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Abstract—This paper presents Ethane, a new network archi-
tecture for the enterprise. Ethane allows managers to define
a single network-wide fine-grain policy, and then enforces it
directly. Ethane couples extremely simple flow-based Ethernet
switches with a centralized controller that manages the ad-
mittance and routing of flows. While radical, this design is
backwards-compatible with existing hosts and switches.

We have implemented Ethane in both hardware and software,
supporting both wired and wireless hosts. We also show that it
is compatible with existing high-fanout switches by porting it to
popular commodity switching chipsets. We have deployed and
managed two operational Ethane networks, one in the Stanford
computer science department supporting over 300 hosts, and
another within a small business of 30 hosts. Our deployment
experiences have significantly affected Ethane’s design.

Index Terms—Network, Architecture, Security, Management

I. INTRODUCTION

NTERPRISE networks are often large, run a wide variety
of applications and protocols, and typically operate under
strict reliability and security constraints; thus, they represent a
challenging environment for network management. The stakes
are high, as business productivity can be severely hampered
by network misconfigurations or break-ins. Yet the current
solutions are weak, making enterprise network management
both expensive and error-prone. Indeed, most networks today
require substantial manual configuration by trained opera-
tors [1], [2], [3], [4] to achieve even moderate security [5]. A
Yankee Group report found that 62% of network downtime in
multi-vendor networks comes from human-error and that 80%
of IT budgets is spent on maintenance and operations [6].
There have been many attempts to make networks more
manageable and more secure. One approach introduces pro-
prietary middleboxes that can exert their control effectively
only if placed at network choke-points. If traffic accidentally
flows (or is maliciously diverted) around the middlebox,
the network is no longer managed nor secure [3]. Another
approach is to add functionality to existing networks—to
provide tools for diagnosis; to offer controls for VLANS,
access-control lists, and filters to isolate users; to instrument
the routing and spanning tree algorithms to support better
connectivity management; and then to collect packet traces
to allow auditing. This can be done by adding a new layer of
protocols, scripts, and applications [7], [8] that help automate
configuration management in order to reduce the risk of errors.
However, these solutions hide the complexity, not reduce it.
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And they have to be constantly maintained to support the
rapidly changing and often proprietary management interfaces
exported by the managed elements.

Rather than building a new layer of complexity on top
of the network, we explore the question: How could we
change the enterprise network architecture to make it more
manageable? Our answer is embodied in the architecture we
describe here, called Ethane. Ethane is built around three
fundamental principles that we feel are important to any
network management solution:

The network should be governed by policies declared over
high-level names. Networks are most easily managed in terms
of the entities we seek to control—such as users, hosts, and
access points—rather than in terms of low-level and often
dynamically-allocated addresses. For example, it is convenient
to declare which services a user is allowed to use and to which
machines they can connect.

Network routing should be policy-aware. Network policies
dictate the nature of connectivity between communicating en-
tities and therefore naturally affect the paths that packets take.
This is in contrast to today’s networks in which forwarding
and filtering use different mechanisms rather than a single
integrated approach.

A policy might require packets to pass through an in-
termediate middlebox; for example, a guest user might be
required to communicate via a proxy, or the user of an
unpatched operating system might be required to communicate
via an intrusion-detection system. Policy may also specify
service priorities for different classes of traffic. Traffic can
receive more appropriate service if its path is controlled;
directing real-time communications over lightly loaded paths,
important communications over redundant paths, and private
communications over paths inside a trusted boundary would
all lead to better service.

The network should enforce a strong binding between
a packet and its origin. Today, it is notoriously difficult
to reliably determine the origin of a packet: Addresses are
dynamic and change frequently, and they are easily spoofed.
The loose binding between users and their traffic is a constant
target for attacks in enterprise networks. If the network is
to be governed by a policy declared over high-level names
(e.g., users and hosts) then packets should be identifiable,
without doubt, as coming from a particular physical entity.
This requires a strong binding between a user, the machine
they are using, and the addresses in the packets they generate.
This binding must be kept consistent at all times, by tracking
users and machines as they move.

To achieve these aims, we followed the lead of the 4D
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project [9] and adopted a centralized control architecture.
Centralized solutions are normally an anathema for networking
researchers, but we feel it is the proper approach for enterprise
management. IP’s best-effort service model is both simple
and unchanging, well-suited for distributed algorithms. Net-
work management is quite the opposite; its requirements are
complex and variable, making it quite hard to compute in a
distributed manner.

There are many standard objections to centralized ap-
proaches, such as resilience and scalability. However, as we
discuss later in the paper, our results suggest that standard
replication techniques can provide excellent resilience, and
current CPU speeds make it possible to manage all control
functions on a sizable network (e.g., thousands of hosts) from
a single commodity PC.

Ethane bears substantial resemblance to SANE, our
recently-proposed clean-slate approach to enterprise secu-
rity [10]. SANE was, as are many clean-slate designs, difficult
to deploy and largely untested. While SANE contained many
valuable insights, Ethane extends this previous work in three
main ways:

a) Security follows management: Enterprise security is,
in many ways, a subset of network management. Both require
a network policy, the ability to control connectivity, and the
means to observe network traffic. Network management wants
these features so as to control and isolate resources, and then
to diagnose and fix errors, whereas network security seeks
to control who is allowed to talk to whom, and then to catch
bad behavior before it propagates. When designing Ethane, we
decided that a broad approach to network management would
also work well for network security.

b) Incremental deployability: SANE required a “fork-
lift” replacement of an enterprise’s entire networking infras-
tructure and changes to all the end-hosts. While this might be
suitable in some cases, it is clearly a significant impediment
to widespread adoption. Ethane is designed so that it can
be incrementally deployed within an enterprise: it does not
require any host modifications, and Ethane Switches can be
incrementally deployed alongside existing Ethernet switches.

c) Significant deployment experience: Ethane has been
implemented in both software and hardware (using special-
purpose Gigabit Ethernet switches and commodity switch-on-
a-chip products) and deployed at Stanford’s computer science
department for over four months and managed over 300 hosts.
We also have experience deploying Ethane in a small business
of over 30 hosts. This deployment experience has given us
insight into the operational issues such a design must confront,
and resulted in significant changes and extensions to the
original design.

In this paper, we describe our experiences designing, imple-
menting, and deploying Ethane. We begin with a high-level
overview of the Ethane design in §II, followed by a detailed
description in §III. In §IV, we describe a policy language
FSL that we use to manage our Ethane implementation. We
then discuss our implementation and deployment experience
(§V), followed by performance analysis (§VI). Finally we
present limitations (§VII), discuss related work (§VIII), and
then conclude (§IX).

II. OVERVIEW OF ETHANE DESIGN

Ethane controls the network by not allowing any com-
munication between end-hosts without explicit permission. It
imposes this requirement through two main components. The
first is a central Controller containing the global network
policy that determines the fate of all packets. When a packet
arrives at the Controlle—how it does so is described below—
the Controller decides whether the flow represented by that
packet! should be allowed. The Controller knows the global
network topology and performs route computation for permit-
ted flows. It grants access by explicitly enabling flows within
the network switches along the chosen route. The Controller
can be replicated for redundancy and performance.

