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TodaY’s ne Two RK s a Re  suffering from unnecessary 
latency and poor system performance. The culprit 
is bufferbloat, the existence of excessively large and 
frequently full buffers inside the network. Large 
buffers have been inserted all over the Internet 
without sufficient thought or testing. They damage or 

defeat the fundamental congestion-
avoidance algorithms of the Internet’s 
most common transport protocol. 
Long delays from bufferbloat are fre-
quently misattributed to insufficient 
bandwidth and this misinterpretation 
of the problem leads to the wrong solu-
tions being proposed.

Congestion is an old problem on the 
Internet, appearing in various forms 
with different symptoms and causing 
major problems. Buffers are essential  
to the proper functioning of packet 
networks, but overly large, unman-
aged, and uncoordinated buffers cre-
ate excessive delays that frustrate and 
baffle end users. Many of the issues 
that create delay are not new, but their 
collective impact has not been widely 
understood. Thus, buffering problems 
have been accumulating for more than 
a decade. We strive to present these 
problems with their impacts so the 

community can understand and act 
upon the problem and, we hope, learn 
to prevent future problems.

This article does not claim to be the 
first to identify the problems of exces-
sive buffering, but it is instead intend-
ed to create a wider understanding of 
the pervasive problem and to give a call 
to action.

internet Buffers and Congestion
The latency a packet experiences in a 
network is made up of transmission 
delay (the time it takes to send it across 
communications links), processing 
delay (the time each network element 
spends handling the packet), and 
queuing delay (the time spent waiting 
to be processed or transmitted). Paths 
between communicating endpoints 
in the Internet are typically made 
up of many hops with links of differ-
ent rates or bandwidths; the smallest 
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bandwidth along the path is referred 
to as the bottleneck bandwidth. Pack-
ets cannot arrive at the destination any 
faster than the time it takes to send a 
packet at the bottleneck rate; without 
effective use of the network the delay 
can be much worse.

Latency along the path—the time 
from the start of a packet’s transmis-
sion by the sender until the packet is 
received at the destination—can be 
much longer than the time it takes to 
simply transmit the packet at the bot-
tleneck rate. To maintain a steady flow 
of packets at the maximum rate, the 
“packets in flight” must be sufficient to 
fill the “pipe” of latency between send-
er and destination. Buffers are placed 
in front of a communications link in 
case packets arrive while the link is in 
use, thus requiring storage while the 
previous arrivals are serviced. The im-
portant location for buffers is at the 
path bottleneck, but the critical fast-
to-slow transition can be different for 
different paths, different in the reverse 
path, and with dynamic bandwidths 
can change along the same path.

Figure 1 shows the relationship 
between throughput and delay for a 
packet network. System throughput is 
the fastest rate at which the count of 
packets transmitted to the destination 
by the network is equal to the number 
of packets sent into the network. As 
the number of packets in flight is in-
creased, the throughput increases un-

til packets are being sent and received 
at the bottleneck rate. After this, more 
packets in flight will not increase the 
received rate. If a network has large buf-
fers along the path, they can fill with 
these extra packets and increase delay.

A network with no buffers has no 
place for packets to wait for transmis-
sion, thus, extra packets are dropped. 
If the sending rate is increased, the 
loss rate increases correspondingly. 
Although any received packets will 
have a short delay, the usefulness 
of the received data stream would 
likely be impacted. To operate with-
out buffers, arrivals must be com-
pletely predictable and smooth; thus, 
global synchronized timing is criti-
cal to avoiding loss. Such networks 
are complex, expensive, and restric-
tive (that is, they lack the flexibility of 
the Internet). A well-known example 
of a bufferless network is the ana-
log telephone network before packet 
switching took over. Adding buffers 
to networks and packetizing data into 
variable-size packets was part of the 
fundamental advance in communica-
tions that led to the Internet. The his-
tory of Internet congestion and its so-
lution is the story of trying to find the 
optimal way to deploy and use buffers 
in a network. That story is still being 
written, but some of the lessons of the 
past are being ignored.

