
jAnUARY 2012 | VOL. 55 | nO. 1 | CoMMuniCations of the aCM 57

TodaY’s ne Two RK s a Re suffering from unnecessary
latency and poor system performance. The culprit
is bufferbloat, the existence of excessively large and
frequently full buffers inside the network. Large
buffers have been inserted all over the Internet
without sufficient thought or testing. They damage or

defeat the fundamental congestion-
avoidance algorithms of the Internet’s
most common transport protocol.
Long delays from bufferbloat are fre-
quently misattributed to insufficient
bandwidth and this misinterpretation
of the problem leads to the wrong solu-
tions being proposed.

Congestion is an old problem on the
Internet, appearing in various forms
with different symptoms and causing
major problems. Buffers are essential
to the proper functioning of packet
networks, but overly large, unman-
aged, and uncoordinated buffers cre-
ate excessive delays that frustrate and
baffle end users. Many of the issues
that create delay are not new, but their
collective impact has not been widely
understood. Thus, buffering problems
have been accumulating for more than
a decade. We strive to present these
problems with their impacts so the

community can understand and act
upon the problem and, we hope, learn
to prevent future problems.

This article does not claim to be the
first to identify the problems of exces-
sive buffering, but it is instead intend-
ed to create a wider understanding of
the pervasive problem and to give a call
to action.

internet Buffers and Congestion
The latency a packet experiences in a
network is made up of transmission
delay (the time it takes to send it across
communications links), processing
delay (the time each network element
spends handling the packet), and
queuing delay (the time spent waiting
to be processed or transmitted). Paths
between communicating endpoints
in the Internet are typically made
up of many hops with links of differ-
ent rates or bandwidths; the smallest

Bufferbloat:
Dark Buffers
in the internet

Doi:10.1145/2063176.2063196

 Article development led by
 queue.acm.org

Networks without effective AQM may again
be vulnerable to congestion collapse.

By JiM Gettys anD KathLeen niChoLs

58 CoMMuniCations of the aCM | jAnUARY 2012 | VOL. 55 | nO. 1

practice

bandwidth along the path is referred
to as the bottleneck bandwidth. Pack-
ets cannot arrive at the destination any
faster than the time it takes to send a
packet at the bottleneck rate; without
effective use of the network the delay
can be much worse.

Latency along the path—the time
from the start of a packet’s transmis-
sion by the sender until the packet is
received at the destination—can be
much longer than the time it takes to
simply transmit the packet at the bot-
tleneck rate. To maintain a steady flow
of packets at the maximum rate, the
“packets in flight” must be sufficient to
fill the “pipe” of latency between send-
er and destination. Buffers are placed
in front of a communications link in
case packets arrive while the link is in
use, thus requiring storage while the
previous arrivals are serviced. The im-
portant location for buffers is at the
path bottleneck, but the critical fast-
to-slow transition can be different for
different paths, different in the reverse
path, and with dynamic bandwidths
can change along the same path.

Figure 1 shows the relationship
between throughput and delay for a
packet network. System throughput is
the fastest rate at which the count of
packets transmitted to the destination
by the network is equal to the number
of packets sent into the network. As
the number of packets in flight is in-
creased, the throughput increases un-

til packets are being sent and received
at the bottleneck rate. After this, more
packets in flight will not increase the
received rate. If a network has large buf-
fers along the path, they can fill with
these extra packets and increase delay.

A network with no buffers has no
place for packets to wait for transmis-
sion, thus, extra packets are dropped.
If the sending rate is increased, the
loss rate increases correspondingly.
Although any received packets will
have a short delay, the usefulness
of the received data stream would
likely be impacted. To operate with-
out buffers, arrivals must be com-
pletely predictable and smooth; thus,
global synchronized timing is criti-
cal to avoiding loss. Such networks
are complex, expensive, and restric-
tive (that is, they lack the flexibility of
the Internet). A well-known example
of a bufferless network is the ana-
log telephone network before packet
switching took over. Adding buffers
to networks and packetizing data into
variable-size packets was part of the
fundamental advance in communica-
tions that led to the Internet. The his-
tory of Internet congestion and its so-
lution is the story of trying to find the
optimal way to deploy and use buffers
in a network. That story is still being
written, but some of the lessons of the
past are being ignored.

The fundamental transport proto-
col of the Internet is TCP/IP. TCP’s per-

sistence is testimony both to the robust
and flexible design of the original algo-
rithm and to the excellent efforts of the
many researchers and engineers who
have tuned it over the decades. TCP
made use of the idea of pipesize and
the knowledge there was reasonable
but not excessive buffering along the
data path to send a window of packets
at a time—originally sending the entire
window into the network and waiting
for its acknowledgment before send-
ing more data.