The second component is a set of Ethane Switches. In con-
trast to the omniscient Controller, these Switches are simple
and dumb. Consisting of a simple flow table and a secure
channel to the Controller, Switches simply forward packets
under the direction of the Controller. When a packet arrives
that is not in the flow table, the Switch forwards that packet
to the Controller (in a manner we describe later), along with
information about which port the packet arrived on. When a
packet arrives that is in the flow table, it is forwarded according
to the Controller’s directive. Not every switch in an Ethane
network needs to be an Ethane Switch: Our design allows
Switches to be added gradually, and the network becomes
more manageable with each additional Switch.

A. Names, Bindings, and Policy Language

When the Controller checks a packet against the global
policy, it is evaluating the packet against a set of simple
rules, such as “Guests can communicate using HTTP, but
only via a web proxy” or “VoIP phones are not allowed to
communicate with laptops.” If we want the global policy to
be specified in terms of such physical entities, we need to
reliably and securely associate a packet with the user, group, or
machine that sent it. If the mappings between machine names
and IP addresses (DNS) or between IP addresses and MAC
addresses (ARP and DHCP) are handled elsewhere and are
unauthenticated, then we cannot possibly tell who sent the
packet, even if the user authenticates with the network. This
is a notorious and widespread weakness in current networks.

With (logical) centralization, it is simple to keep the
namespace consistent as components join, leave, and move
around the network. Network state changes simply require
updating the bindings at the Controller. This is in contrast
to today’s network where there are no widely-used protocols
for keeping this information consistent. Further, distributing
the namespace among all switches would greatly increase the
trusted computing base and require high overheads to maintain
consistency on each bind event.

In Ethane, we also use a sequence of techniques to secure
the bindings between packet headers and the physical entities
that sent them. First, Ethane takes over all the binding of

TAll policies considered in Ethane are based over flows, where the header
fields used to define a flow are based on the packet type (for example,
TCP/UDP flows include the Ethernet, IP and transport headers). Thus, only
a single policy decision need be made for each such “flow”.
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addresses. When machines use DHCP to request an IP address,
Ethane assigns it knowing to which switch port the machine
is connected, enabling Ethane to attribute an arriving packet
to a physical port.? Second, the packet must come from a
machine that is registered on the network, thus attributing it
to a particular machine. Finally, users are required to authen-
ticate themselves with the network—for example, via HTTP
redirects in a manner similar to those used by commercial
WiFi hotspots—binding users to hosts. Therefore, whenever a
packet arrives at the Controller, it can securely associate the
packet to the particular user and host that sent it.3

There are several powerful consequences of the Controller
knowing both where users and machines are attached and
all bindings associated with them. First, the Controller can
keep track of where any entity is located: When it moves,
the Controller finds out as soon as packets start to arrive
from a different Switch port. The Controller can choose to
allow the new flow or it might choose to deny the moved
flow (e.g., to restrict mobility for a VoIP phone due to
E911 regulations). Another powerful consequence is that the
Controller can journal all bindings and flow-entries in a log.
Later, if needed, the Controller can reconstruct all network
events; e.g., which machines tried to communicate or which
user communicated with a service. This can make it possible
to diagnose a network fault or to perform auditing or forensics,
long after the bindings have changed.

A challenging component of the Ethane design was to
create a policy language that operates over high-level names,
is sufficiently expressive, and is fast enough to support a large
network. Our solution was to design a new language called
the Flow-based Security Language (F'SL) [11] which is based
on a restricted from of DATALOG. FSL policies are comprised
of sets of rules describing which flows they pertain to (via a
conjunction of predicates), and the action to perform on those
flows (e.g., allow, deny, or route via a waypoint). As we will
see, F'SL’s small set of easily understood rules can still express
powerful and flexible policies. And it is possible to implement
with performance suitable for very large networks.

B. Ethane in Use

Putting all these pieces together, we now consider the five
basic activities that define how an Ethane network works, using
Figure 1 to illustrate:

d) Registration: All Switches, users, and hosts are reg-
istered at the Controller with the credentials necessary to au-
thenticate them. The credentials depend on the authentication
mechanisms in use. For example, hosts may be authenticated
by their MAC addresses, users via username and password,
and switches through secure certificates. All switches are also
preconfigured with the credentials needed to authenticate the
Controller (e.g., the Controller’s public key).

2As we discuss later, a primary advantage of knowing the ingress port of
a packet is that it allows the Controller to apply filters to the first-hop switch
used by unwanted traffic.

3We discuss the policy and security issues (and possible future solutions)
with multi-user machines later in §IV and §VII.
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Fig. 1. Example of communication on an Ethane network. Route setup shown
by dotted lines; the path taken by the first packet of a flow shown by dashed
lines.

e) Bootstrapping: Switches bootstrap connectivity by
creating a spanning tree rooted at the Controller. As the
spanning tree is being created, each switch authenticates with
and creates a secure channel to the Controller. Once a secure
connection is established, the switches send link-state infor-
mation to the Controller, which aggregates this information to
reconstruct the network topology.

f) Authentication:

1) Usery joins the network with host4. Because no flow
entries exist in switch 1 for the new host, it will initially
forward all of host 4’s packets to the Controller (marked
with switch 1’s ingress port).

2) Hosts sends a DHCP request to the Controller. After
checking host4’s MAC address,* the Controller allocates
an IP address (IP4) for it, binding host4 to IP4, [P 4 to
MAC 4, and MAC 4 to a physical port on switch 1.

3) Usery opens a web browser, whose traffic is directed to
the Controller, and authenticates through a web-form.>
Once authenticated, user4 is bound to host4.

g) Flow Setup:

1) User4 initiates a connection to userg (who we assume
has already authenticated in a manner similar to user,4).
Switch 1 forwards the packet to the Controller after
determining that the packet does not match any active
entries in its flow table.

2) On receipt of the packet, the Controller decides whether
to allow or deny the flow, or require it to traverse a set
of waypoints.

3) If the flow is allowed, the Controller computes the flow’s
route, including any policy-specified waypoints on the
path. The Controller adds a new entry to the flow tables
of all the Switches along the path.

h) Forwarding:

1) If the Controller allowed the path, it sends the packet
back to switch 1 which forwards it based on the new flow
entry. Subsequent packets from the flow are forwarded
directly by the Switch, and are not sent to the Controller.

2) The flow-entry is kept in the switch until it times out
(due to inactivity) or is revoked by the Controller.
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Fig. 2. An example Ethane deployment.

III. ETHANE IN MORE DETAIL
A. An Ethane Network

Figure 2 shows a typical Ethane network. The end-hosts
are unmodified and connect via a wired Ethane Switch or an
Ethane wireless access point. (From now on, we will refer to
both as “Switches”, described next in §III—B).6

When we add an Ethane Switch to the network, it has to
find the Controller (§III-C), open a secure channel to it, and
help the Controller figure out the topology. We do this with
a modified minimum spanning tree algorithm (per §III-G and
denoted by thick, solid lines in the figure). The outcome is that
the Controller knows the whole topology, while each Switch
only knows a part of it.

When we add (or boot) a host, it has to authenticate itself
with the Controller. From the Switch’s point-of-view, packets
from the new host are simply part of a new flow, and so packets
are automatically forwarded to the Controller over the secure
channel, along with the ID of the Switch port on which they
arrived. The Controller authenticates the host and allocates its
IP address (the Controller includes a DHCP server).