The fundamental transport proto-
col of the Internet is TCP/IP. TCP’s per-

sistence is testimony both to the robust 
and flexible design of the original algo-
rithm and to the excellent efforts of the 
many researchers and engineers who 
have tuned it over the decades. TCP 
made use of the idea of pipesize and 
the knowledge there was reasonable 
but not excessive buffering along the 
data path to send a window of packets 
at a time—originally sending the entire 
window into the network and waiting 
for its acknowledgment before send-
ing more data.

The early Internet was plagued by 
insufficient buffering. Even under 
moderate loads, the packets in flight 
of one or more connections could ar-
rive at a bottleneck link in a burst and 
be dropped because of insufficient 
bandwidth. This led to heavy losses 
and the plummeting throughput as-
sociated with congestion collapse. 
Internet researchers and engineers 
had to advocate for sufficiently large 
buffers to avoid this poor network 
utilization. Congestion collapse hit a 
large part of the Internet in 1986. The 
network became clogged with retrans-
mitted packets while goodput slowed 
to a trickle. As part of the solution, 
slow-start and congestion-avoidance 
algorithms were added to TCP and 
rapidly deployed throughout the Inter-
net. They enabled the early Internet to 
recover and set the stage for the rapid 
growth in the 1990s with the adoption 
of World Wide Web applications.

These TCP additions attempt to 
keep the network operating near the 
inflection point where throughput is 
maximized, delay is minimized, and 
little loss occurs. A sender-destination 
pair’s TCP tries to determine the pipe-
size between them and to keep ex-
actly that number of packets in flight 
throughout the data transfer. Since 
networks are shared and conditions 
change along the path, the algorithms 
continually probe the network and 
adapt the number of packets in flight. 
The slow-start algorithm (slow relative 
to the algorithm it replaced) attempts 
to make a first guess as to how fast TCP 
may operate by an initial exponential-
growth phase in transmission rate. 
When the first packet loss is detected, 
TCP reduces its sending rate and enters 
the congestion-avoidance phase.

At the advent of congestion control 
in TCP, the recommendation for buffer 

figure 1. throughput and delay. 
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sizing was to have a bandwidth-delay 
product (BDP’s) worth of buffer, where 
bandwidth is the bottleneck link and 
delay is the round-trip time (RTT) be-
tween sender and destination. The ra-
tionale is that such a buffer can hold an 
entire “flight” of packets should they all 
arrive at the bottleneck link in a burst. 
To apply this rule, the bandwidth used 
in link buffer sizing was that of the 
immediately outgoing link, since the 
location of the actual bottleneck is un-
known. Similarly, a canonical value was 
suggested for the RTT: 100ms, a conti-
nental delay for the U.S. and Europe. 

Once adequate buffers became rou-
tine, another problem could occur: the 
buffers were now part of the pipe that 
TCP is so good at filling. Filling these 
buffers would cause delay to increase, 
and persistently full buffers lack the 
space to absorb the routine burstiness 
of a packet network. John Nagle’s semi-
nal work in 198510 first drew attention 
to the consequences of large buffering. 
While working on TCP congestion-
avoidance algorithms, Van Jacobson 
recognized the “persistently full buf-
fer” issue in 1989, culminating in the 
development of Random Early Detec-
tion (RED) with Sally Floyd in 1993.5

A number of implementations, 
variations, imitations, and reports on 
RED’s use are available in the litera-
ture.14 These are generically termed ac-
tive queue management (AQM), which 
attempts to keep the queues at the 

bottleneck from growing too large by 
monitoring the growth of the packet 
queue and signaling the sender’s TCP 
to slow down by dropping (or marking) 
packets in a timely fashion. Different 
approaches have been taken to moni-
toring the packet queue and making 
the drop (or mark) decision. The Inter-
net Research Task Force (IRTF) urged 
the deployment of active queue man-
agement in the Internet, publishing an 
RFC in 1998, popularly known as “the 
RED manifesto.”2

Note that packet loss for TCP is not 
in itself a problem but is essential for its 
functioning in the face of congestion. 
The excessive and consecutive packet 
losses that come from persistently full 
buffers do present a problem, which is 
what the “warning” drops of AQM pre-
vent (in addition to long delays).