The early Internet was plagued by
insufficient buffering. Even under
moderate loads, the packets in flight
of one or more connections could ar-
rive at a bottleneck link in a burst and
be dropped because of insufficient
bandwidth. This led to heavy losses
and the plummeting throughput as-
sociated with congestion collapse.
Internet researchers and engineers
had to advocate for sufficiently large
buffers to avoid this poor network
utilization. Congestion collapse hit a
large part of the Internet in 1986. The
network became clogged with retrans-
mitted packets while goodput slowed
to a trickle. As part of the solution,
slow-start and congestion-avoidance
algorithms were added to TCP and
rapidly deployed throughout the Inter-
net. They enabled the early Internet to
recover and set the stage for the rapid
growth in the 1990s with the adoption
of World Wide Web applications.

These TCP additions attempt to
keep the network operating near the
inflection point where throughput is
maximized, delay is minimized, and
little loss occurs. A sender-destination
pair’s TCP tries to determine the pipe-
size between them and to keep ex-
actly that number of packets in flight
throughout the data transfer. Since
networks are shared and conditions
change along the path, the algorithms
continually probe the network and
adapt the number of packets in flight.
The slow-start algorithm (slow relative
to the algorithm it replaced) attempts
to make a first guess as to how fast TCP
may operate by an initial exponential-
growth phase in transmission rate.
When the first packet loss is detected,
TCP reduces its sending rate and enters
the congestion-avoidance phase.

At the advent of congestion control
in TCP, the recommendation for buffer

figure 1. throughput and delay.

Packets in Flight

T
h

ro
u

g
h

p
u

t
D

el
ay

with large buffers

Packets in Flight

practice

jAnUARY 2012 | VOL. 55 | nO. 1 | CoMMuniCations of the aCM 59

sizing was to have a bandwidth-delay
product (BDP’s) worth of buffer, where
bandwidth is the bottleneck link and
delay is the round-trip time (RTT) be-
tween sender and destination. The ra-
tionale is that such a buffer can hold an
entire “flight” of packets should they all
arrive at the bottleneck link in a burst.
To apply this rule, the bandwidth used
in link buffer sizing was that of the
immediately outgoing link, since the
location of the actual bottleneck is un-
known. Similarly, a canonical value was
suggested for the RTT: 100ms, a conti-
nental delay for the U.S. and Europe.

Once adequate buffers became rou-
tine, another problem could occur: the
buffers were now part of the pipe that
TCP is so good at filling. Filling these
buffers would cause delay to increase,
and persistently full buffers lack the
space to absorb the routine burstiness
of a packet network. John Nagle’s semi-
nal work in 198510 first drew attention
to the consequences of large buffering.
While working on TCP congestion-
avoidance algorithms, Van Jacobson
recognized the “persistently full buf-
fer” issue in 1989, culminating in the
development of Random Early Detec-
tion (RED) with Sally Floyd in 1993.5

A number of implementations,
variations, imitations, and reports on
RED’s use are available in the litera-
ture.14 These are generically termed ac-
tive queue management (AQM), which
attempts to keep the queues at the

bottleneck from growing too large by
monitoring the growth of the packet
queue and signaling the sender’s TCP
to slow down by dropping (or marking)
packets in a timely fashion. Different
approaches have been taken to moni-
toring the packet queue and making
the drop (or mark) decision. The Inter-
net Research Task Force (IRTF) urged
the deployment of active queue man-
agement in the Internet, publishing an
RFC in 1998, popularly known as “the
RED manifesto.”2

Note that packet loss for TCP is not
in itself a problem but is essential for its
functioning in the face of congestion.
The excessive and consecutive packet
losses that come from persistently full
buffers do present a problem, which is
what the “warning” drops of AQM pre-
vent (in addition to long delays).

The truth is, AQM is not widely or
consistently configured and enabled
in routers and it is completely unavail-
able in many devices. Furthermore,
the existence of cheap memory and
the misguided desire to avoid packet
loss have led to larger and larger buf-
fers being deployed in the hosts, rout-
ers, and switches that make up the In-
ternet. It turns out this is a recipe for
bufferbloat. Evidence of bufferbloat
has been accumulating over the past
decade, but its existence has not yet
become a widespread cause for con-
cern. The next section outlines Jim’s
personal journey of discovery.

Jim’s Journey:
(Re)Discovering Latency
“The Internet is slow today, Daddy.”
This had become a frequent refrain in
the Gettys household. When I would at-
tempt to debug the problem, like a will-
o’-the-wisp, it would usually vanish. On
several occasions symptoms occurred
long enough for me to waste significant
amounts of time on my ISP’s support
line before they vanished. I attributed
the recurring problem to the doubt-
ful quality of the cable to my house or
equipment damage from a lightning
strike. Since my job is research in im-
mersive teleconferencing, I knew I had
to dig into the intermittent poor net-
work problem, if only for myself.

