
TCP Vegas: New Techniques for Congestion
Detection and Avoidance

Lawrence S. Brakmo Sean W. O’Malley

Department of Computer Science
University of Arizona

Tucson, AZ 85721

Larry L. Peterson �

Abstract
Vegas is a new implementation of TCP that achieves be-
tween 40 and 70% better throughput, with one-fifth to one-
half the losses, as compared to the implementation of TCP
in the Reno distributionof BSD Unix. This paper motivates
and describes the three key techniques employed by Vegas,
and presents the results of a comprehensive experimental
performance study—using both simulations and measure-
ments on the Internet—of the Vegas and Reno implementa-
tions of TCP.

1 Introduction
Few would argue that one of TCP’s strengths lies in its
adaptive retransmission and congestion control mechanism,
with Jacobson’s paper [4] providing the cornerstone of that
mechanism. This paper attempts to go beyond this earlier
work; to provide some new insights into congestion control,
and to propose modifications to the implementation of TCP
that exploit these insights.

The tangible result of this effort is a new implementation
of TCP that we refer to as TCP Vegas. This name is a take-
off of earlier implementations of TCP that were distributed
in releases of 4.3 BSD Unix known as Tahoe and Reno;
we use Tahoe and Reno to refer to the TCP implementa-
tion instead of the Unix release. Note that Vegas does not
involve any changes to the TCP specification; it is merely
an alternative implementation that interoperates with any
other valid implementation of TCP. In fact, all the changes
are confined to the sending side.
�
This work supported in part by National Science Foundation Grant

IRI-9015407 and ARPA Contract DABT63-91-C-0030.

The main result reported in this paper is that Vegas is
able to achieve between 40 and 70% better throughput than
Reno.

�
Moreover, this improvement in throughput is not

achieved by an aggressive retransmission strategy that ef-
fectively steals bandwidth away from TCP connections that
use the current algorithms. Rather, it is achieved by a more
efficient use of the available bandwidth. Our experiments
show that Vegas retransmits between one-fifth and one-half
as much data as does Reno.

This paper is organized as follows. Section 2 outlines the
tools we used to measure and analyze TCP. Section 3 then
describes the techniques employed by TCP Vegas, coupled
with the insights that led us to the techniques. Sections 4
and 5 present a comprehensive evaluation of Vegas’ perfor-
mance; the former reports simulation results and the latter
gives preliminary numbers for measurements of TCP run-
ning over the Internet. Finally, Section 6 discusses relevant
issues and Section 7 makes some concluding remarks.

2 Tools
This section briefly describes the tools used to implement
and analyze the different versions of TCP. All of the pro-
tocols were developed and tested under the University of
Arizona’s � -kernel framework [3]. Our implementation of
Reno was derived by retrofitting the BSD implementation
into the � -kernel. Our implementation of Vegas was derived
by modifying Reno.

2.1 Simulator
Many of the results reported in this paper were obtained
from a network simulator. Even though several good sim-
ulators are available—e.g., REAL [9] and Netsim [2]—we
decided to build our own simulator based on the � -kernel.
�
We limit our discussion to Reno, which is both newer and better

performing than Tahoe. Also note that in terms of the congestion-related
algorithms, Reno is roughly equivalent to the Berkeley Network Release
2 (BNR2) implementation of TCP.

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0
Time in seconds

0
10
20
30
40
50
60
70

KB
60 120 180 240 300 360 420 480 540 600

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0
Time in seconds

40
80

120
160
200
240
280
320
360
400

Se
nd

in
g

 K
B/

S

60 120 180 240 300 360 420 480 540 600

Figure 1: TCP Reno Trace Examples.

In this environment, actual � -kernel protocol implementa-
tions run on a simulated network. Specifically, the simulator
supports multiple hosts, each running a full protocol stack
(TEST/TCP/IP/ETH), and several abstract link behaviors
(point-to-point connections and ethernets). Routers can be
modeled either as a network node running the actual IP pro-
tocol code, or as an abstract entity that supports a particular
queuing discipline (e.g., FIFO).

The � -kernel-based simulator provides a realistic setting
for evaluating protocols—each protocol is modeled by the
actual C code that implements it rather than some more
abstract specification. It is also trivial to move protocols
between the simulator and the real world, thereby provid-
ing a comprehensive protocol design, implementation, and
testing environment.

One of the most important protocols available in the
simulator is called TRAFFIC—it implements TCP Internet
traffic based on tcplib [1]. TRAFFIC starts conversations
with interarrival times given by an exponential distribution.
Each conversation can be of type TELNET, FTP, NNTP,
or SMTP, each of which expects a set of parameters. For
example, FTP expects the followingparameters: number of
items to transmit, control segment size, and the item sizes.
All of these parameters are based on probability distribu-
tions obtained from traffic traces. Finally, each of these
conversations runs on top of its own TCP connection.

2.2 Trace Facility
Early in this effort it became clear that we needed good
facilities to analyze the behavior of TCP. We therefore added

code to the � -kernel to trace the relevant changes in the
connection state. We paid particular attention to keeping
the overhead of this tracing facility as low as possible, so
as to minimize the effects on the behavior of the protocol.
Specifically, the facility writes trace data to memory, dumps
it to a file only when the test is over, and keeps the amount
of data associated with each trace entry small (8 bytes).