The truth is, AQM is not widely or 
consistently configured and enabled 
in routers and it is completely unavail-
able in many devices. Furthermore, 
the existence of cheap memory and 
the misguided desire to avoid packet 
loss have led to larger and larger buf-
fers being deployed in the hosts, rout-
ers, and switches that make up the In-
ternet. It turns out this is a recipe for 
bufferbloat. Evidence of bufferbloat 
has been accumulating over the past 
decade, but its existence has not yet 
become a widespread cause for con-
cern. The next section outlines Jim’s 
personal journey of discovery.

Jim’s Journey:  
(Re)Discovering Latency 
“The Internet is slow today, Daddy.” 
This had become a frequent refrain in 
the Gettys household. When I would at-
tempt to debug the problem, like a will-
o’-the-wisp, it would usually vanish. On 
several occasions symptoms occurred 
long enough for me to waste significant 
amounts of time on my ISP’s support 
line before they vanished. I attributed 
the recurring problem to the doubt-
ful quality of the cable to my house or 
equipment damage from a lightning 
strike. Since my job is research in im-
mersive teleconferencing, I knew I had 
to dig into the intermittent poor net-
work problem, if only for myself. 

An Enlightening Lunch. Suspecting 
features of my cable provider to be 
part of the problem, I met with Com-
cast’s Rich Woundy, who provided a 
number of new issues to consider:

˲˲ The “big-buffers” problem, 
which David Clark (Internet network 
architect, currently senior research 
scientist at MIT) had warned about 
several years earlier.

˲˲ Broadband measurement stud-
ies have been indicating overly large 
edge buffers.

˲˲ AQM is MIA—many ISPs are run-
ning without any AQM even in cir-
cumstances where they really should. 

˲˲ A group at UC Berkeley’s ICSI 
(International Computer Science In-
stitute) had developed a very fine tool 

figure 2. smokeping from Jim’s home to Mit.
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for network diagnosis called Netalyzr 
(http://netalyzr.icsi.berkeley.edu).

The next day, I recorded my “smok-
ing gun,” a smokeping (http://oss.
oetiker.ch/smokeping/) plot, while 
moving 20GB of data from my house 
to MIT (see Figure 2). The uncon-
gested RTT of this path is less than 10 
milliseconds, yet I was experiencing 
more than 1.2 seconds of latency, sig-
nificant packet loss, and painful Web 
browsing. I suspended the rsync a few 
times to read my email, and, as can be 
seen on the plot, this would almost 

instantly “fix” my home network. This 
was the “Daddy, the Internet is slow 
today” phenomenon; the fact that the 
delays went away when I suspended 
my large data transfer explained why 
the problem disappeared when I went 
looking for it; in order to debug the 
network, I was stopping the work that 
was inducing the problem.

Packet captures at Home and 
“abroad.” I took a capture of a large file 
transfer over the same path. Scrolling 
through this capture with Wireshark 
(http://www.wireshark.org) showed pe-

culiar behavior: obvious bursts of ter-
rible behavior containing hundreds of 
duplicate ACKs, multiple retransmits, 
out of order packets, among others, on 
about 10-second periods followed by 
long periods of what looked like nor-
mal behavior. A plot of the data revealed 
500KB in flight over a 10ms path. My 
uplink bandwidth was 2Mbps, so the 
true BDP was 2.5KB. I could expect use 
of a 100ms RTT for buffer sizing to re-
sult in 25KB, but 500KB was an order of 
magnitude larger. The one-second RTT 
is consistent with emptying a 500KB 
buffer at 2Mbps. To remove uncertain-
ty, I repeated the experiment directly 
plugged into the cable modem and saw 
the same results.