An Enlightening Lunch. Suspecting
features of my cable provider to be
part of the problem, I met with Com-
cast’s Rich Woundy, who provided a
number of new issues to consider:

˲˲ The “big-buffers” problem,
which David Clark (Internet network
architect, currently senior research
scientist at MIT) had warned about
several years earlier.

˲˲ Broadband measurement stud-
ies have been indicating overly large
edge buffers.

˲˲ AQM is MIA—many ISPs are run-
ning without any AQM even in cir-
cumstances where they really should.

˲˲ A group at UC Berkeley’s ICSI
(International Computer Science In-
stitute) had developed a very fine tool

figure 2. smokeping from Jim’s home to Mit.

Last 3 hours

s
ec

on
d

s

Median Ping Rtt (855.5 ms avg) 0 1/20 2/20 3/20 4/20 10/20 19/20
Packet Loss: 33.34% average 83.91% maximum 62.05% current
Probe: 20 iCMP echo Pings (1024 Bytes) every 300 seconds created on fri Jul 16 14:34:50 2010

11:40 12:00 12:20 12:40 13:00 13:20 13:40 14:00 14:20

2.2

2.0

1.8

1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0

60 CoMMuniCations of the aCM | jAnUARY 2012 | VOL. 55 | nO. 1

practice

for network diagnosis called Netalyzr
(http://netalyzr.icsi.berkeley.edu).

The next day, I recorded my “smok-
ing gun,” a smokeping (http://oss.
oetiker.ch/smokeping/) plot, while
moving 20GB of data from my house
to MIT (see Figure 2). The uncon-
gested RTT of this path is less than 10
milliseconds, yet I was experiencing
more than 1.2 seconds of latency, sig-
nificant packet loss, and painful Web
browsing. I suspended the rsync a few
times to read my email, and, as can be
seen on the plot, this would almost

instantly “fix” my home network. This
was the “Daddy, the Internet is slow
today” phenomenon; the fact that the
delays went away when I suspended
my large data transfer explained why
the problem disappeared when I went
looking for it; in order to debug the
network, I was stopping the work that
was inducing the problem.

Packet captures at Home and
“abroad.” I took a capture of a large file
transfer over the same path. Scrolling
through this capture with Wireshark
(http://www.wireshark.org) showed pe-

culiar behavior: obvious bursts of ter-
rible behavior containing hundreds of
duplicate ACKs, multiple retransmits,
out of order packets, among others, on
about 10-second periods followed by
long periods of what looked like nor-
mal behavior. A plot of the data revealed
500KB in flight over a 10ms path. My
uplink bandwidth was 2Mbps, so the
true BDP was 2.5KB. I could expect use
of a 100ms RTT for buffer sizing to re-
sult in 25KB, but 500KB was an order of
magnitude larger. The one-second RTT
is consistent with emptying a 500KB
buffer at 2Mbps. To remove uncertain-
ty, I repeated the experiment directly
plugged into the cable modem and saw
the same results.

I repeated my tests over my in-laws’
fiber broadband service in New Jersey.
Again, the results showed much more
data in flight and much larger RTT
times than expected: 250KB outstand-
ing on a 20ms path and 200ms latency
with almost the same shape as on my
cable. Over subsequent weeks, I added
to my data sets by visiting local librar-
ies and other targets of opportunity;
the pattern was the same wherever I
went. Finally, I had collected enough
disturbing data to be consistent with
the big-buffers problem, and I sus-
pected that the problem was endemic
among all technologies and providers.

Calling the Experts. I posted the
packet traces to a group of TCP experts:
Dave Clark, Dave Reed, Scott Bradner,
Greg Chesson, Van Jacobson, and Vint
Cerf. Their feedback revealed that ex-
treme buffering created an artificially
large pipe size and that packet discards
occur according to tail drop—that is,
when a packet arrives to a full buffer,
it is dropped. The packet’s destination
is unaware of the dropped packet until
the entire bloated buffer has been trans-
mitted, which can take many times the
uncongested RTT. TCP expects timely
notification of packet loss for correct
operation. With such large buffers,
TCP’s slow-start algorithm doesn’t see
any drops and thus greatly overesti-
mates the correct pipe size and requires
multiple packet drops before TCP can
enter its congestion-avoidance phase.

Jacobson provided plots of the
data, reproduced in figures 3 and 4.
The shape of the window-size evolu-
tion is characteristic of the CUBIC
implementation of TCP,13 which is the

figure 3a. Packet Rtt and window size: over five-minute trace.