We then developed various tools to analyze and display
the tracing information. The rest of this section describes
one such tool that graphically represents relevant features of
the state of the TCP connection as a function of time. This
tool outputs multiple graphs, each focusing on a specific set
of characteristics of the connection state. Figure 1 gives
an example. Since we use graphs like this throughout the
paper, we now explain how to read the graph in some detail.

First, all TCP trace graphs have certain features in com-
mon, as illustrated in Figure 2. The circled numbers in this
figure are keyed to the following explanations:

1. Hash marks on the � -axis indicate when an ACK was
received.

2. Hash marks at the top of the graph indicate when a
segment was sent.

3. The numbers on the top of the graph indicate when the���	� kilobyte (KB) was sent.
4. Diamonds on top of the graph indicate when the pe-

riodic coarse-grained timer fires. This does not imply
a TCP timeout, just that TCP checked to see if any
timeouts should happen.

5. Circles on top of the graph indicate that a coarse-
grained timeout occurred, causing a segment to be

retransmitted.
6. Solid vertical lines running the whole height of the

graph indicate when a segment that is eventually re-
transmitted was originally sent, presumably because it
was lost.

Notice that several consecutive segments

are retransmitted in the example.

0.5 1.0 1.5 2.0 2.5 3.0 3.5
Time in seconds

0
10
20
30
40
50
60
70

KB

60 120 180

1

2

3
4

5

6

Figure 2: Common Elements in TCP Trace Graphs.

In addition to this common information, each graph de-
picts more specific information. The bottom graph in Fig-
ure 1 is the simplest—it shows the average sending rate,
calculated from the last 12 segments. The top graph in
Figure 1 is more complicated—it gives the size of the dif-
ferent windows TCP uses for flow and congestion control.
Figure 3 shows these in more detail, again keyed by the
following explanations:

1. The dashed line gives the threshold window. It is used
during slow-start, and marks the point at which the
congestion window growth changes from exponential
to linear.

2. The dark gray line gives the send window. It is the
minimum of the sender’s buffer size and receiver’s
available buffer space.

3. The light gray line gives the congestion window. It is
used for congestion control, and is an upper limit to
the number of bytes sent but not yet acknowledged.

4. The thin line gives the actual number of bytes in transit
at any given time, where by in transit we mean sent
but not yet acknowledged.

The graphs just described are obtained from tracing in-
formation saved by the protocol, and are, thus, available
whether the protocol is running in the simulator or over a
real network. The simulator itself also reports certain infor-
mation, such as the rate, in KB/s, at which data is entering or
leaving a host or a router. For a router, the traces also save
�

For simplicity, we sometimes say a segment was lost, even though all
we know for sure is that the sender retransmitted it.

0.5 1.0 1.5 2.0 2.5 3.0 3.5
Time in seconds

0
10
20
30
40
50
60
70

KB

60 120 1801

2

3 4

Figure 3: TCP Windows Graph.

the size of the queues as a function of time, and the time and
size of segments that are dropped due to insufficient queue
space.

3 Techniques
This section motivates and describes three techniques that
Vegas employs to increase throughput and decrease losses.
The first technique results in a more timely decision to re-
transmit a dropped segment. The second technique gives
TCP the ability to anticipate congestion, and adjust its trans-
mission rate accordingly. The final technique modifies
TCP’s slow-start mechanism so as to avoid packet losses
while trying to find the available bandwidth. The relation-
ship between our techniques and those proposed elsewhere
are also discussed in this section.

3.1 New Retransmission Mechanism
In Reno, round trip time (RTT) and variance estimates are
computed using a coarse-grained timer (around 500 ms),
meaning that the RTT estimate is not very accurate. This
coarse granularity influences both the accuracy of the cal-
culation itself, and how often TCP checks to see if it should
time out on a segment. For example, during a series of tests
on the Internet, we found that for losses that resulted in a
timeout—usually due to two or more dropped segments in
a RTT—it took Reno an average of 1100ms from the time
it sent a segment that was lost until it timed out and resent
the segment, whereas less than 300ms would have been
the correct timeout interval had a more accurate clock been
used.

Reno not only retransmits when a coarse-grained timeout
occurs, but also when it receives � duplicate ACKs (� is
usually 3). Reno sends a duplicate ACK whenever it re-
ceives new data that it cannot acknowledge because it has

Host1a

Host2a

Host3a

Router1

Host1b

Router2

Host3b

Host2b
200 KBytes/sec

50ms delay
Ethernet Ethernet

Figure 5: Network Configuration for Simulations.

Ti
m

eon
e

RT
T

on
e

RT
T

Rcvd ACK for packet 10 (packets 11 and 12 are in transit)
Send packet 13 (which is lost)

Rcvd ACK for packet 11
Send packet 14

Rcvd ACK for packet 12
Send packet 15 (which is also lost)

Should have gotten ACK for packet 13

Rcvd dup ACK for packet 12 (due to packet 14)
Vegas checks timestamp of packet 13 and decides to retransmit it
(Reno would need to wait for the 3rd duplicate ACK)

Rcvd ACK for packets 13 and 14
Since it is 1st or 2nd ACK after retransmission,
Vegas checks timestamp of packet 15 and decides to retransmit it
(Reno would need to wait for 3 new duplicate ACKS)

Figure 4: Example of Retransmit Mechanism.

not yet received all the previous data. For example, if Reno
receives packet 2 but packet 3 is dropped, it will send a
duplicate ACK for packet 2 when packet 4 arrives, again
when packet 5 arrives, and so on. When the sender sees the
third duplicate ACK for packet 2 (the one sent because the
receiver had gotten packet 6) it retransmit packet 3.