B. Switches

A wired Ethane Switch is like a simplified Ethernet switch.
It has several Ethernet interfaces that send and receive standard
Ethernet packets. Internally, however, the switch is much
simpler, as there are several things that conventional Ethernet
switches do that an Ethane switch doesn’t need: An Ethane
Switch doesn’t need to learn addresses, support VLANS, check
for source-address spoofing, or keep flow-level statistics (e.g.,
start and end time of flows, although it will typically maintain
per-flow packet and byte counters for each flow entry). If the
Ethane Switch is replacing a Layer-3 “switch” or router, it
doesn’t need to maintain forwarding tables, ACLs, or NAT. It
doesn’t need to run routing protocols such as OSPF, ISIS, and
RIP. Nor does it need separate support for SPANs and port-
replication (this is handled directly by the flow table under the
direction of the Controller).

4The network may use a stronger form of host authentication, such as
802.1X.

3 Alternative authentication strategies may also be employed, e.g., 802.1X.

SWe will see later that an Ethane network can also include legacy Ethernet
switches and access points, so long as we include some Ethane Switches in
the network. The more switches we replace, the easier to manage and the
more secure the network.

It is also worth noting that the flow table can be several
orders-of-magnitude smaller than the forwarding table in an
equivalent Ethernet switch. In an Ethernet switch, the table is
sized to minimize broadcast traffic: as switches flood during
learning, this can swamp links and makes the network less
secure.” As a result, an Ethernet switch needs to remember all
the addresses it’s likely to encounter; even small wiring closet
switches typically contain a million entries. Ethane Switches,
on the other hand, can have much smaller flow tables: they
only need to keep track of flows in-progress. For a wiring
closet, this is likely to be a few hundred entries at a time, small
enough to be held in a tiny fraction of a switching chip. Even
for a campus-level switch, where perhaps tens of thousands of
flows could be ongoing, it can still use on-chip memory that
saves cost and power.

We expect an Ethane Switch to be far simpler than its corre-
sponding Ethernet switch, without any loss of functionality. In
fact, we expect that a large box of power-hungry and expensive
equipment will be replaced by a handful of chips on a board.

Flow Table and Flow Entries. The Switch datapath is a
managed flow table. Flow entries contain a Header (to match
packets against), an Action (to tell the switch what to do with
the packet), and Per-Flow Data (which we describe below).

There are two common types of entry in the flow table:
per-flow entries describing application flows that should be
forwarded, and per-host entries that describe misbehaving
hosts whose packets should be dropped. For TCP/UDP flows,
the Header field covers the TCP/UDP, IP, and Ethernet headers,
as well as physical port information. The associated Action is
to forward the packet to a particular interface, update a packet-
and-byte counter (in the Per-Flow Data), and set an activity
bit (so that inactive entries can be timed-out). For misbehaving
hosts, the Header field contains an Ethernet source address and
the physical ingress port.® The associated Action is to drop the
packet, update a packet-and-byte counter, and set an activity
bit (to tell when the host has stopped sending).

Only the Controller can add entries to the flow table.
Entries are removed because they timeout due to inactivity
(local decision) or because they are revoked by the Controller.
The Controller might revoke a single, badly behaved flow,
or it might remove a whole group of flows belonging to a
misbehaving host, a host that has just left the network, or a
host whose privileges have just changed.

The flow table is implemented using two exact-match tables:
one for application-flow entries and one for misbehaving-host
entries. Because flow entries are exact matches, rather than
longest-prefix matches, it is easy to use hashing schemes in
conventional memories rather than expensive, power-hungry
TCAMs.

Other Actions are possible in addition to just forward and
drop. For example, a Switch might maintain multiple queues
for different classes of traffic, and the Controller can tell it
to queue packets from application flows in a particular queue
by inserting queue IDs into the flow table. This can be used
for end-to-end L2 isolation for classes of users or hosts. A

7In fact, network administrators often use manually configured and inflex-
ible VLANS to reduce flooding.
81f a host is spoofing, its first-hop port can be shut off directly (§III-C).
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Switch could also perform address translation by replacing
packet headers. This could be used to obfuscate addresses in
the network by “swapping” addresses at each Switch along the
path—an eavesdropper would not be able to tell which end-
hosts are communicating—or to implement address translation
for NAT in order to conserve addresses. Finally, a Switch could
control the rate of a flow.

Local Switch Manager. The Switch needs a small local
manager to establish and maintain the secure channel to
the Controller, to monitor link status, and to provide an
interface for any additional Switch-specific management and
diagnostics. (We implemented our manager in the Switch’s
software layer.)

There are two ways a Switch can talk to the Controller.
The first one, which we have assumed so far, is that Switches
are part of the same physical network as the Controller. We
expect this to be the most common case; e.g., in an enterprise
network on a single campus. In this case, the Switch finds
the Controller using our modified Minimum Spanning Tree
protocol described in §III-G. The process results in a secure
channel stretching through these intermediate Switches all the
way to the Controller.

If the Switch is not within the same broadcast domain as
the Controller, the Switch can create an IP tunnel to it (after
being manually configured with its IP address). This approach
can be used to control Switches in arbitrary locations, e.g., the
other side of a conventional router or in a remote location. In
one application of Ethane, the Switch (most likely a wireless
access point) is placed in a home or small business and then
managed remotely by the Controller over this secure tunnel.

The local Switch manager relays link status to the Controller
so it can reconstruct the topology for route computation.
Switches maintain a list of neighboring switches by broad-
casting and receiving neighbor-discovery messages. Neighbor
lists are sent to the Controller after authentication, on any
detectable change in link status, and periodically every 15
seconds.

C. Controller

The Controller is the brain of the network and has many
tasks; Figure 3 gives a block-diagram. The components do
not have to be co-located on the same machine (indeed, they
are not in our implementation).

Briefly, the components work as follows. The authentication
component is passed all traffic from unauthenticated or un-
bound MAC addresses. It authenticates users and hosts using
credentials stored in the registration database. Once a host or
user authenticates, the Controller remembers to which switch
port they are connected.

The Controller holds the policy file, which is compiled into
a fast lookup table (see §IV). When a new flow starts, it
is checked against the rules to see if it should be accepted,
denied, or routed through a waypoint. Next, the route compu-
tation uses the network topology to pick the flow’s route. The
topology is maintained by the switch manager, which receives
link updates from the Switches.

Policy File

policy

compiler Network

Registration
Database

Topology

Permission
Check

Authentication

7 /-
e 3

High-level view of Controller components.

Switch
Manager

Route
Computation

Network

Fig. 3.

In the remainder of this section, we describe each compo-
nent’s function in more detail. We leave description of the
policy language for the next section.

Registration. All entities that are to be named by the
network (i.e., hosts, protocols, Switches, users, and access
points”) must be registered. The set of registered entities make
up the policy namespace and is used to statically check the
policy (§IV) to ensure it is declared over valid principles.

The entities can be registered directly with the Controller,
or—as is more likely in practice and done in our own
implementation—FEthane can interface with a global registry
such as LDAP or AD, which would then be queried by the
Controller.

By forgoing Switch registration, it is also possible for
Ethane to provide the same “plug-and-play” configuration
model for Switches as Ethernet. Under this configuration,
the Switches distribute keys on boot-up (rather than require
manual distribution) under the assumption that the network
has not been compromised.

Authentication. All Switches, hosts, and users must authen-
ticate with the network. Ethane does not specify a particular
host authentication mechanism; a network could support multi-
ple authentication methods (e.g., 802.1X or explicit user login)
and employ entity-specific authentication methods. In our
implementation, for example, hosts authenticate by presenting
registered MAC addresses, while users authenticate through
a web front-end to a Kerberos server. Switches authenticate
using SSL with server- and client-side certificates.