I repeated my tests over my in-laws’ 
fiber broadband service in New Jersey. 
Again, the results showed much more 
data in flight and much larger RTT 
times than expected: 250KB outstand-
ing on a 20ms path and 200ms latency 
with almost the same shape as on my 
cable. Over subsequent weeks, I added 
to my data sets by visiting local librar-
ies and other targets of opportunity; 
the pattern was the same wherever I 
went. Finally, I had collected enough 
disturbing data to be consistent with 
the big-buffers problem, and I sus-
pected that the problem was endemic 
among all technologies and providers.

Calling the Experts. I posted the 
packet traces to a group of TCP experts: 
Dave Clark, Dave Reed, Scott Bradner, 
Greg Chesson, Van Jacobson, and Vint 
Cerf. Their feedback revealed that ex-
treme buffering created an artificially 
large pipe size and that packet discards 
occur according to tail drop—that is, 
when a packet arrives to a full buffer, 
it is dropped. The packet’s destination 
is unaware of the dropped packet until 
the entire bloated buffer has been trans-
mitted, which can take many times the 
uncongested RTT. TCP expects timely 
notification of packet loss for correct 
operation. With such large buffers, 
TCP’s slow-start algorithm doesn’t see 
any drops and thus greatly overesti-
mates the correct pipe size and requires 
multiple packet drops before TCP can 
enter its congestion-avoidance phase. 

Jacobson provided plots of the 
data, reproduced in figures 3 and 4. 
The shape of the window-size evolu-
tion is characteristic of the CUBIC 
implementation of TCP,13 which is the 

figure 3a. Packet Rtt and window size: over five-minute trace.
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figure 3b. Packet Rtt and window size: Detail over 70 seconds.
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default in Linux. CUBIC’s initial win-
dow growth is like Jacobson’s original 
algorithm, but it “flattens out” at an 
apparently stable pipe-size estimate 
for a while.8 If it does not detect a con-
gestion event (that is, a packet drop), 
then it ramps the window up quickly. 
In the trace in Figure 3, about five sec-
onds pass without a drop, whereupon 
TCP ramps up the window in an at-
tempt to find a new operating point; 
after 10 seconds the buffer is full, 
and packet loss occurs. (Because of 
the offload engine, the RTTs are from 
the last packet of the jumbogram 
it receives.) Notice the RTT ramps 
up quickly to about 1.2 seconds and 
mostly stays there. The three-sec-
ond RTT spikes show where massive 
dropping took place when the buffer 
became full. These are followed by a 
drop in window size and RTT. This, 
in turn, causes TCP to shut down the 
window size. The window-size curve 
illustrates that sometimes the algo-
rithm gets a drop before it goes into 
CUBIC’s second probing stage.

Figure 4 shows the goodput (deter-
mined from the ACKs) versus time. The 
initial brief period of nearly 10Mbps is 
a result of Comcast’s PowerBoost fea-
ture and is followed by a steady 2Mbps, 
showing that I was getting all the band-
width I expected. Figure 4b shows the 
RTT seen at each window size. The 
lower data set clearly results from the 
PowerBoost phase and the upper data 
set is the subsequent 2Mbps phase. 
These points show exactly the situa-
tion shown abstractly in Figure 1: the 
delay is about 10ms initially; then the 
window size increases, the buffer fills 
up, and the delay (as measured by the 
RTT) increases linearly.

TCP should approximately share a 
bottleneck link between competing 
flows. The impact of bufferbloat on 
TCP’s behavior is subtle and profound 
in two ways:

˲˲ For TCP congestion avoidance to 
be useful to people using that link, 
a TCP connection causing conges-
tion must react quickly to changes in 
demand at the bottleneck link, but 
TCP’s reaction time is quadratic to the 
amount of overbuffering. A link that is 
10 times overbuffered not only imposes 
10 times the latency, but also takes 100 
times as long to react to the congestion. 
Your short, interactive TCP connection 

loses completely to any long-lived flow 
that has saturated your link.