Vegas extends Reno’s retransmission mechanisms as fol-
lows. First, Vegas reads and records the system clock each
time a segment is sent. When an ACK arrives, Vegas reads
the clock again and does the RTT calculation using this time
and the timestamp recorded for the relevant segment. Vegas
then uses this more accurate RTT estimate to decide to re-
transmit in the following two situations (a simple example
is given in Figure 4):

� When a duplicate ACK is received, Vegas checks to
see if the difference between the current time and the
timestamp recorded for the relevant segment is greater

than the timeout value. If it is, then Vegas retransmits
the segment without having to wait for � (3) duplicate
ACKs. In many cases, losses are either so great or
the window so small that the sender will never receive
three duplicate ACKs, and therefore, Reno would have
to rely on the coarse-grained timeout mentioned above.

� When a non-duplicate ACK is received, if it is the
first or second one after a retransmission, Vegas again
checks to see if the time interval since the segment
was sent is larger than the timeout value. If it is, then
Vegas retransmits the segment. This will catch any
other segment that may have been lost previous to the
retransmission without having to wait for a duplicate
ACK.

In other words, Vegas treats the receipt of certain ACKs
as a trigger to check if a timeout should happen. It still
contains Reno’s coarse-grained timeout code in case these
mechanisms fail to recognize a lost segment.

Notice that the congestion window should only be re-
duced due to losses that happened at the current sending
rate, and not due to losses that happened at an earlier, higher
rate. In Reno, it is possible to decrease the congestion win-
dow more than once for losses that occurred during one RTT
interval. In contrast, Vegas only decreases the congestion
window if the retransmitted segment was previously sent
after the last decrease. Any losses that happened before
the last window decrease do not imply that the network
is congested for the current congestion window size, and
therefore, do not imply that it should be decreased again.
This change is needed because Vegas detects losses much
sooner than Reno.

3.2 Congestion Avoidance Mechanism
TCP Reno’s congestion detection and control mechanism
uses the loss of segments as a signal that there is congestion
in the network. It has no mechanism to detect the incipient

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0
Time in seconds

0
10
20
30
40
50
60
70

KB

110 220 330 440 550 660 770 880 990

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0
Time in seconds

100
200
300
400
500
600
700
800
900

1000
1100

Se
nd

in
g

 K
B/

S

110 220 330 440 550 660 770 880 990

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0
Time in seconds

5

10

Qu
eu

e
si

ze
 in

 ro
ut

er

Figure 6: TCP Reno with No Other Traffic (Throughput: 105 KB/s).

stages of congestion—before losses occur—so they can be
prevented. Reno is reactive, rather than proactive, in this
respect. As a result, Reno needs to create losses to find the
available bandwidth of the connection. This can be seen
in Figure 6, which shows the trace of a Reno connection
sending 1MB of data over the network configuration seen
in Figure 5, with no other traffic sources; i.e., only Host1a
sending to Host1b. In this case, the router queue size is ten
and the queuing discipline is FIFO.

There are several previously proposed approaches for
proactive congestion detection based on a common under-
standing of the network changes as it approaches congestion
(an excellent development is given in [7]). These changes
can be seen in Figure 6 in the time interval from 4.5 to
7.5 seconds. One change is the increased queue size in the
intermediate nodes of the connection, resulting in an in-
crease of the RTT for each successive segment. Wang and
Crowcroft’s DUAL algorithm [11] is based on this increase
of the round-trip delay. The congestion window normally
increases as in Reno, but every two round-trip delays the
algorithm checks to see if the current RTT is greater than the
average of the minimum and maximum RTTs seen so far.
If it is, then the algorithm decreases the congestion window
by one-eighth.

Jain’s CARD (Congestion Avoidance using Round-trip
Delay) approach [7] is based on an analytic derivation of

a socially optimum window size for a deterministic net-
work. The decision as to whether or not to change the cur-
rent window size is based on changes to both the RTT and
the window size. The window is adjusted once every two
round-trip delays based on the product (WindowSize ���������� �
- WindowSize �����) � (RTT ���������� � - RTT �����) as follows: if the
result is positive, decrease the window size by one-eighth;
if the result is negative or zero, increase the window size by
one maximum segment size. Note that the window changes
during every adjustment, that is, it oscillates around its op-
timal point.

Another change seen as the network approaches con-
gestion is the flattening of the sending rate. Wang and
Crowcroft’s Tri-S scheme [10] takes advantage of this fact.
Every RTT, they increase the window size by one segment
and compare the throughput achieved to the throughput
when the window was one segment smaller. If the differ-
ence is less than one-half the throughput achieved when
only one segment was in transit—as was the case at the
beginning of the connection—they decrease the window by
one segment. Tri-S calculates the throughput by dividing
the number of bytes outstanding in the network by the RTT.