Tracking Bindings. One of Ethane’s most powerful features
is that it can easily track all the bindings between names, ad-
dresses, and physical ports on the network, even as Switches,
hosts, and users join, leave, and move around the network. It
is Ethane’s ability to track these dynamic bindings that makes
the policy language possible: It allows us to describe policies
in terms of users and hosts, yet implement the policy using
flow tables in Switches.

A binding is never made without requiring authentication,
so as to prevent an attacker from assuming the identity of
another host or user. When the Controller detects that a user
or host leaves, all of its bindings are invalidated, and all of
its flows are revoked at the Switch to which it was connected.
Unfortunately, in some cases, we cannot get reliable join and

“We define an access point here as a {Switch, port} pair.
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leave events from the network. Therefore, the Controller may
resort to timeouts or the detection of movement to another
physical access point before revoking access.

Namespace Interface. Because Ethane tracks all the bind-
ings between users, hosts, and addresses, it can make informa-
tion available to network managers, auditors, or anyone else
who seeks to understand who sent what packet and when.

In current networks, while it is possible to collect packet
traces, it is almost impossible to figure out later which user—or
even which host—sent or received the packets, as the addresses
are dynamic and there is no known relationship between users
and packet addresses.

An Ethane Controller can journal all the authentication and
binding information: The machine a user is logged in to, the
Switch port their machine is connected to, the MAC address
of their packets, and so on. Armed with a packet trace and
such a journal, it is possible to determine exactly which user
sent a packet, when it was sent, the path it took, and its
destination. Obviously, this information is very valuable for
both fault diagnosis and identifying break-ins. On the other
hand, the information is sensitive and controls need to be
placed on who can access it. We expect Ethane Controllers
to provide an interface that gives privileged users access to
the information. In our own system, we built a modified DNS
server that accepts a query with a timestamp, and returns the
complete bound namespace associated with a specified user,
host, or IP address (described in §V).

Permission Check and Access Granting. Upon receiv-
ing a packet, the Controller checks the policy to see what
actions apply to it. The results of this check (if the flow is
allowed) are forwarded to the route-computation component
which determines the path given the policy constraint. In our
implementation, all paths are pre-computed and maintained
via a dynamic all-pairs shortest path algorithm [12]. Section
IV describes our policy model and implementation.

There are many occasions when a Controller wants to limit
the resources granted to a user, host, or flow. For example, it
might wish to limit a flow’s rate, limit the rate at which new
flows are setup, or limit the number of IP addresses allocated.
Such limits will depend on the design of the Controller and
Switch, and they will be at the discretion of the network
manager. In general, however, Ethane makes it easy to enforce
such limits either by installing a flow entry which limits the
rate of the offending packets or drops them entirely.

The Controller’s ability to directly manage resources is the
primary means of protecting the network (and Controller) from
resource exhaustion attacks. To protect itself from connection
flooding from unauthenticated hosts, a Controller can place a
limit on the number of authentication requests per host and per
switch port; hosts that exceed their allocation can be closed
down by adding an entry in the flow table that blocks their
MAC address. If such hosts spoof their address, the Controller
can disable their Switch port. A similar approach can be used
to prevent flooding from authenticated hosts.

Flow-state exhaustion attacks are also preventable through
resource limits. Since each flow setup request is attributable to
a user, host, and access point, the Controller can enforce limits
on the number of outstanding flows per identifiable source.

The network may also support more advanced flow-allocation
policies. For example, an integrated hardware/software Switch
can implement policies such as enforcing strict limits on
the number of flows forwarded in hardware per source and
looser limits on the number of flows in the slower (and more
abundant) software forwarding tables.

D. Handling Broadcast and Multicast

Enterprise networks typically carry a lot of multicast and
broadcast traffic. It is worth distinguishing broadcast traffic
(which is mostly discovery protocols, such as ARP) from
multicast traffic (which is often from useful applications, such
as video). In a flow-based network like Ethane, it is quite easy
for Switches to handle multicast: The Switch keeps a bitmap
for each flow to indicate which ports the packets are to be sent
to along the path. The Controller can calculate the broadcast
or multicast tree and assign the appropriate bits during path
setup.

In principle, broadcast discovery protocols are also easy to
handle in the Controller. Typically, a host is trying to find a
server or an address; given that the Controller knows all, it can
reply to a request without creating a new flow and broadcasting
the traffic. This provides an easy solution for ARP traffic,
which is a significant fraction of all network traffic. In practice,
however, ARP could generate a huge load for the Controller;
one design choice would be to provide a dedicated ARP server
in the network to which all Switches direct all ARP traffic.
But there is a dilemma when trying to support other discovery
protocols: each one has its own protocol, and it would be
onerous for the Controller to understand all of them. Our own
approach has been to implement the common ones directly in
the Controller and to broadcast unknown request types with
a rate-limit. Clearly this approach does not scale well, and
we hope that, if Ethane becomes widespread in the future,
discovery protocols will largely go away. After all, they are
just looking for binding information that the network already
knows; it should be possible to provide a direct way to query
the network. We discuss this problem further in §VII.

E. Replicating the Controller: Fault-Tolerance and Scalability

Designing a network architecture around a central controller
raises concerns about availability and scalability. While our
measurements in §VI suggest that thousands of machines can
be managed by a single desktop computer, multiple Controllers
may be desirable to provide fault-tolerance or to scale to very
large networks.

Controller distribution in Ethane takes advantage two prop-
erties of its workload: (i) per-flow permission checks can be
handled in a purely distributed fashion under the assumption
that the bindings and network topology is the same on all
replicas. (i) Changes to the network state happens on very
slow time scales relative to flow arrivals (three to four orders of
magnitude difference in our experience). Thus, the replication
strategy is to load balance flows among the controller repli-
cas'” and ensure that the bindings and the network topology

10For example, by using consistent hashing over the source MAC address.
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remain strongly consistent using a standard consensus protocol
such as Paxos [13]. Only flows which result in a change of
the controller state (such as a user or host authentication, or a
link change) will incur overhead for consistency management.

When replicated, each Controller operates as the root of a
spanning tree. Similar to the non-distributed case, Switches
connect to all Controllers along the constructed MSTs. Con-
trollers also use the MSTs to communicate with each other.
If a Controller fails or becomes disconnected from a switch,
the switch will no longer use the Controller’s MST when load
balancing flow permission checks. When a Controller joins the
network, it will advertise a new spanning tree root which, after
switch authentication, will be used to load balance flows.

The simplest form of replication requires that all Controllers
be co-located and therefore no two can be disconnected by
a network partition. However, this raises the possibility that
a localized event (such as a power outage) could affect all
Controllers on the network. On the other hand while more
resilient to failure, topologically distributing Controllers must
be able to handle network partitions in which each partition is
managed by a distinct set of Controllers. On network join,
the Controllers must resolve their state which will likely
have diverged during the disconnection. Our current approach
for dealing reconnection after a partition is for one of the
disconnected Controller sets to drop all of their local changes
and synchronize with the other. This may require some users
or hosts to re-authenticate.

There is clearly plenty of scope in this area for further study:
Now that Ethane provides a platform with which to capture
and manage all bindings, we expect future improvements can
make the system more robust.