˲˲ The long-lived flow’s inability to 
respond to congestion can cause com-
plete starvation on competing transfers 
(yours or anyone who shares the link). 
A local service may be overbuffered by 
another factor of 10 times compared to 
a remote service.

closing the case on Broadband 
Bufferbloat. Evidence of excessive buff-
ering accumulated over the course of 
the past decade is finally sufficient to 
motivate systematic study. 

A 2007 study of nearly 2,000 hosts 
connected through cable and DSL com-
panies in Europe and North America 
focused on measuring the residential 

“last mile.” The results showed that up-
stream queues for DSL were frequently 
in excess of 600ms, and those for cable 
generally exceeded one second.4

Netalyzr, a measurement tool for the 
last mile or access link, has been key 
to the exposure of bufferbloat. A 2010 
study of 130,000 measurement sessions 
revealed widespread, severe overbuff-
ering in the broadband edge.9 (The re-
sults are used here with permission of 
the authors.) Figure 5 is a scatterplot of 
bandwidth plotted against inferred buf-
fer capacity, each point representing a 
single Netalyzr test session. The solid 
diagonal lines indicate the latency, in 
seconds, exposed by Netalyzr’s buffer 
test. The tests show excessive latencies 

figure 4a. uplink bandwidth during trace.
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figure 4b. scatterplot of Rtt experienced vs. window size during trace.
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in both downlinks and uplinks in all 
broadband technologies. Since Netalyzr 
tops out at 20Mbps and bounds the test 
length at five seconds, the situation is 
clearly worse than shown. 

Focusing only on cable customers, 
the same study showed the equipment 
had two dominant buffer sizes: 128KB 
and 256KB (for reference, a 3Mbps 
uplink would take 340ms to empty 
a 128KB buffer; and a 1Mbps uplink 
would take about one second). The 
Netalyzr authors note the difficulty of 
sizing buffers for the wide range of op-
erational access rates, both from differ-
ent service levels and from dynamically 
varying rates. Case closed.

where There’s smoke, There’s 
usually fire. Observation of 8-second 
latency at my home router sparked 
installation of OpenWrt (www.open-
wrt.org) for further investigation. I 
set the router-transmit queue to zero 
but saw no effect on latency. The WiFi 
link from my laptop was of poor qual-
ity (resulting in a bandwidth of around 
1Mbps), so the bottleneck link was my 
WiFi link—and since my test was an 
upload, the bottleneck was in my lap-
top rather than in my router! I finally 
realized that AQM is not just for rout-
ers; outbound bottlenecks could easily 
be at the host’s queue, and WiFi is now 
frequently the bottleneck link. 

Manipulating the Linux transmit 
queue on my laptop reduced latency 

about 80%; clearly, additional buff-
ering was occurring somewhere. 
“Smart” network interface chips today 
usually support large (on the order of 
256 packets) ring buffers that have 
been adjusted to maximize through-
put over high-bandwidth paths on all 
operating systems. At the lowest Wi-Fi 
rate of 1Mbps, this can add three sec-
onds of delay. Device-driver ring buf-
fers need careful management, as do 
all other buffers in operating systems. 
A single packet of 1,500 bytes is 12ms 
of latency at 1Mbps; you can see the 
amount of buffering must adjust dy-
namically very quickly over two orders 
of magnitude so as not to sacrifice 
bandwidth or latency.

Compounding this problem, mod-
ern operating systems adjust socket-
buffer sizes in response to observed 
delay; so operating system and driver 
bufferbloat can cause a cascade of ex-
cessive buffering higher in the network 
stack, resulting in still higher latencies 
in applications. 

Bufferbloat is not just in broadband. 
In 2009, Dave Reed (Internet network 
architect, now with SAP Labs) reported 
problems in 3G networks: he saw high 
RTTs without packet loss and correctly 
diagnosed the cause.12 Very high laten-
cies were observed to the point where 
packets may be delivered but so late 
that they are seldom useful; people 
time out before packets.11

Broadband and wireless bufferbloat 
are also the root causes of most of the 
poor Internet performance seen at 
many hotels and conferences.