Vegas’ approach is most similar to Tri-S, in that it looks at
changes in the throughput rate. However, it differs from Tri-
S in that it calculates throughputs differently, and instead of
looking for a change in the throughput slope, it compares

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0
Time in seconds

0
10
20
30
40
50
60
70

KB

110 220 330 440 550 660 770 880 990

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0
Time in seconds

100
200
300
400
500
600
700
800
900

1000
1100

Se
nd

in
g

 K
B/

S

110 220 330 440 550 660 770 880 990

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0
Time in seconds

40

80

120

160

200

240

280

CA
M

 K
B/

S

110 220 330 440 550 660 770 880 990

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0
Time in seconds

5

10

Qu
eu

e
si

ze
 in

 ro
ut

er

Figure 7: TCP Vegas with No Other Traffic (Throughput: 169 KB/s).

the measured throughput rate with the expected throughput
rate. The simple idea that Vegas exploits is that the number
of bytes in transit is directly proportional to the expected
throughput, and therefore, as the window size increases—
causing the bytes in transit to increase—the throughput of
the connection should also increase.

Vegas uses this idea to measure and control the amount of
extra data this connection has in transit, where by extra data
we mean data that would not have been sent if the band-
width used by the connection exactly matched the available
bandwidth of the network. The goal of Vegas is to maintain
the “right” amount of extra data in the network. Obviously,
if a connection is sending too much extra data, it will cause
congestion. Less obviously, if a connection is sending too
little extra data, it cannot respond rapidly enough to tran-
sient increases in the available network bandwidth. Vegas’
congestion avoidance actions are based on changes in the
estimated amount of extra data in the network, and not only

on dropped segments.
We now describe the algorithm in detail. Note that the

algorithm is not in effect during slow-start. Vegas’ behavior
during slow-start is described in Section 3.3.

First, define a given connection’s BaseRTT to be the RTT
of a segment when the connection is not congested. In
practice, Vegas sets BaseRTT to the minimum of all mea-
sured round trip times; it is commonly the RTT of the first
segment sent by the connection, before the router queues
increase due to traffic generated by this connection. If we
assume that we are not overflowing the connection, then the
expected throughput is given by:

Expected = WindowSize / BaseRTT

where WindowSize is the size of the current congestion win-
dow, which we assume for the purpose of this discussion,
to be equal to the number of bytes in transit.

Second, Vegas calculates the current Actual sending rate.
This is done by recording the sending time for a distin-
guished segment, recording how many bytes are transmitted
between the time that segment is sent and its acknowledge-
ment is received, computing the RTT for the distinguished
segment when its acknowledgement arrives, and dividing
the number of bytes transmitted by the sample RTT. This
calculation is done once per round-trip time.

�

Third, Vegas compares Actual to Expected, and adjusts
the window accordingly. Let Diff= Expected - Actual. Note
that Diff is positive or zero by definition, since Actual � Ex-
pected implies that we need to change BaseRTT to the latest
sampled RTT. Also define two thresholds, �! #" , roughly
corresponding to having too little and too much extra data in
the network, respectively. When Diff #� , Vegas increases
the congestion window linearly during the next RTT, and
when Diff �$" , Vegas decreases the congestion window
linearly during the next RTT. Vegas leaves the congestion
window unchanged when �% Diff < " .

Intuitively, the farther away the actual throughput gets
from the expected throughput, the more congestion there is
in the network, which implies that the sending rate should
be reduced. The " threshold triggers this decrease. On the
other hand, when the actual throughput rate gets too close to
the expected throughput, the connection is in danger of not
utilizing the available bandwidth. The � threshold triggers
this increase. The overall goal is to keep between � and "
extra bytes in the network.

Because the algorithm, as just presented, compares the
difference between the actual and expected throughput rates
to the � and " thresholds, these two thresholds are defined
in terms of KB/s. However, it is perhaps more accurate to
think in terms of how many extra buffers the connection is
occupying in the network. For example, on a connection
with a BaseRTT of 100ms and a segment size of 1KB, if
�'&)(+* KB/s and "'&-,+* KB/s, then we can think of � as
saying that the connection needs to be occupying at least
three extra buffers in the network, and " saying it should
occupy no more than six extra buffers in the network.

In practice, we express � and " in terms of buffers
rather than extra bytes in transit. During linear in-
crease/decrease mode—as opposed to the slow-start mode
described below—we set � to two and " to four. This can
be interpreted as an attempt to use at least two, but no more
than four extra buffers in the connection.

Figure 7 shows the behavior of TCP Vegas when there
is no other traffic present; this is the same condition that
Reno ran under in Figure 6. There is one new type of graph
in this figure, the third one, which depicts the congestion
.

We have made every attempt to keep the overhead of Vegas’ con-
gestion avoidance mechanism as small as possible. To help quantify this
effect, we ran both Reno and Vegas between SparcStations connected by
an Ethernet, and measured the penalty to be less than 5%. This overhead
can be expected to drop as processors become faster.

avoidance mechanism (CAM) used by Vegas. Once again,
we use a detailed graph (Figure 8) keyed to the following
explanation:

0.5 1.0 1.5 2.0 2.5
Time in seconds

40

80

120

160

200

240

CA
M

 K
B/

S

110 220

1

2

3

4

Figure 8: Congestion detection and avoidance in Vegas.