F. Link Failures

Link and Switch failures must not bring down the network
as well. Recall that Switches always send neighbor-discovery
messages to keep track of link-state. When a link fails, the
Switch removes all flow table entries tied to the failed port
and sends its new link-state information to the Controller.
This way, the Controller also learns the new topology. When
packets arrive for a removed flow-entry at the Switch, the
packets are sent to the Controlle—much like they are for new
flows—and the Controller computes and installs a new path
based on the new topology.

G. Bootstrapping

When the network starts, the Switches must connect to
and authenticate with the Controller.!" Ethane bootstraps in a
similar way to SANE [10]: On startup, the network creates
a minimum spanning tree with the Controller advertising
itself as the root. Each Switch has been configured with the
Controller’s credentials and the Controller with the Switches’
credentials.

If a Switch finds a shorter path to the Controller, it attempts
two-way authentication with it before advertising that path as

"I"This method does not apply to Switches that use an IP tunnel to connect to
the Controller—they simply send packets via the tunnel and then authenticate.

a valid route. Therefore, the minimum spanning tree grows
radially from the Controller, hop-by-hop as each Switch au-
thenticates.

Authentication is done using the preconfigured credentials
to ensure that a misbehaving node cannot masquerade as the
Controller or another Switch. If authentication is successful,
the Switch creates an encrypted connection with the Controller
that is used for all communication between the pair.

By design, the Controller knows the upstream Switch and
physical port to which each authenticating Switch is attached.
After a Switch authenticates and establishes a secure channel
to the Controller, it forwards all packets it receives for which
it does not have a flow entry to the Controller, annotated with
the ingress port. This includes the traffic of authenticating
Switches.

Therefore, the Controller can pinpoint the attachment point
to the spanning tree of all non-authenticated Switches and
hosts. Once a Switch authenticates, the Controller will estab-
lish a flow in the network between itself and the Switch for
the secure channel.

IV. THE FSL PoOLICY LANGUAGE

The administrative interface to an Ethane network is the
policy language. While the Ethane architecture is conceptually
independent of the language, in order to be practical the
language must be designed with performance as a primary
objective. To this end, we have developed a DATALOG-
based language with negation called FSL (Flow-based Security
Language). FSL supports distributed authorship, incremental
updates, and automatic conflict resolution of network policy
files.!> We have implemented FSL and use it in one of our
deployed networks.

A. Overview

Conceptually, an FSL policy is a set of functions mapping
unidirectional flows to constraints that should be placed on
those flows. FSL was designed so that given an Ethane flow,
the desired constraints can be calculated efficiently.

In practice, an FSL policy is declared as a set of rules,
each consisting of a condition and a corresponding action.
For example, the rule to specify that user bob is allowed to
communicate with the web server using HTTP is:

[allow() <= usrc(‘bob”) A tpdst(‘“http”) A hdst(‘““‘websrv”’)]

Conditions. A condition is a conjunction of zero or more
literals describing the set of flows an action should be applied
to. From the preceding example, if the user initiating the flow
is “bob” and the flow destination transport protocol is “HTTP”
and the flow destination is host “websrv,” then the flow is
allowed. In general, the predicate function (e.g., usrc) is the
domain to be constrained, and the arguments are entities in
that domain to which the rule applies. For example, the literal
usrc(“bob”) applies to all flows in which the source user is
bob.

2Due to space constraints we only provide a brief introduction to FSL. A
more detailed description can be found at [11].
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Valid domains include {apsrc, apdst, hsrc, hdst, usrc, udst,
tpsrc, tpdst, protocol}, which respectively signify the source
and destination access point, host, user, and transport protocol
of a flow, followed by the flow’s protocol, where the argu-
ment should be a defined constant describing a subset of a
flow’s Ethernet, network, and transport protocols. Flows can
also be described by the boolean predicates isConnRequest()
and isConnResponse() to encode the role of a unidirectional
flow in the larger connection setting. These can be used to
restrict hosts to either outbound or inbound only connections,
providing NAT-like security in the former case, and restricting
servers from making outbound connections in the latter.

In FSL, predicate arguments can be single names (e.g.,
“bob”), lists of names (e.g., [“bob”, “linda”]). Literals
can also be written as group inclusion expressions (e.g.,
in( “workstations”, HSRC)). Names may be registered stati-
cally at the Controller, or can be resolved through a third-party
authentication store such as LDAP or AD.

Actions. The standard set of actions include allow, deny,
and waypoint. Waypoint declarations include a list of entities
to route the flow through, e.g., waypoint(“ids”, “web-proxy”).

Our FSL implementation allows the action set to be ex-
tended to arbitrary functions written in C++ or Python. This
enables the very natural interposition of new services on the
processing path. For example, we use this feature to define au-
thentication policies by implementing an action http_redirect
which is applied to all unauthenticated packets. The function
redirects users to a captive web portal through which the user
logs in.

B. Rule and Action Precedence

FSL rules are independent and do not contain an intrinsic
ordering; thus a single flow may match multiple rules with
conflicting actions. Conflicts are resolved in two ways. The
author can resolve them statically by assigning priorities
using a cascading mechanism. This allows an administrator
to quickly relax a security policy by inserting a high prioirity
exception without having to understand the full policy file.
Conflicts arising at runtime (not always detectable at compile
time since literal values such as group membership can change
dynamically), are resolved by selecting the most secure action.
For example, deny is more secure than waypoint, which in turn
is more secure than allow.

Unfortunately, in today’s multi-user operating systems, it is
difficult from a network perspective to attribute traffic to a
particular user. In Ethane, if multiple users are logged into the
same machine (and are not differentiable based on network
identifiers), the least restrictive action present among the
perhaps differently privileged users is applied to the machine’s
flows. This is an obvious relaxation of the security policy. To
address this, we are exploring integration with trusted end-host
operating systems to provide user isolation and identification
(for example, by providing each user with a virtual machine
with a unique MAC).

C. Policy Example

Figure 4 lists a (prioritized) set of rules derived from the
practices in one of our deployments. In this policy, all flows

allow() <= tpdst(8888) A hdst(“emerson”)

fn_action(“http_redirect”) <= in(‘laptops’, HSRC) A usrc(“‘unauthenticated”)
# allow ARP and DHCP

allow() <= protocol(‘arp’)

allow() <= protocol(‘dhcps’) A hdst(“gateway”)

allow() <= protocol(‘dhcpc’) A hsrc(“‘gateway”)

# allow computers to ssh into anyone

allow() <= protocol(‘ssh’) A in(‘computers’, HSRC)

# dissallow testing machines from communicating externally

deny() <= in(‘testing’, HSRC) | in(‘testing’, HDST)

# servers should be inbound-only

deny() <= isConnRequest() A (in(‘servers’, HSRC) | in(‘printers’, HSRC))
# printers should be inbound-only

deny() <= isConnRequest() A (in(‘printers’, HSRC) | in(‘printers’, HSRC))
# laptops and mobile devices should be outbound-only

deny() <= isConnRequest() A (in(‘mobile’, HDST) | in(‘laptops’, HDST))
# allow workstations unfettered access

allow() <= in(‘workstations’, HSRC) | in(‘workstations’, HDST)

# allow known devices to communicate as long as they abide by the

# previous rules.

allow() <= in(‘all’, HSRC)

# default deny

deny() <= True

Fig. 4. A sample policy file using FSL

which do not otherwise match a rule are denied (by the last
rule), enforcing a network security policy that can loosely be
described as “default off.” Unauthenticated users on laptops
are sent to a captive web portal for authentication. Servers
and printers are not allowed to initiate connections. Laptops
and mobile devices are protected from inbound flows (similar
to the protection provided by NAT), while workstations can
communicate without constraints.