Though the edge is more eas-
ily measured, there are some reports 
of congestion in the core. The RED 
manifesto has usually been ignored, 
so there are “dark” buffers hidden all 
over the Internet.

the Road to hell is Paved 
with Good intentions
In the past decade, not only was AQM 
not deployed, but new factors, un-
known at the time of the RED mani-
festo, also exacerbated the problems 
of full buffers. The early Internet had 
slow links and a very small number 
of simultaneous data transfers shar-
ing these links. Wireless did not ex-
ist. The first residential Internet sys-
tems connected personal computers 
through low-bandwidth links into 
an Internet of relatively high-speed 
links. The Internet has evolved to a 
very bandwidth-rich core. Today resi-
dential and small business Internet 
connections increasingly connect 
customers’ high-bandwidth stub net-
works through smaller bandwidth 
links into this core. Bottlenecks at 
the Internet’s edge can easily move 
between the wireless access (when its 
bandwidth is low) and the provider’s 
uplink, both of which can have highly 
variable bandwidths.

Memory also became cheap; you 
cannot buy RAM chips small enough 
for the buffering in edge devices, and 
these devices have no mechanisms for 
self-limitation. Commodity network 
devices now span many downward-
compatible generations: Ethernet has 
gone from 10Mbps to 10Gbps; wire-
less operates from 1Mbps to 100 or 
more Mbps; and cable from 10Mbps 
to, soon, several hundred Mbps. The 
result is a single buffer statically sized 
for larger bandwidths but much too 
large for lower-bandwidth links. For 
example, the 256 packets of buffering 
found in many of today’s 802.11 de-
vice drivers alone translates to more 
than three seconds at 1Mbps, which 
is all the bandwidth you may have 
on some wireless networks. Compli-
cating this is that recommendations 
about the amount of buffering have 
been influenced by early Internet 

figure 5. Plot reproduced from iCsi’s netalyzr studies.
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problems of insufficient buffers, thus 
erring on the side of larger buffers, 
perhaps unaware that AQM is rarely 
used or unavailable.

Wireless links and networks are in-
creasingly part of the edge access and 
are even more variable than broad-
band bandwidth: moving a device a 
few centimeters can change rates by 
one to two orders of magnitude; and 
because wireless is a shared medium, 
this also affects rates. Since band-
width can vary by a factor of 100 at 
short time scales, static buffering is 
never appropriate. 

A number of approaches to speed-
ing up Web access contribute to tran-
sient access-link bloat by dumping 
large numbers of packets onto these 
links simultaneously.

Revisiting the Bandwidth-Delay 
Product
The efficacy of BDP-sized buffers is in 
question. As pointed out in a presenta-
tion at ACM SIGCOMM in 2004, BDP is 
not appropriate for highly multiplexed 
core links.1 The rationale for maintain-
ing a BDP buffer still applies at the 
network edge where a single flow can 
congest a link. The problem is in deter-
mining that BDP. Bandwidth variations 
of two or more orders of magnitude 
clearly play havoc with the bandwidth. 
At the same time, the 100ms delay as-
sumption has been weakened by the 
advent of content delivery networks 
(CDNs) and other services engineered 
to bring common RTTs down to 
10ms−30ms. Thus, even if an access 
link is a constant bandwidth and its 
buffer is sized to 100ms, it may still be 
3−10 times too large.

For more than a decade, TCP tuning 
has been focused on improvements 
needed for high-BDP environments 
where large packet windows are re-
quired to achieve good throughput. 
These new algorithms are not in them-
selves nefarious, focusing on efficient-
ly filling the pipe, but the researchers 
have unconsciously worked with a 
model of high bandwidth and AQM-
enabled buffers. When the large pipe 
size comes from buffers rather than 
bandwidth, the algorithms efficiently 
fill those buffers, resulting in large de-
lays. Controlling buffers makes it pos-
sible for one TCP to work well every-
where, a solution that is preferable to 

attempting to create a version of TCP 
specifically for access links.