0 50 100 150 200 250 300

0
10

0
0

20
0

0
30

0
0

4
0

0
0

Time (sec.)

R
T

T
 (

m
s)

W
in

d
ow

 S
iz

e
(K

B
)

0
50

0
10

0
0

15
0

0
20

0
0

figure 3b. Packet Rtt and window size: Detail over 70 seconds.

100 110 120 130 140 150 160 170

80
0

10
0

0
12

0
0

14
0

0
16

0
0

Time (sec.)

R
T

T
 (

m
s)

30
0

4
0

0
50

0

W
in

d
ow

 S
iz

e
(K

B
)

practice

jAnUARY 2012 | VOL. 55 | nO. 1 | CoMMuniCations of the aCM 61

default in Linux. CUBIC’s initial win-
dow growth is like Jacobson’s original
algorithm, but it “flattens out” at an
apparently stable pipe-size estimate
for a while.8 If it does not detect a con-
gestion event (that is, a packet drop),
then it ramps the window up quickly.
In the trace in Figure 3, about five sec-
onds pass without a drop, whereupon
TCP ramps up the window in an at-
tempt to find a new operating point;
after 10 seconds the buffer is full,
and packet loss occurs. (Because of
the offload engine, the RTTs are from
the last packet of the jumbogram
it receives.) Notice the RTT ramps
up quickly to about 1.2 seconds and
mostly stays there. The three-sec-
ond RTT spikes show where massive
dropping took place when the buffer
became full. These are followed by a
drop in window size and RTT. This,
in turn, causes TCP to shut down the
window size. The window-size curve
illustrates that sometimes the algo-
rithm gets a drop before it goes into
CUBIC’s second probing stage.

Figure 4 shows the goodput (deter-
mined from the ACKs) versus time. The
initial brief period of nearly 10Mbps is
a result of Comcast’s PowerBoost fea-
ture and is followed by a steady 2Mbps,
showing that I was getting all the band-
width I expected. Figure 4b shows the
RTT seen at each window size. The
lower data set clearly results from the
PowerBoost phase and the upper data
set is the subsequent 2Mbps phase.
These points show exactly the situa-
tion shown abstractly in Figure 1: the
delay is about 10ms initially; then the
window size increases, the buffer fills
up, and the delay (as measured by the
RTT) increases linearly.

TCP should approximately share a
bottleneck link between competing
flows. The impact of bufferbloat on
TCP’s behavior is subtle and profound
in two ways:

˲˲ For TCP congestion avoidance to
be useful to people using that link,
a TCP connection causing conges-
tion must react quickly to changes in
demand at the bottleneck link, but
TCP’s reaction time is quadratic to the
amount of overbuffering. A link that is
10 times overbuffered not only imposes
10 times the latency, but also takes 100
times as long to react to the congestion.
Your short, interactive TCP connection

loses completely to any long-lived flow
that has saturated your link.

˲˲ The long-lived flow’s inability to
respond to congestion can cause com-
plete starvation on competing transfers
(yours or anyone who shares the link).
A local service may be overbuffered by
another factor of 10 times compared to
a remote service.

closing the case on Broadband
Bufferbloat. Evidence of excessive buff-
ering accumulated over the course of
the past decade is finally sufficient to
motivate systematic study.

A 2007 study of nearly 2,000 hosts
connected through cable and DSL com-
panies in Europe and North America
focused on measuring the residential

“last mile.” The results showed that up-
stream queues for DSL were frequently
in excess of 600ms, and those for cable
generally exceeded one second.4

Netalyzr, a measurement tool for the
last mile or access link, has been key
to the exposure of bufferbloat. A 2010
study of 130,000 measurement sessions
revealed widespread, severe overbuff-
ering in the broadband edge.9 (The re-
sults are used here with permission of
the authors.) Figure 5 is a scatterplot of
bandwidth plotted against inferred buf-
fer capacity, each point representing a
single Netalyzr test session. The solid
diagonal lines indicate the latency, in
seconds, exposed by Netalyzr’s buffer
test. The tests show excessive latencies

figure 4a. uplink bandwidth during trace.

0 50 100 150 200 250 300

0
2

4
6

8
10

Time (sec.)

G
oo

dp
ut

 (M
bp

s)

figure 4b. scatterplot of Rtt experienced vs. window size during trace.

0 100 200 300 400

0
20

0
4

0
0

60
0

80
0

10
0

0
12

0
0

Window Size (KB)

R
T

T
 (

m
s)

0 10 20 30

slope = 0.85 ms/KB (9.4 mbps)

40 50 60 70

0
10

20
30

4
0

50
60

62 CoMMuniCations of the aCM | jAnUARY 2012 | VOL. 55 | nO. 1

practice

in both downlinks and uplinks in all
broadband technologies. Since Netalyzr
tops out at 20Mbps and bounds the test
length at five seconds, the situation is
clearly worse than shown.