1. The small vertical line—once per RTT—shows the
times when Vegas makes a congestion control deci-
sion; i.e., computes Actual and adjusts the window
accordingly.

2. The gray line shows the Expected throughput. This is
the throughput we should get if all the bytes in transit
are able to get through the connection in one BaseRTT.

3. The solid line shows the Actual sending rate. We
calculate it from the number of bytes we sent in the
last RTT.

4. The dashed lines are the thresholds used to control the
size of the congestion window. The top line corre-
sponds to the � threshold and the bottom line corre-
sponds to the " threshold.

Figure 9 shows a trace of Vegas sharing the bottleneck router
with tcplib traffic. The bottom graph shows the output
produced by the TRAFFIC protocol simulating the TCP
traffic. The thin line is the sending rate in KB/s as seen in
100ms intervals; the thick line is a running average (size
3). The graph clearly shows Vegas’ congestion avoidance
mechanisms at work and how its throughput adapts to the
changing conditions on the network.

3.3 Modified Slow-Start Mechanism
Reno’s slow-start mechanism is very expensive in terms of
losses when it is not limited by a small send buffer or a slow
host. Since it doubles the size of the congestion window
every RTT while there are no losses—which is equivalent
to doubling the attempted throughput every RTT—when it
finally overruns the connection’s bandwidth, we can expect
losses in the order of half the current congestion window,
more if we encounter a burst from another connection.

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5
Time in seconds

0
10
20
30
40
50
60
70

KB

110 220 330 440 550 660 770 880 990

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5
Time in seconds

40

80

120

160

200

240

280

CA
M

 K
B/

S

110 220 330 440 550 660 770 880 990

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5
Time in seconds

40

80

120

160

200

240

280

TR
AF

FI
C

KB
/S

Figure 9: TCP Vegas with tcplib-Generated Background Traffic.

As network bandwidth increases, we can anticipate a sim-
ilar increase in the expected losses of slow-start. We need
a way to find a connection’s available bandwidth that does
not incur this kind of loss. Towards this end, we incorpo-
rated our congestion detection mechanism into slow-start
with only minor modifications. To be able to detect and
avoid congestion during slow-start, Vegas allows exponen-
tial growth only every other RTT. In between, the con-
gestion window stays fixed so a valid comparison of the
expected and actual rates can be made. When the actual
rate falls below the expected rate by a certain amount—we
call this the / threshold—Vegas changes from slow-start
mode to linear increase/decrease mode.

The behavior of the modified slow-start can be seen in
Figures 7 and 9. The reason that we need to measure the
actual rate with a fixed congestion window is that we want
the actual rate to represent the bandwidth allowed by the
connection. Thus, we can only send as much data as is
acknowledged in the ACK. (During slow-start, Reno sends
two segments for each ACK received.)

In summary, we believe that adding congestion detection
to slow-start is important, and will become more important
as network bandwidth increases. Vegas offers a beginning,
but there is a problem that still needs to be addressed. During
slow-start, TCP sends segments at twice the rate supported
by the connection; i.e., two segments are sent for every ACK

received. If there aren’t enough buffers in the bottleneck
router, Vegas’ slow-start withcongestion detection may lose
segments before getting any feedback that tells it to slow
down. We have several solutions in mind that we plan
to implement in the near future. One is to use rate control
during slow-start, using a rate defined by the current window
size and the BaseRTT. Another is to slow down as we
reach the bandwidth available to the connection (Vegas has
enough information to figure this out).

4 Simulation Results

This section reports the results of simulated runs of TCP
Vegas and Reno using the � -kernel based simulator. Al-
though we have also measured Vegas and Reno on the ac-
tual Internet—see Section 5—the simulator allows us to
better control the experiment, and in particular, gives us
the opportunity to see whether or not Vegas gets its perfor-
mance at the expense of Reno-based connections. Note that
all the experiments used in this section are on the network
configuration shown in Figure 5.

Reno/Reno Reno/Vegas Vegas/Reno Vegas/Vegas
Throughput (KB/s) 60/109 61/123 66/119 74/131
Throughput Ratios 1.00/1.00 1.02/1.13 1.10/1.09 1.23/1.20
Retransmissions (KB) 30/22 43/1.8 1.5/18 0.3/0.1
Retransmit Ratios 1.00/1.00 1.43/0.08 0.05/0.82 0.01/0.01

Table 1: One-on-One (300KB and 1MB) Transfers.

Reno Vegas-1,3 Vegas-2,4
Throughput (KB/s) 58.30 89.40 91.80
Throughput Ratio 1.00 1.53 1.58
Retransmissions (KB) 55.40 27.10 29.40
Retransmit Ratio 1.00 0.49 0.53
Coarse Timeouts 5.60 0.90 0.90

Table 2: 1MByte Transfer with tcplib-Generated Background Reno Traffic.

4.1 One-on-One Experiments
We begin by studying how two TCP connections interfere
with each other. To do this, we start a 1MB transfer, and then
after a variable delay, start a 300KB transfer. The transfer
sizes and delays are chosen to ensure that the smaller transfer
is contained completely within the larger.