Clearly there cannot be a “correct” 
static amount of buffering in the glob-
al Internet: A self-adaptive AQM is the 
only viable long-term solution in any de-
vice (including your computer or smart 
phone) with a network buffer.

aQM for the Modern world
In early 1998, Kathleen Nichols dis-
covered flaws in RED and started to 
work with Jacobson to make improve-
ments. At that time, the main concern 
was finding an algorithm that could 
be configured for any link by setting 
a single-rate parameter, as well as de-
veloping a viable approach to track-
ing persistent queue while ignoring 
short-term bursts.7 Subsequent re-
search tried to fix some of the flaws 
but failed to create an AQM that could 
keep persistent buffers short with-
out overdropping. Network operators 
faced only with algorithms requir-
ing expert manual configuration that 
might hurt them have understand-
ably been unwilling to enable and 
configure AQM.

In the ensuing decade wireless has 
been widely deployed, bringing wildly 
varying bandwidth to many edge links, 
cable Internet access has become com-
mon, and a device’s access bandwidth 
can easily vary by two orders of magni-
tude. It is now obvious that any AQM 
algorithm that does not take as an in-
put the rate at which data leaves the 
buffers cannot work in today’s highly 
variable bandwidth environment. 
Clearly without such an algorithm, 
bufferbloat will be difficult to defeat.

Surprising to most, AQM is essential 
for broadband service, home routers, 
and even operating systems: It is not 
just for big Internet routers.

When does overbuffering hurt? Over-
buffering hurts anytime you saturate a 
link; for example:

˲˲ Copying a file over the Internet.
˲˲ Running old versions of BitTor-

rent or other file-sharing application.
˲˲ Sending/receiving email messages 

to Grandma with pictures attached.
˲˲ Uploading video to YouTube.
˲˲ Web browsing, which can hurt you 

or others momentarily.
The saturated link can be anywhere, 

in either or both directions in the path: 
easiest and most common to see is the 

operating systems 
and hardware have 
an amazing number 
of buffer hiding 
places. as software 
and hardware is 
updated, more 
sources of bloat  
can be uncovered.
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operating system, wireless link, and 
broadband service.

Why is overbuffering a problem?  
Oversized buffers fill and cause delay, 
destroying many uses of the Internet: 

˲˲ Stock traders and gamers do not 
want their competition to have even a 
1ms advantage over them.

˲˲ To play music, jitter (variation in 
delay) and latency must be controlled 
and kept below 100ms.

˲˲ For something to “feel” attached 
to your hand (perfect rubber banding), 
latencies need to be below the 30ms 
range; for keyboard echoing to be im-
perceptible, 50ms.

˲˲ Speed-of-light latency dominates 
voice over IP (VoIP) over long-haul 
networks, making access latencies 
critical for keeping end-to-end laten-
cy below 150ms (the longtime tele-
phony metric).

˲˲ Excessive packet loss induced by 
bufferbloat may cause DNS lookup 
failure.

˲˲ Essential network protocols such 
as ARP, DHCP, RA, and ND all pre-
sume timely response and can fail 
without it.

˲˲ Web browsing becomes painful as 
delays go from hundreds of millisec-
onds to multiple seconds.

Many service providers would like 
to be able to provide low-latency ser-
vices in their networks to customers, 
whether remote gaming, hosted desk-
top systems, or backup. Solving the 
bufferbloat problem is necessary for 

their successful deployment.

the tip of the iceberg
Operating systems and hardware have 
an amazing number of buffer hiding 
places. As software and hardware is 
updated, more sources of bloat can be 
uncovered. In particular, as older TCPs 
are replaced with modern ones, users 
not currently bloating their access buf-
fers may suddenly experience much 
longer delays, (for example, Windows 
XP does not enable TCP window scal-
ing, so it never has more than 64KB in 
flight at once).

Current commonly used network 
performance tests fail to test latency 
simultaneously with bandwidth: a 
link must become saturated for queu-
ing delays to become obvious. It can 
take 10 seconds to fill the buffers of a 
broadband device, home router or op-
erating system, and most consumer 
broadband tests do not test for that 
long—thus missing bufferbloat.