Focusing only on cable customers,
the same study showed the equipment
had two dominant buffer sizes: 128KB
and 256KB (for reference, a 3Mbps
uplink would take 340ms to empty
a 128KB buffer; and a 1Mbps uplink
would take about one second). The
Netalyzr authors note the difficulty of
sizing buffers for the wide range of op-
erational access rates, both from differ-
ent service levels and from dynamically
varying rates. Case closed.

where There’s smoke, There’s
usually fire. Observation of 8-second
latency at my home router sparked
installation of OpenWrt (www.open-
wrt.org) for further investigation. I
set the router-transmit queue to zero
but saw no effect on latency. The WiFi
link from my laptop was of poor qual-
ity (resulting in a bandwidth of around
1Mbps), so the bottleneck link was my
WiFi link—and since my test was an
upload, the bottleneck was in my lap-
top rather than in my router! I finally
realized that AQM is not just for rout-
ers; outbound bottlenecks could easily
be at the host’s queue, and WiFi is now
frequently the bottleneck link.

Manipulating the Linux transmit
queue on my laptop reduced latency

about 80%; clearly, additional buff-
ering was occurring somewhere.
“Smart” network interface chips today
usually support large (on the order of
256 packets) ring buffers that have
been adjusted to maximize through-
put over high-bandwidth paths on all
operating systems. At the lowest Wi-Fi
rate of 1Mbps, this can add three sec-
onds of delay. Device-driver ring buf-
fers need careful management, as do
all other buffers in operating systems.
A single packet of 1,500 bytes is 12ms
of latency at 1Mbps; you can see the
amount of buffering must adjust dy-
namically very quickly over two orders
of magnitude so as not to sacrifice
bandwidth or latency.

Compounding this problem, mod-
ern operating systems adjust socket-
buffer sizes in response to observed
delay; so operating system and driver
bufferbloat can cause a cascade of ex-
cessive buffering higher in the network
stack, resulting in still higher latencies
in applications.

Bufferbloat is not just in broadband.
In 2009, Dave Reed (Internet network
architect, now with SAP Labs) reported
problems in 3G networks: he saw high
RTTs without packet loss and correctly
diagnosed the cause.12 Very high laten-
cies were observed to the point where
packets may be delivered but so late
that they are seldom useful; people
time out before packets.11

Broadband and wireless bufferbloat
are also the root causes of most of the
poor Internet performance seen at
many hotels and conferences.

Though the edge is more eas-
ily measured, there are some reports
of congestion in the core. The RED
manifesto has usually been ignored,
so there are “dark” buffers hidden all
over the Internet.

the Road to hell is Paved
with Good intentions
In the past decade, not only was AQM
not deployed, but new factors, un-
known at the time of the RED mani-
festo, also exacerbated the problems
of full buffers. The early Internet had
slow links and a very small number
of simultaneous data transfers shar-
ing these links. Wireless did not ex-
ist. The first residential Internet sys-
tems connected personal computers
through low-bandwidth links into
an Internet of relatively high-speed
links. The Internet has evolved to a
very bandwidth-rich core. Today resi-
dential and small business Internet
connections increasingly connect
customers’ high-bandwidth stub net-
works through smaller bandwidth
links into this core. Bottlenecks at
the Internet’s edge can easily move
between the wireless access (when its
bandwidth is low) and the provider’s
uplink, both of which can have highly
variable bandwidths.

Memory also became cheap; you
cannot buy RAM chips small enough
for the buffering in edge devices, and
these devices have no mechanisms for
self-limitation. Commodity network
devices now span many downward-
compatible generations: Ethernet has
gone from 10Mbps to 10Gbps; wire-
less operates from 1Mbps to 100 or
more Mbps; and cable from 10Mbps
to, soon, several hundred Mbps. The
result is a single buffer statically sized
for larger bandwidths but much too
large for lower-bandwidth links. For
example, the 256 packets of buffering
found in many of today’s 802.11 de-
vice drivers alone translates to more
than three seconds at 1Mbps, which
is all the bandwidth you may have
on some wireless networks. Compli-
cating this is that recommendations
about the amount of buffering have
been influenced by early Internet

figure 5. Plot reproduced from iCsi’s netalyzr studies.