Table 1 gives the results for the four possible combi-
nations, where the column heading Reno/Vegas denotes
a 300KB transfer using Reno contained within a 1MByte
transfer using Vegas. For each combination, the table gives
the measured throughput and number of kilobytes retrans-
mitted for both transfers; e.g., in the the case of Reno/Vegas,
the 300KB Reno transfer achieved a 61KB/s throughput
rate and the 1MByte Vegas transfer achieved a 123KB/s
throughput rate. 0 The ratios for both throughput rate and
kilobytes retransmitted are relative to the Reno/Reno col-
umn. The values in the table are averages from 12 runs,
using 15 and 20 buffers in the routers, and with the delay
before starting the smaller transfer ranging between 0 and
2.5 seconds.

The main thing to take away from these numbers is that
Vegas does not adversely affect Reno’s throughput. Reno’s
throughput stays pretty much unchanged when it is com-
peting with Vegas rather than itself—the ratios for Reno
are 1.02 and 1.09 for Reno/Vegas and Vegas/Reno, respec-
tively. Also, when Reno competes with Vegas rather than
itself, the combined number of kilobytes retransmitted for
the pair of competing connections drops significantly. The
combined Reno/Reno retransmits are 52KB compared with
45KB for Reno/Vegas and 19KB for Vegas/Reno. Finally,
note that the combined Vegas/Vegas retransmits are less
than 1KB on the average—an indication that the congestion
avoidance mechanism is working.
1

Comparing the small transfer to the large transfer in any given column
is not meaningful. This is because the large transfer was able to run by
itself during most of the test.

4.2 Background Traffic
We next measured the performance of a distinguished TCP
connection when the network is loaded with traffic gener-
ated from tcplib. That is, the protocol TRAFFIC is running
between Host1a and Host1b in Figure 5, and a 1MByte
transfer is running between Host2a and Host2b. In this set
of experiments, the tcplib traffic is running over Reno.

Table 2 gives the results for Reno and two versions of
Vegas—Vegas-1,3 uses �#&32 and "#&4(, and Vegas-2,4
uses �5&76 and "%&98 . We varied these two thresholds to
study the sensitivity of our algorithm to them. The numbers
shown are averages from 57 runs, obtained by using differ-
ent seeds for tcplib, and by using 10, 15 and 20 buffers in
the routers.

The table shows the throughput rate for each of the distin-
guished connections using the three protocols, along with
their ratio to Reno’s throughput. It also gives the num-
ber of kilobytes retransmitted, the ratio of retransmits to
Reno’s, and the average number of coarse-grained time-
outs per transfer. For example, Vegas-1,3 had 53% better
throughput than Reno, with only 49% of the losses. Also
note that there is little difference between Vegas-1,3 and
Vegas-2,4.

These simulations tell us the expected improvement of
Vegas over Reno: more than 50% improvement on through-
put, and only half the losses. The results from the one-on-
one experiments indicate that the gains of Vegas are not
made at the expense of Reno; this belief is further sup-
ported by the fact that the background traffic’s throughput
increases by 20% when Reno is competing for resources
with Vegas, as compared to when Reno is competing with
itself.

We also ran these tests with the background traffic using
Vegas rather than Reno. This simulates the situation where
the whole world uses Vegas. The throughput and the kilo-
bytes retransmitted by the 1MByte transfers didn’t change

1MB Transfer
traffic over Reno Vegas
Reno (KB/s) 68 82
Vegas (KB/s) 84 85

Table 3: Throughput of Background Traffic When Competing with a 1MB Transfer.

significantly—less than 4%—but this time the throughput of
the background traffic was unaffected by the type of proto-
col running the 1MB transfer. These results are summarized
in Table 3.

4.3 Other Experiments
We tried many variations of the previous experiments. On
the whole, the results were similar, except for when we
changed TCP’s send-buffer size. Below we summarize
these experiments and their results.

� One-on-one tests with traffic in the background. The
results were similar. Again, Reno did better when
running against Vegas than against itself, but this time,
its losses increased by only 6% (versus 43%) in the
Reno/Vegas case.

� Two-way background traffic. There have been reports
of change in TCP’s behavior when the background
traffic is two-way rather than one-way [12]. Thus, we
modified the experiment in Section 4.2 by adding tcplib
traffic from Host3b to Host3a. The throughput ratio
stayed the same, but the loss ratio was much better:
0.29. Reno resent more data and Vegas remained about
the same. The fact that there wasn’t much change is
probably due to the fact that tcplib already creates some
2-way traffic—TELNET connections send one byte
and get one or more bytes back, and FTP connections
send and get control packets before doing a transfer.

� Different TCP send-buffer sizes. For all the experi-
ments reported so far, we ran TCP with a 50KB send-
buffer. For this experiment, we tried send-buffer sizes
between 50KB and 5KB. Vegas’ throughputand losses
stayed unchanged between 50KB and 20KB; from that
point on, as the buffer decreased, so did the through-
put. This was due to the protocol not being able to
keep the pipe full.
Reno’s throughput initially increased as the buffers
got smaller, and then it decreased. It always remained
under the throughput measured for Vegas. We have
previously seen this type of behavior while running
Reno on the Internet. If we look back at Figure 6, we
see that as Reno increases its congestion window, it
uses more and more buffers in the router until it loses
packets by overrunning the queue. If we limit the

congestion window by reducing the size of the send-
buffer, we may prevent it from overrunning the router’s
queue.