Excessive access delays tend to be 
written off as network congestion. 
Employing larger backbone pipes 
and rationing bandwidth use cannot 
improve performance for the users 
congesting access uplinks or viewing 
downloads through bloated buffers at 
the provider edge. 

Mitigations
There are glimmers of hope. DOCSIS 
(Data over Cable Service Interface Spec-
ification) was modified in spring 2011 

allowing cable operators to reduce 
buffering in cable modems. This miti-
gation will not take effect until 2012 
at best and will require cable-modem 
firmware upgrades or (most likely) mo-
dem replacement, as well as motivated 
and knowledgeable operators.

Proper solutions for Web brows-
ers can improve access-link behavior. 
These include HTTP/1.1 pipelining and 
Google’s SPDY (http://dev.chromium.
org/spdy), both of which can achieve bet-
ter performance, reduce the total num-
ber of packets and bytes transferred, 
and enable TCP to function better.

Some mitigations are simple and 
direct for the knowledgeable. A home 
router or your laptop, for example, 
almost never operates in the high-
bandwidth environment for which 
the operating system has likely been 
tuned. Adjusting buffering in the oper-
ating system and/or device drivers can 
make a major improvement over the 
defaults. Unfortunately, while these 
adjustments may be accessible in your 
laptop, they may not be accessible in 
your home router or handheld devices. 

Bandwidth shaping can be used to 
prevent bottleneck buffers from filling, 
but at a cost in bandwidth. Contrast 
the smokeping result in Figure 6 with 
that in Figure 2; almost two orders of 
magnitude improvement is not bad.

Most importantly, static, unman-
aged buffers are inappropriate for 
modern network elements. Network 
architects and designers must adjust. 

figure 6. smokeping of file transfer from Jim’s house to Mit after mitigations.
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To address this, Nichols and Jacobson 
have resumed work on a robust, adap-
tive AQM. 

Be Part of the solution
The situation may worsen before it im-
proves, and immediate action is neces-
sary. Potential solutions must be sub-
jected to rigorous testing and analysis 
before being widely deployed; other-
wise, existing problems can be made 
worse. Unfortunately, today there is a 
distinct lack of funding for the kinds 
of performance monitoring, tuning, 
and improvement that characterized 
the early Internet. 

The first step is to make the problem 
apparent. Consumer tests are impor-
tant (for example, Speedtest.net, Sam-
Knows, M-Labs (http://www.measure-
mentlab.net/), Netalyzr), but better 
tests that point to the correct offender, 
usable by everyone, are badly need-
ed. Consumer tests often perpetuate 
the mythology that more bandwidth 
means higher “speed,” and better mar-
keting metrics are essential. Stuart 
Cheshire’s famous “It’s the Latency, 
Stupid” rant should be taken to heart.3

An open source project, CeroWrt, 
is under way at bufferbloat.net using 
OpenWrt to explore potential solu-
tions, including AQM. Please help. 
A wide range of testing is needed for 
confidence in any algorithm. Since our 
operating systems are commodities 
and are used in today’s home routers, 
home-router bufferbloat is a direct re-
sult of host bufferbloat. Solve one, and 
you solve the other.

Unfortunately, since bufferbloat 
misleads TCP’s congestion-avoidance 
algorithm with respect to the effective 
pipesize, modern networks without 
effective AQM may again be vulner-
able to congestion collapse from sat-
urated edge buffers creating packet 
delays measured in seconds. Conges-
tion collapse has been reported in a 
large-scale network, requiring com-
plete shutdown and careful restart of 
the entire network to regain (tempo-
rary?) stability. 

We are flying on an Internet air-
plane in which we are constantly swap-
ping the wings, the engines, and the 
fuselage, with most of the cockpit in-
struments removed but only a few new 
instruments reinstalled. It crashed be-
fore; will it crash again? 
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the important 
location for  
buffers is at  
the path bottleneck,  
but the critical  
fast-to-slow 
transition can 
be different for 
different paths, 
different in  
the reverse path,  
and with dynamic 
bandwidths can 
change along  
the same path. 