D. Implementation

We have implemented FSL within Ethane. The compiler is
written in Python and generates low-level C++ lookup struc-
tures traversed at runtime. Our implementation additionally
permits dynamic changes to both the policy as well as group
definitions.

In benchmarks using generated traffic, our implementation
running our internal policy file supports permission checks for
over 90,000 flows/s. As we discuss in the following section,
this is more than adequate for the networks we’ve measured.
Furthermore, our implementation maintains a relatively modest
memory footprint even with large policy files: A 10,000 rule
file uses less than 57 Mbytes.

V. PROTOTYPE AND DEPLOYMENT

We have built and deployed two functional Ethane networks.
Our initial deployment was at Stanford University in which
Ethane connected over 300 registered hosts and several hun-
dred users. That deployment included 19 Switches both wired
and wireless. Our second deployment was in a small business
network managing over 30 hosts. Both deployments are in
operational networks entrusting Ethane to handle production
traffic.

In the following section we describe our Ethane prototypes
and some aspects of their deployment, drawing some lessons
and conclusions based on our experience.
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A. Switches

We have built four different Ethane Switches from the
ground up: An 802.11g wireless access point (based on a
commercial access point), a wired 4-port Gigabit Ethernet
Switch that forwards packets at line-speed (based on the
NetFPGA programmable switch platform [14] and written in
Verilog), a wired 16-port Ethane Switch running on a network
appliance, and a wired 4-port Ethernet Switch in Linux on a
desktop PC (in software, both as a development environment
and to allow rapid prototyping).

In addition, we have ported Ethane to run on commodity
switch platforms. When porting to switching hardware archi-
tectures we are constrained by the existing hardware design.
For example, in our experience, ACL rule engines in many
chips can be used for flow lookup, however the number of rules
(or flows in our case) supported is low. In one of our ports, the
switch only allows 4,096 rules for 48 ports of gigabit Ethernet.
In such cases, we also implement a full software solution
on the management processors to handle overflow, however
the disparity in processing power makes this an inadequate
approach for production use. Fortunately, there are now chips
available that can leverage external memory to support tens of
thousands of flows.

We now discuss each prototype Switch implementation in
more detail.

Ethane Wireless Access Point. Our access point runs on a
Linksys WRTSL54GS wireless router (266MHz MIPS, 32MB
RAM) running OpenWRT [15]. The datapath and flow table
are based on 5K lines of C++ (1.5K are for the flow table).
The local switch manager is written in software and talks
to the Controller using the native Linux TCP stack. When
running from within the kernel, the Ethane forwarding path
runs at 23Mb/s—the same speed as Linux IP forwarding and
L2 bridging.

Ethane 4-port Gigabit Ethernet Switch: Hardware Solu-
tion. The Switch is implemented on NetFPGA v2.0 with four
Gigabit Ethernet ports, a Xilinx Virtex-II FPGA, and 4MB of
SRAM for packet buffers and the flow table. The hardware
forwarding path consists of 7K lines of Verilog; flow entries
are 40 bytes long. Our hardware can forward minimum-size
packets in full-duplex at a line rate of 1Gb/s.

Ethane 4-port Gigabit Ethernet Switch: Software So-
lution. We also built a Switch from a regular desktop PC
(1.6GHz Celeron CPU and 512MB of DRAM) and a 4-port
Gigabit Ethernet card. The forwarding path and the flow table
are implemented to mirror (and therefore help debug) our
implementation in hardware. Our software Switch in kernel
mode can forward MTU size packets at 1Gb/s.'3

Ethane 14-Port Ethernet Switch. We were able to run our
Linux kernel module unmodified on a 14-port Portwell Kilin-
6030. This network appliance is based on the 16-core Cavium
Octeon CN3860 processor. The advantage of this platform is
that standard DRAM memory is used for flow lookup and
thus can support an arbitrary number of flows. It is obviously

3However, as the packet size drops, the switch can’t keep pace with
hashing and interrupt overheads. At 100 bytes, the switch can only achieve a
throughput of 16Mb/s. Clearly, for now, the switch needs to be implemented
in hardware for high-performance networks.

faster than our PC based solution, but we have not been able
to measure its full capacity.

Ethane 48-Port Ethernet Switch. We ported Ethane to
a commercial 48-port switch running a pair of Broadcom
BCM56514 chips. To do so, we modified the firmware to
run the Ethane Linux kernel module on the on-board 1GHz
management CPU. Instead of adding flows in software, the
module first attempts to insert rules into the switching chips’
ACL engines. When all 4096 rules are exhausted, Ethane will
default to using software flow entries. As long as rules match
in hardware, the switch is able to support all 48 ports in full-
duplex at a line rate of 1Gb/s.

We plan to continue to investigate other platforms and
optimizations. A very promising avenue is the Broadcom
566xx series of chips, which support hundreds of thousands
of entries. We are also looking into making better use of the
existing flow entry space by employing intelligent replacement
policies such as LRU.

B. Controller

We implemented the Controller on a standard Linux PC
(1.6GHz Celeron CPU and 512MB of DRAM). The Controller
is based on 45K lines of C++ (with an additional 4K lines
generated by the policy compiler) and 4.5K lines of Python
for the management interface.

i) Registration: Switches and hosts are registered using a
web interface to the Controller and the registry is maintained in
a standard database. For Switches, the authentication method
is determined during registration. Users are registered using
our university’s standard directory service.

J) Authentication: In our system, users authenticate using
our university authentication system, which uses Kerberos and
a university-wide registry of usernames and passwords. Users
authenticate via a web interface—when they first connect to a
browser they are redirected to a login web-page. In principle,
any authentication scheme could be used, and most enterprises
already have an existing authentication infrastructure. Ethane
Switches also, optionally, authenticate hosts based on their
MAC address, which is registered with the Controller.

k) Bind Journal and Namespace Interface: Our Con-
troller logs bindings whenever they are added or removed,
or when we decide to checkpoint the current bind-state; each
entry in the log is timestamped. We use BerkeleyDB for the
log [16], keyed by timestamp.

The log is easily queried to determine the bind-state at any
time in the past. We enhanced our DNS server to support
queries of the form key.domain.type-time, where “type” can be
“host”, “user”, “MAC”, or “port”. The optional time parameter
allows historical queries, defaulting to the present time.

1) Route Computation: Routes are pre-computed using
an all pairs shortest path algorithm [12]. Topology recalcula-
tion on link failure is handled by dynamically updating the
computation with the modified link-state updates. Even on
large topologies, the cost of updating the routes on failure
is minimal. For example, the average cost of an update on
a 3,000 node topology is 10ms. In the following section we
present an analysis of flow-setup times under normal operation
and during link failure.
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Fig. 5. Frequency of flow-setup requests per second to Controller over a
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C. University Deployment

We describe the larger of our two deployments as an
example of an Ethane network in practice. We deployed Ethane
in our department’s 100Mb/s Ethernet network. We installed
eleven wired and eight wireless Ethane Switches. There were
approximately 300 host, with an average of 120 hosts active
in a 5-minute window. We created a network policy to closely
match—and in most cases exceed—the connectivity control
already in place. We pieced together the existing policy by
looking at the use of VLANSs, end-host firewall configurations,
NATs and router ACLs. We found that often the existing
configuration files contained rules no longer relevant to the
current state of the network, in which case they were not
included in the Ethane policy.