� Multiple Competing Connections. We ran simulations
with 2, 4, and 16 connections sharing a bottleneck link,
where all the connections either had the same propa-
gation delay, or where one half of the connections had
twice the propagation delay of the other half. Many
different propagation delays were used, with the ap-
propiate results averaged. These simulations where
used to obtain preliminary results regarding fairness
and the behavior of Vegas under stress.

To judge fairness, we chose Jain’s fairness index [8].
In the case of 2 and 4 connections, with each connec-
tion transfering 8 MB, Reno was slightlymore fair than
Vegas when all connections had the same propagation
delay, but Vegas was more fair than Reno when the
propagation delay was larger for half of the connec-
tions. In the experiments with 16 connections, with
each connection transfering 2 MB, Vegas was more
fair than Reno in all experiments. Overall, Vegas is at
least as fair as Reno.
There were no stability problems in the case of 16
connections sharing the bottleneck link, even though
there were only 20 buffers at the router. Although
Vegas’ congestion avoidance mechanisms could not
work effectively due to the limited number of buffers,
Vegas only had half the coarse-grained timeouts as
Reno due to Vegas’ improved retransmit mechanism.

5 Internet Results
This section discusses measurements of TCP over the In-
ternet. Because it is simple to move a protocol between the
simulator and the “real world”, the numbers reported in this
section are for exactly the same code as in the previous sec-
tion. Our results must be considered preliminary because
they were limited to transfers between the University of Ari-
zona (UA) and the National Institutes of Health (NIH). The
connection consists of 17 hops, and passes through Denver,
St. Louis, Chicago, Cleveland, New York and Washington
DC.

The results are derived from a set of runs over a seven
day period from January 23-29. Each run consists of a

Reno Vegas-1,3 Vegas-2,4
Throughput (KB/s) 53.00 72.50 75.30
Throughput Ratio 1.00 1.37 1.42
Retransmissions (KB) 47.80 24.50 29.30
Retransmit Ratio 1.00 0.51 0.61
Coarse Timeouts 3.30 0.80 0.90

Table 4: 1MByte transfer over the Internet.

1024KB 512KB 128KB
Reno Vegas Reno Vegas Reno Vegas

Throughput (KB/s) 53.00 72.50 52.00 72.00 31.10 53.10
Throughput Ratio 1.00 1.37 1.00 1.38 1.00 1.71
Retransmissions (KB) 47.80 24.50 27.90 10.50 22.90 4.00
Retransmit Ratio 1.00 0.51 1.00 0.38 1.00 0.17
Coarse Timeouts 3.30 0.80 1.70 0.20 1.10 0.20

Table 5: Effects of transfer size over the Internet.

set of seven transfers from UA to NIH—Reno sends 1MB,
512KB, and 128KB, Vegas-1,3 sends 1MB, 512KB, and
128KB, and Vegas-2,4 sends 1MB. We inserted a 45 second
delay between each transfer in a run to give the network
a chance to settle down, a run started approximately once
every hour, and we shuffled the order of the transfers within
each run.

Table 4 shows the results for the 1MB transfers. De-
pending on the congestion avoidance thresholds, it shows
between 37% and 42% improvement over Reno’s through-
put with only 51% to 61% of the retransmissions. Note that
Vegas out-performed Reno on 92% of the transfers, and
across all levels of congestion; i.e., during both the middle
of the night and during periods of high load.

Because we were concerned that Vegas’ throughput im-
provement depended on large transfer sizes, we also varied
the size of the transfer. Table 5 shows the effect of transfer
size on both throughput and retransmissions for Reno and
Vegas-1,3. First, observe that Vegas does better relative to
Reno as the transfer size decreases. In terms of through-
put, we see an increase from 37% to 71%. The results are
similar for retransmissions, as the relative number of Vegas
retransmissions goes from 51% of Reno’s to 17% of Reno’s.

Next, notice that the number of kilobytes retransmitted
by Reno starts to flatten out as the transfer size decreases.
When we decreased the transfer size by half, from 1MB to
512KB, we see only a 42% decrease in the number of kilo-
bytes retransmitted. When we further decrease the transfer
size to one-fourth its previous value, from 512KB to 128KB,
the number of kilobytes retransmitted only decreases by
18%. This indicates that we are approaching the average
number of kilobytes retransmitted due to Reno’s slow-start
losses. From these results, we conclude that there are around
20KBs retransmitted during slow-start, for the conditions of

our experiment.
On the other hand, the number of kilobytes retransmit-

ted by Vegas decreases almost linearly with respect to the
transfer size. This indicates that Vegas eliminates nearly all
losses during slow-start due to its modified slow-start with
congestion avoidance.

6 Discussion
Most of the experiments reported in the previous two sec-
tions show the benefits of running a Vegas connection when
most of the traffic is from Reno connections. An equally
interesting question is what happens when the whole world
runs Vegas. Simulations show that if there are enough
buffers in the routers—meaning that Vegas’ congestion
avoidance mechanisms can function effectively—a higher
throughput and a faster respone time result. For example,
simulations running tcplib traffic over both Reno and Vegas
show that the average response time in TELNET connec-
tions is around 25% faster when using Vegas as compared
to Reno.