Inferred Buffer Capacity

U
p

lo
ad

 B
an

d
w

id
th

.5s
1s

2s
4s

cable
dsl
fiber

1KB 4KB 16KB 64KB 256KB 1MB 4MB

16Kb/s

64Kb/s

256Kb/s

1Mb/s

4Mb/s

16Mb/s

practice

jAnUARY 2012 | VOL. 55 | nO. 1 | CoMMuniCations of the aCM 63

problems of insufficient buffers, thus
erring on the side of larger buffers,
perhaps unaware that AQM is rarely
used or unavailable.

Wireless links and networks are in-
creasingly part of the edge access and
are even more variable than broad-
band bandwidth: moving a device a
few centimeters can change rates by
one to two orders of magnitude; and
because wireless is a shared medium,
this also affects rates. Since band-
width can vary by a factor of 100 at
short time scales, static buffering is
never appropriate.

A number of approaches to speed-
ing up Web access contribute to tran-
sient access-link bloat by dumping
large numbers of packets onto these
links simultaneously.

Revisiting the Bandwidth-Delay
Product
The efficacy of BDP-sized buffers is in
question. As pointed out in a presenta-
tion at ACM SIGCOMM in 2004, BDP is
not appropriate for highly multiplexed
core links.1 The rationale for maintain-
ing a BDP buffer still applies at the
network edge where a single flow can
congest a link. The problem is in deter-
mining that BDP. Bandwidth variations
of two or more orders of magnitude
clearly play havoc with the bandwidth.
At the same time, the 100ms delay as-
sumption has been weakened by the
advent of content delivery networks
(CDNs) and other services engineered
to bring common RTTs down to
10ms−30ms. Thus, even if an access
link is a constant bandwidth and its
buffer is sized to 100ms, it may still be
3−10 times too large.

For more than a decade, TCP tuning
has been focused on improvements
needed for high-BDP environments
where large packet windows are re-
quired to achieve good throughput.
These new algorithms are not in them-
selves nefarious, focusing on efficient-
ly filling the pipe, but the researchers
have unconsciously worked with a
model of high bandwidth and AQM-
enabled buffers. When the large pipe
size comes from buffers rather than
bandwidth, the algorithms efficiently
fill those buffers, resulting in large de-
lays. Controlling buffers makes it pos-
sible for one TCP to work well every-
where, a solution that is preferable to

attempting to create a version of TCP
specifically for access links.

Clearly there cannot be a “correct”
static amount of buffering in the glob-
al Internet: A self-adaptive AQM is the
only viable long-term solution in any de-
vice (including your computer or smart
phone) with a network buffer.

aQM for the Modern world
In early 1998, Kathleen Nichols dis-
covered flaws in RED and started to
work with Jacobson to make improve-
ments. At that time, the main concern
was finding an algorithm that could
be configured for any link by setting
a single-rate parameter, as well as de-
veloping a viable approach to track-
ing persistent queue while ignoring
short-term bursts.7 Subsequent re-
search tried to fix some of the flaws
but failed to create an AQM that could
keep persistent buffers short with-
out overdropping. Network operators
faced only with algorithms requir-
ing expert manual configuration that
might hurt them have understand-
ably been unwilling to enable and
configure AQM.

In the ensuing decade wireless has
been widely deployed, bringing wildly
varying bandwidth to many edge links,
cable Internet access has become com-
mon, and a device’s access bandwidth
can easily vary by two orders of magni-
tude. It is now obvious that any AQM
algorithm that does not take as an in-
put the rate at which data leaves the
buffers cannot work in today’s highly
variable bandwidth environment.
Clearly without such an algorithm,
bufferbloat will be difficult to defeat.

Surprising to most, AQM is essential
for broadband service, home routers,
and even operating systems: It is not
just for big Internet routers.

When does overbuffering hurt? Over-
buffering hurts anytime you saturate a
link; for example:

˲˲ Copying a file over the Internet.
˲˲ Running old versions of BitTor-

rent or other file-sharing application.
˲˲ Sending/receiving email messages

to Grandma with pictures attached.
˲˲ Uploading video to YouTube.
˲˲ Web browsing, which can hurt you

or others momentarily.
The saturated link can be anywhere,

in either or both directions in the path:
easiest and most common to see is the

operating systems
and hardware have
an amazing number
of buffer hiding
places. as software
and hardware is
updated, more
sources of bloat
can be uncovered.

64 CoMMuniCations of the aCM | jAnUARY 2012 | VOL. 55 | nO. 1

practice

operating system, wireless link, and
broadband service.

Why is overbuffering a problem?
Oversized buffers fill and cause delay,
destroying many uses of the Internet:

˲˲ Stock traders and gamers do not
want their competition to have even a
1ms advantage over them.

˲˲ To play music, jitter (variation in
delay) and latency must be controlled
and kept below 100ms.

˲˲ For something to “feel” attached
to your hand (perfect rubber banding),
latencies need to be below the 30ms
range; for keyboard echoing to be im-
perceptible, 50ms.