Briefly, within our policy, non-servers (workstations, lap-
tops, and phones) are protected from outbound connections
from servers, while workstations can communicate uninhib-
ited. Hosts that connect to an Ethane Switch port must register
a MAC address, but require no user authentication. Wireless
nodes protected by WPA and a password do not require user
authentication, but if the host MAC address is not registered (in
our network this means they are a guest), they can only access
a small number of services (HTTP, HTTPS, DNS, SMTP,
IMAP, POP, and SSH). Our open wireless access points require
users to authenticate through the university-wide system. The
VoIP phones are restricted from communicating with non-
phones and are statically bound to a single access point to
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Fig. 7. Flow-request rate for Stanford network.

prevent mobility (for E911 location compliance). Our policy
file is 132 lines long.

VI. PERFORMANCE AND SCALABILITY

Deploying Ethane has taught us a lot about the operation of
a centrally-managed network, and it enabled us to evaluate
many aspects of its performance and scalability, especially
with respect to the numbers of users, end-hosts, and Switches.
We start by looking at how Ethane performs in our network,
and then, using our measurements and data from others, we
try to extrapolate the performance for larger networks.

In this section, we first measure the Controller’s perfor-
mance as a function of the flow-request rate, and we then try to
estimate how many flow-requests we can expect in a network
of a given size. This allows us to answer our primary question:
How many Controllers are needed for a network of a given
size? We then examine the behavior of an Ethane network
under Controller and link failures. Finally, to help decide
the practicality and cost of Switches for larger networks, we
consider the question: How big does the flow table need to be
in the Switch?

A. Controller Scalability

Recall that our Ethane prototype is currently used by
approximately 300 hosts, with an average of 120 hosts active in
a 5-minute window. From these hosts, we see 30-40 new flow
requests per second (Figure 5) with a peak of 750 flow requests
per second.'* Figure 6 shows how our Controller performs
under load: for up to 11,000 flows per second—greater than
the peak laod we observed—flows were set up in less than 1.5
milliseconds in the worst case, and the CPU showed negligible
load.

Our results suggest that a single Controller could com-
fortably handle 10,000 new flow requests per second. We
fully expect this number to increase if we concentrated on
optimizing the design. With this in mind, it is worth asking to
how many end-hosts this load corresponds.

We consider a dataset from a 7,000-host network at Stanford
which includes all internal and outgoing flows (not including
broadcast). We find that the network during the data collection
period has a maximum of under 9,000 new flow-requests per
second (Figure 7).

14Samples were taken every 30 seconds.
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Fig. 8. Active flows through two of our deployed switches

Perhaps surprisingly, our results suggest that a single Con-
troller could comfortably manage a network with over 5,000
hosts without requiring replication. Indeed flow setup latencies
for continued load of up to 6,000/s are less than .6ms,
equivalent to the average latency of a DNS request within the
Stanford network. Flow setup latencies for load under 2,000
requests per second are .4ms, this is roughly equivalent to the
average RTT between hosts in different subnets on our campus
network.

Of course, in practice, the rule set would be larger and the
number of physical entities greater. On the other hand, the
ease with which the Controller handles this number of flows
suggests there is room for improvement. This is not to suggest
that a network should rely on a single Controller; we expect a
large network to deploy several Controllers for fault-tolerance,
using the schemes outlined in §III-E, one of which we examine
next.

B. Performance During Failures

Because our Controller implements cold-standby failure
recovery (see §III-E), a Controller failure will lead to inter-
ruption of service for active flows and a delay while they are
re-established. To understand how long it takes to reinstall the
flows, we measured the completion time of 275 consecutive
HTTP requests, retrieving 63MB in total. While the requests
were ongoing, we crashed the Controller and restarted it
multiple times. Table I shows that there is clearly a penalty
for each failure, corresponding to a roughly 10% increase in
overall completion time. This can be largely eliminated, of
course, in a network that uses warm-standby or fully-replicated
Controllers to more quickly recover from failure (see §III-E).

Link failures in Ethane require that all active flows re-
contact the Controller in order to re-establish the path. If
the link is heavily used, the Controller will receive a storm
of requests, and its performance will degrade. We created a
topology with redundant paths—so the network can withstand
a link-failure—and measured the latencies experienced by

Failures 0 1 2 3 4
Completion time | 26.17s | 27.44s | 30.45s | 36.00s | 43.09s
TABLE I

COMPLETION TIME FOR HTTP GETS OF 275 FILES DURING WHICH THE
PRIMARY CONTROLLER FAILS ZERO OR MORE TIMES. RESULTS ARE
AVERAGED OVER 5 RUNS.
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Fig. 9. Round-trip latencies experienced by packets through a diamond

topology during link failure.

packets. Failures were simulated by physically unplugging a
link; our results are shown in Figure 9. In all cases, the path
reconverges in under 40ms, but a packet could be delayed up
to a second while the Controller handles the flurry of requests.

Our network policy allows for multiple disjoint paths to be
setup by the Controller when the flow is created. This way,
convergence can occur much faster during failure, particularly
if the Switches detect a failure and failover to using the backup
flow-entry. We have not implemented this in our prototype, but
plan to do so in the future.

C. Flow Table Sizing

Finally, we explore how large the flow table needs to be in
the Switch. Ideally, the Switch can hold all of the currently
active flows. Figure 8 shows how many active flows we saw
in our Ethane deployment; it never exceeded 500. With a
table of 8,192 entries and a two-function hash-table, we never
encountered a collision.

In practice, the number of ongoing flows depends on where
the Switch is in the network. Switches closer to the edge will
see a number of flows proportional to the number of hosts they
connect to (i.e., their fanout). In the University network, our
deployed Switches had a fanout of four and saw no more than
500 flows; we might expect a Switch with a fanout of, say,
64 to see at most a few thousand active flows. (It should be
noted that this is a very conservative estimate, in our second
deployment the number of ongoing flows averaged 4 per active
host) A Switch at the center of a network will likely see more
active flows, and so we assume it will see all active flows.

From these numbers we conclude that a Switch—for a
university-sized network—should have flow table capable of
holding 8K-16K entries. If we assume that each entry is 64B,
such a table requires about IMB of storage, or as much as
4MB if we use a two-way hashing scheme [17]. A typical
commercial enterprise Ethernet switch today holds hundreds
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of thousands of Ethernet addresses (6MB, but larger if hashing
is used), and millions of IP prefixes (4AMB of TCAM), 1-
2 million counters (SMB of fast SRAM), and several thousand
ACLs (more TCAM). Thus, the memory requirements of an
Ethane Switch are quite modest in comparison to today’s
Ethernet switches.

VII. ETHANE’S SHORTCOMINGS

When trying to deploy a radically new architecture into
legacy networks—without changing the end-host—we en-
counter some stumbling blocks and limitations. These are the
main issues that arose:

Broadcast and Service Discovery. Broadcast discovery
protocols (ARP, OSPF neighbor discovery, etc.) wreak havoc
on enterprise networks by generating huge amounts of over-
head traffic [18], [19]; on our network, these constituted over
90% of the flows. One of the largest reasons for VLANS is to
control the storms of broadcast traffic on enterprise networks.
Hosts frequently broadcast messages to the network to try
and find an address, neighbor, or service. Unless Ethane can
interpret the protocol and respond on its behalf, it needs to
broadcast the request to all potential responders; this involves
creating large numbers of flow entries, and it leads to lots
of traffic which—if malicious—has access to every end-host.
Broadcast discovery protocols could be eliminated if there was
a standard way to register a service where it can easily be
found. SANE proposed such a scheme [10], and, in the long-
term, we believe this is the right approach.