As the load increases and/or the number of router buffers
decreases, Vegas’s congestion avoidance mechanisms are
not as effective, and Vegas starts to behave more like Reno.
Under heavy congestion, Vegas behaves very similarly to
Reno, since Vegas “falls back” to Reno’s course-grained
timeout mechanism.

The important point to keep in mind is that up to the
point that congestion is bad enough for Vegas’ behavior
to degenerate into Reno, Vegas is less aggressive in its
use of router buffers than Reno. This is because Vegas
limits its use of router buffers as specified by the " thresh-
old, whereas Reno increases its window size until there are
losses—which means all the router buffers are being used.

Selective ACKs [5, 6] have been proposed as a way to
decrease the number of unnecessarily retransmitted packets
and to provide information for a better retransmit mecha-
nism than the one in Reno. Although the selective ACK
mechanism is not yet well defined, we make the follow-
ing observations about how it compares to Vegas. First, it
only relates to Vegas’ retransmission mechanism; selective
ACKs by themselves affect neither the congestion nor the
the slow-start mechanisms. Second, there is little reason
to believe that selective ACKs can significantly improve on
Vegas in terms of unnecessary retransmissions, as there were
only 6KB per MB unnecessarily retransmitted by Vegas in
our Internet experiments. Third, selective ACKs have the
potential to retransmit lost data sooner on future networks
with large delay/bandwidth products. It would be interest-
ing to see how Vegas and the selective ACK mechanism
work in tandem on such networks. Finally, we note that se-
lective ACKs require a change to the TCP standard, whereas
the Vegas modifications are an implementation change that
is isolated to the sender.

Vegas’ congestion detection algorithm depends on an ac-
curate value for BaseRTT. If our estimate for the BaseRTT
is too small, then the protocol’s throughput will stay below
the available bandwidth; if it is too large, then it will over-
run the connection. Our experience is that the protocol does
well with its current choice of BaseRTT. However, we plan
to study this more carefully in the future.

7 Conclusions
We have introduced several techniques for improving TCP,
including a new timeout mechanism, a novel approach to
congestion avoidance that tries to control the number of ex-
tra buffers the connection occupies in the network, and a
modified slow-start mechanism. Experiments on both the
Internet and using a simulator show that Vegas achieves 40
to 70% better throughput,with one-fifth to one-half as many
bytes being retransmitted, as compared to the implementa-
tion of TCP in the Reno distribution of BSD Unix.

In many respects, this work is still preliminary. First,
we need to test Vegas under a wider set of conditions, and
in particular, a more comprehensive fairness study needs
to be done. Second, we believe that more attention needs
to be paid to avoiding congestion during slow-start, and as
pointed out in Section 3.3, we are currently experimenting
with some promising strategies.

Acknowledgements
Thanks to Lew Berman from the National Library of
Medicine for providing a machine on the East Coast that
we could use in our experiments.

References
[1] P. Danzig and S. Jamin. tcplib: A Library of TCP

Internetwork Traffic Characteristics. Technical Re-
port CS-SYS-91-495, Computer Science Department,
USC, 1991.

[2] A. Heybey. The network simulator. Technical report,
MIT, Sept. 1990.

[3] N. C. Hutchinson and L. L. Peterson. The x-kernel:
An architecture for implementing network proto-
cols. IEEE Transactions on Software Engineering,
17(1):64–76, Jan. 1991.

[4] V. Jacobson. Congestion Avoidance and Control. In
Proceedings of the SIGCOMM ’88 Symposium, pages
314–32, Aug. 1988.

[5] V. Jacobson and R. Braden. TCP Extensions for Long-
Delay Paths. Request for Comments 1072, Oct. 1988.

[6] V. Jacobson, R. Braden, and D. Borman. TCP Exten-
sions for High Performance. Request for Comments
1323, May 1992.

[7] R. Jain. A Delay-Based Approach for Congestion
Avoidance in Interconnected Heterogeneous Com-
puter Networks. ACM Computer Communication Re-
view, 19(5):56–71, Oct. 1989.

[8] R. Jain. The Art of Computer Systems Performance
Analysis: Techniques for ExperimentalDesign, Mea-
surement, Simulation and Modeling. John Wiley and
Sons, Inc., New York, 1991.

[9] S. Keshav. REAL: A Network Simulator. Technical
Report 88/472, Department of Computer Science, UC
Berkeley, 1988.

[10] Z. Wang and J. Crowcroft. A New Congestion Con-
trol Scheme: Slow Start and Search (Tri-S). ACM
Computer Communication Review, 21(1):32–43, Jan.
1991.

[11] Z. Wang and J. Crowcroft. Eliminating Periodic
Packet Losses in 4.3-Tahoe BSD TCP Congestion
Control Algorithm. ACM Computer Communication
Review, 22(2):9–16, Apr. 1992.

[12] L. Zhang, S. Shenker, and D. D. Clark. Observations
on the Dynamics of a Congestion Control Algorithm:
The Effects of Two-Way Traffic. In Proceedings of
the SIGCOMM ’91 Symposium, pages 133–147, Sept.
1991.

