d) The Local Rarest First (LRF) policy is critical
in eliminating the “last block” problem and ensuring that new
leechers quickly have something to offer to other nodes.

ACKNOWLEDGMENTS

We thank Phil Chou, Kamal Jain, Pablo Rodriguez, and
Aditya Ramamoorthy for participating in discussions and for
their insightful suggestions. We thank Ernst Biersack for
providing us the Redhat tracker log, and Sharad Agarwal
for his comments an earlier draft of this paper. Finally, we
thank the anonymous reviewers whose comments improved
the paper.

REFERENCES

[1] “BitTorrent,” http://bittorrent.com .
[2] J. Byers, J. Considine, M. Mitzenmacher, and S. Rost, “Informed

Content Delivery Across Adaptive Overlay Networks,”SIGCOMM,
Aug. 2002.

[3] M. Izal, G. Urvoy-Keller, E.W. Biersack, P. Felber, A. Al Hamra, and
L. Garćes-Erice, “Dissecting BitTorrent: Five Months in a Torrent’s
Lifetime,” PAM, Apr. 2004.

[4] J.A. Pouwelse, P. Garbacki, D.H.J. Epema, and H.J. Sips, “A Mea-
surement Study of the BitTorrent Peer-to-Peer File-Sharing System,”
Technical Report PDS-2004-003, Delft University of Technology, The
Netherlands, April 2004.

[5] D. Qiu and R. Srikant, “Modeling and Performance Analysis of
BitTorrent-like Peer-to-Peer Networks,”SIGCOMM, Sep. 2004.

[6] J. Byers, M. Luby, M. Mitzenmacher, and A. Rege, “A Digital Fountain
Approach to Reliable Distribution of Bulk Data ,”SIGCOMM, Sep.
1998.

[7] A. Bharambe, C. Herley, and V. N. Padmanabhan, “Analyzing and
Improving BitTorrent Performance,” Tech. Rep. MSR-TR-2005-03,
Microsoft Research, February 2005.

[8] Bram Cohen, “Incentives Build Robustness in BitTorrent,” 2003,http:
//bittorrent.com/bittorrentecon.pdf .

[9] C. Gkantsidis and P. Rodriguez, “Network Coding for Large Scale
Content Distribution,” inIEEE INFOCOM, 2005.

[10] R. Ahlswede, N. Cai, S.-Y. R. Li, and R. W. Yeung, “Network
Information Flow,” IEEE Trans on Info Theory, vol. 46, no. 4, pp.
1204–1216, Jul. 2000.

[11] R. Sherwood and R. Braud and B. Bhattacharjee, “Slurpie: A Cooper-
ative Bulk Data Transfer Protocol,” inINFOCOM, Mar 2004.

[12] D. Kostic, A. Rodriguez, J. Albrecht, and A. Vahdat, “Bullet: High
Bandwidth Data Dissemination Using an Overlay Mesh,”Proc. ACM
Symposium on Operating Systems Principles, Oct. 2003.

[13] Dejan Kostic and Ryan Braud and Charles Killian and Erik Vandekieft
and James W. Anderson, “Maintaining High Bandwidth under Dynamic
Network Conditions,” inUSENIX Annual Technical Conference, Apr
2005.

[14] Bharambe, A. and Herley, C. and Padmanabhan, V. N., “Mi-
crosoft Research Simulator for the BitTorrent Protocol,”http://www.
research.microsoft.com/projects/btsim .

[15] A. Akella, S. Seshan, and A. Shaikh, “An Empirical Evaluation of
Wide-Area Internet Bottlenecks,” inIMC, 2003.

[16] Stefan Saroiu and P. Krishna Gummadi and Steven D. Gribble, “A Mea-
surement Study of Peer-to-Peer File Sharing Systems,” inProceedings
of Multimedia Computing and Networking 2002 (MMCN ’02), Jan 2002.

[17] “BitTornado,” http://bittornado.com .
[18] Jacob Strauss, Dina Katabi, and Frans Kaashoek, “A measurement study

of available bandwidth estimation tools,” inIMC, 2003.
[19] R. Jain,The Art of Computer Systems Performance Analysis, John Wiley

and Sons, 1991.
[20] R. Blahut, Theory and Practice of Error Control Codes, Addison-

Wesley, Reading, MA, 1983.