Application-layer Routing. A limitation of Ethane is that
it has to trust end-hosts not to relay traffic in violation of
the network policy. Ethane controls connectivity using the
Ethernet and IP addresses of the end-points, but Ethane’s
policy can be compromised by communications at a higher
layer. For example, if A is allowed to talk to B but not C, and
if B can talk to C, then B can relay messages from A to C.
This could happen at any layer above the IP layer, e.g., a P2P
application that creates an overlay at the application layer, or
multi-homed clients that connect to multiple networks. This is
a hard problem to solve, and most likely requires a change to
the operating system and any virtual machines running on the
host.

Knowing what the user is doing. Ethane’s policy assumes
that the transport port numbers indicate what the user is doing:
port 80 means HTTP, port 25 is SMTP, and so on. Colluding
malicious users or applications can fool Ethane by agreeing to
use non-standard port numbers. And it is common for “good”
applications to tunnel applications over ports (such as port 80)
that are likely to be open in firewalls. To some extent, there
will always be such problems for a mechanism like Ethane,
which focuses on connectivity without involvement from the
end-host. In the short-term, we can, and do, insert application
proxies along the path (using Ethane’s waypoint mechanism).

Spoofing Ethernet addresses. Ethane Switches rely on the
binding between a user and Ethernet addresses to identify
flows. If a user spoofs a MAC address, it might be possible
to fool Ethane into delivering packets to an end-host. This
is easily prevented in an Ethane-only network where each

Switch port is connected to one host: The Switch can drop
packets with the wrong MAC address. If two or more end-
hosts connect to the same Switch port, it is possible for one
to masquerade as another. A simple solution is to physically
prevent this; a more practical solution in larger networks
is to use 802.1X in conjunction with link-level encryption
mechanisms, such as 802.1AE, to more securely authenticate
packets and addresses.

VIII. RELATED WORK

Ethane embraces the 4D [9] philosophy of simplifying
the data-plane and centralizing the control-plane to enforce
network-wide goals [20]. Ethane diverges from 4D in that it
supports a fine-grained policy-management system. We believe
that policy decisions can and should be based on flows. We
also believe that by moving all flow decisions to the Controller,
we can add many new functions and features to the network by
simply updating the Controller in a single location. Our work
also shows that it is possible—we believe for the first time—
to securely bind the entities in the network to their addresses,
and then to manage the whole namespace with a single policy.

Ipsilon Networks proposed caching IP routing decisions
as flows, in order to provide a switched, multi-service fast
path to traditional IP routers [21]. Ethane also uses flows as
a forwarding primitive. However, Ethane extends forwarding
to include functionality useful for enforcing security, such as
address swapping and enforcing outgoing initiated flows only.

In distributed firewalls [22], policy is declared centrally in a
topology independent manner and enforced at each end-host.
In addition to the auditing and management support, Ethane
differs from this work in two major ways. First, in Ethane
end-hosts cannot be trusted to enforce filtering. This mistrust
can be extended to the switches; if one switch fails to enforce
a policy, subsequent switches along the path will enforce it.
With per-switch enforcement of each flow, Ethane provides
maximal defense in depth. Secondly, much of the power of
Ethane is to provide network level guarantees, such as policy
imposed waypoints. This is not possible to do through end-
host level filtering alone.

FSL evolved from Pol-Eth, the original Ethane policy
language [23]. FSL extends Pol-Eth by supporting dynamic
group membership, negation, automated conflict resolution,
and distributed authorship. It differs from Pol-Eth in that
actions only apply to unidirectional flows.

VLANSs are widely used in enterprise networks for seg-
mentation, isolation, and to enforce coarse-grain policies;
and they are commonly used to quarantine unauthenticated
hosts or hosts without health “certificates” [24], [25]. VLANs
are notoriously difficult to use, requiring much hand-holding
and manual configuration; we believe Ethane can replace
VLAN:Ss entirely, giving much simpler control over isolation,
connectivity, and diagnostics.

There are a number of Identity-Based Networking (IBN)
custom switches available (e.g., [26]) or secure AAA servers
(e.g., [27]). These allow high-level policy to be declared, but
are generally point solutions with little or no control over
the network data-path (except as a choke-point). Several of
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them rely on the end-host for enforcement, which makes them
vulnerable to compromise.

IX. CONCLUSIONS

One of the most interesting consequences of building a
prototype is that the lessons you learn are always different—
and usually far more—than were expected. With Ethane, this
is most definitely the case: We learned lessons about the good
and bad properties of Ethane, and fought a number of fires
during our deployment.

The largest conclusion that we draw is that (once deployed)
we found it much easier to manage the Ethane network
than we expected. On numerous occasions we needed to add
new Switches, new users, support new protocols, and prevent
certain connectivity. On each occasion we found it natural
and fast to add new policy rules in a single location. There is
great peace of mind to knowing that the policy is implemented
at the place of entry and determines the route that packets
take (rather than being distributed as a set of filters without
knowing the paths that packets follow). By journaling all
registrations and bindings, we were able to identify numerous
network problems, errant machines, and malicious flows—and
associate them with an end-host or user. This bodes well for
network managers who want to hold users accountable for
their traffic or perform network audits.

We have also found it straightforward to add new features
to the network: either by extending the policy language,
adding new routing algorithms (such as supporting redundant
disjoint paths), or introducing new application proxies as
waypoints. Overall, we believe that Ethane’s most significant
advantage comes from the ease of innovation and evolution.
By keeping the Switches dumb and simple, and by allowing
new features to be added in software on the central Controller,
rapid improvements are possible. This is particularly true if
the protocol between the Switch and Controller is open and
standardized, so as to allow competing Controller software to
be developed.

We are confident that the Controller can scale to support
quite large networks: Our results suggest that a single Con-
troller could manage thousands of machines, which bodes well
for whoever has to manage the Controllers. In practice, we
expect Controllers to be replicated in topologically-diverse
locations on the network, yet Ethane does not restrict how the
network manager does this. Over time, we expect innovation
in how fault-tolerance is performed, perhaps with emerging
standard protocols for Controllers to communicate and remain
consistent.

We are convinced that the Switches are best when they
are dumb, and contain little or no management software. We
have experience building switches and routers—for Ethane and
elsewhere—and these are the simplest switches we’ve seen.
Further, the Switches are just as simple at the center of the
network as they are at the edge. Because the Switch consists
mostly of a flow table, it is easy to build in a variety of ways:
in software for embedded devices, in network processors, for
rapid deployment, and in custom ASICs for high volume and
low-cost. Our results suggest that an Ethane Switch will be

significantly simpler, smaller, and lower-power than current
Ethernet switches and routers.

We anticipate some innovation in Switches too. For exam-
ple, while our Switches maintain a single FIFO queue, one can
imagine a “less-dumb” Switch with multiple queues, where the
Controller decides to which queue a flow belongs. This leads to
many possibilities: per-class or per-flow queuing in support of
priorities, traffic isolation, and rate control. Our results suggest
that even if the Switch does per-flow queuing (which may or
may not make sense), the Switch need only maintain a few
thousand queues. This is frequently done in low-end switches
today, and it is well within reach of current technology.
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