˲˲ Speed-of-light latency dominates
voice over IP (VoIP) over long-haul
networks, making access latencies
critical for keeping end-to-end laten-
cy below 150ms (the longtime tele-
phony metric).

˲˲ Excessive packet loss induced by
bufferbloat may cause DNS lookup
failure.

˲˲ Essential network protocols such
as ARP, DHCP, RA, and ND all pre-
sume timely response and can fail
without it.

˲˲ Web browsing becomes painful as
delays go from hundreds of millisec-
onds to multiple seconds.

Many service providers would like
to be able to provide low-latency ser-
vices in their networks to customers,
whether remote gaming, hosted desk-
top systems, or backup. Solving the
bufferbloat problem is necessary for

their successful deployment.

the tip of the iceberg
Operating systems and hardware have
an amazing number of buffer hiding
places. As software and hardware is
updated, more sources of bloat can be
uncovered. In particular, as older TCPs
are replaced with modern ones, users
not currently bloating their access buf-
fers may suddenly experience much
longer delays, (for example, Windows
XP does not enable TCP window scal-
ing, so it never has more than 64KB in
flight at once).

Current commonly used network
performance tests fail to test latency
simultaneously with bandwidth: a
link must become saturated for queu-
ing delays to become obvious. It can
take 10 seconds to fill the buffers of a
broadband device, home router or op-
erating system, and most consumer
broadband tests do not test for that
long—thus missing bufferbloat.

Excessive access delays tend to be
written off as network congestion.
Employing larger backbone pipes
and rationing bandwidth use cannot
improve performance for the users
congesting access uplinks or viewing
downloads through bloated buffers at
the provider edge.

Mitigations
There are glimmers of hope. DOCSIS
(Data over Cable Service Interface Spec-
ification) was modified in spring 2011

allowing cable operators to reduce
buffering in cable modems. This miti-
gation will not take effect until 2012
at best and will require cable-modem
firmware upgrades or (most likely) mo-
dem replacement, as well as motivated
and knowledgeable operators.

Proper solutions for Web brows-
ers can improve access-link behavior.
These include HTTP/1.1 pipelining and
Google’s SPDY (http://dev.chromium.
org/spdy), both of which can achieve bet-
ter performance, reduce the total num-
ber of packets and bytes transferred,
and enable TCP to function better.

Some mitigations are simple and
direct for the knowledgeable. A home
router or your laptop, for example,
almost never operates in the high-
bandwidth environment for which
the operating system has likely been
tuned. Adjusting buffering in the oper-
ating system and/or device drivers can
make a major improvement over the
defaults. Unfortunately, while these
adjustments may be accessible in your
laptop, they may not be accessible in
your home router or handheld devices.

Bandwidth shaping can be used to
prevent bottleneck buffers from filling,
but at a cost in bandwidth. Contrast
the smokeping result in Figure 6 with
that in Figure 2; almost two orders of
magnitude improvement is not bad.

Most importantly, static, unman-
aged buffers are inappropriate for
modern network elements. Network
architects and designers must adjust.

figure 6. smokeping of file transfer from Jim’s house to Mit after mitigations.

navigator Graph

s
ec

on
d

s

Median Ping Rtt (18.7 ms avg) 0 1/20 2/20 3/20 4/20 10/20 19/20
Packet Loss: 3.16% average 12.26% maximum 0.0% current
Probe: 20 iCMP echo Pings (1024 Bytes) every 300 seconds created on wed Dec 16 16:49:15 2010

 14:00 14:20 14:40 15:00 15:20 15:40 16:00 16:20 16:40

30m

20m

10m

0m

practice

jAnUARY 2012 | VOL. 55 | nO. 1 | CoMMuniCations of the aCM 65

To address this, Nichols and Jacobson
have resumed work on a robust, adap-
tive AQM.

Be Part of the solution
The situation may worsen before it im-
proves, and immediate action is neces-
sary. Potential solutions must be sub-
jected to rigorous testing and analysis
before being widely deployed; other-
wise, existing problems can be made
worse. Unfortunately, today there is a
distinct lack of funding for the kinds
of performance monitoring, tuning,
and improvement that characterized
the early Internet.

The first step is to make the problem
apparent. Consumer tests are impor-
tant (for example, Speedtest.net, Sam-
Knows, M-Labs (http://www.measure-
mentlab.net/), Netalyzr), but better
tests that point to the correct offender,
usable by everyone, are badly need-
ed. Consumer tests often perpetuate
the mythology that more bandwidth
means higher “speed,” and better mar-
keting metrics are essential. Stuart
Cheshire’s famous “It’s the Latency,
Stupid” rant should be taken to heart.3

An open source project, CeroWrt,
is under way at bufferbloat.net using
OpenWrt to explore potential solu-
tions, including AQM. Please help.
A wide range of testing is needed for
confidence in any algorithm. Since our
operating systems are commodities
and are used in today’s home routers,
home-router bufferbloat is a direct re-
sult of host bufferbloat. Solve one, and
you solve the other.

Unfortunately, since bufferbloat
misleads TCP’s congestion-avoidance
algorithm with respect to the effective
pipesize, modern networks without
effective AQM may again be vulner-
able to congestion collapse from sat-
urated edge buffers creating packet
delays measured in seconds. Conges-
tion collapse has been reported in a
large-scale network, requiring com-
plete shutdown and careful restart of
the entire network to regain (tempo-
rary?) stability.

We are flying on an Internet air-
plane in which we are constantly swap-
ping the wings, the engines, and the
fuselage, with most of the cockpit in-
struments removed but only a few new
instruments reinstalled. It crashed be-
fore; will it crash again?

acknowledgments
We would like to thank Dave Clark,
Dave Reed, Vint Cerf, Van Jacobson,
Vern Paxson, Nick Weaver, Scott Brad-
ner, Rich Woundy, Greg Chesson, Dave
Täht, and a cast of hundreds.

 Related articles
 on queue.acm.org

Whither Sockets?
George V. Neville-Neil
http://queue.acm.org/detail.cfm?id=1538949

network Virtualization: Breaking
the Performance Barrier
Scot Rixner
http://queue.acm.org/detail.cfm?id=1348592

You Don’t Know Jack about
network Performance
Kevin Fall, Steve McCanne
http://queue.acm.org/detail.cfm?id=1066069

References
1. appenzeller, g., keslassy, I. and Mckeown, n. sizing

router buffers. In Proceedings of ACM SIGCOMM
(Portland, aug. 2004).

2. braden, r. et al. recommendations on queue
management and congestion avoidance in the
Internet, rfC2309 (april 1998).

3. Cheshire, s. It’s the latency, stupid (1996); http://
rescomp.stanford.edu/~cheshire/rants/latency.html.

4. dischinger, M. et al. Characterizing residential broadband
networks. In Proceedings of Internet Measurement
Conference (san diego, Ca, oct. 24–27, 2007).

5. floyd, s. and jacobson, v. random early detection
gateways for congestion avoidance. Ieee/aCM
transactions on networking (aug. 1993).

6. jacobson, v. notes on using red for queue
management and congestion avoidance. talk at north
american network operators’ group (1998) 13; ftp://
ftp.ee.lbl.gov/talks/vj-nanog-red.pdf.

7. jacobson, v. notes on using red for Queue
Management and Congestion avoidance; ftp://ftp.
ee.lbl.gov/talks/vj-nanog-red.pdf, see also http://www.
nanog.org/mtg-9806/agen0698.html

8. jacobson, v. and karels, M. Congestion avoidance and
control. In Proceedings of SIGCOMM ’88, (aug. 1988).

9. kreibich, C. et al. netalyzr: Illuminating the edge
network. In Proceedings of the Internet Measurement
Conference (Melbourne, australia, nov. 1–3, 2010).

10. nagle, j. on packet switches with infinite storage.
In Proceedings of Network Working Group RFC 9790
(dec. 1985); www.ietf.org/rfc/rfc970.txt.

11. reed, d.P. Congestion collapse definition (2009);
http://mailman.postel.org/pipermail/end2end-
interest/2009-september/007769.html.

12. reed, d.P. what’s wrong with this picture (2009);
http://mailman.postel.org/pipermail/end2end-
interest/2009-september/007742.html.

13. rhee, I. and Xu, l. CubIC: a new tCP-friendly high-
speed tCP variant. ACM SIGOPS 42, 5 (2008).

14. villamizar, C. and song, C. high-performance tCP in
ansnet. Computer Communications Review 24, 5
(1994), 45-60.

Jim Gettys is at alcatel-lucent bell labs, usa, where he
works on bufferbloat, as a properly working low-latency
Internet is required for immersive teleconferencing. he
was vice president of software at the one laptop per Child
project, editor of the httP/1.1 standard, and is one of the
original designers of the X window system.

Kathleen nichols is the founder and Cto of Pollere Inc.,
a consulting company working in both government and
commercial networking. she has 30 years of experience
in networking, including a number of silicon valley
companies and as a cofounder of Packet design.

© 2012 aCM 0001-0782/12/01 $10.00

the important
location for
buffers is at
the path bottleneck,
but the critical
fast-to-slow
transition can
be different for
different paths,
different in
the reverse path,
and with dynamic
bandwidths can
change along
the same path.

