
Testing & Performance
SWE 432, Fall 2016

Design and Implementation of Software for the Web

LaToza/Bell GMU SWE 432 Fall 2016

Today
• What’s behavior driven development and why do

we want it?
• Some tools for testing web apps - focus on

Jasmine

2

For further reading:
Jasmine JavaScript Testing, Paulo Ragonha (Safari Books Online)

http://jasmine.github.io
http://reactkungfu.com/2015/07/approaches-to-testing-react-components-an-overview/
https://github.com/gmu-swe432/lecture12demos
https://gmu-swe432.github.io/lecture12demos/index.html

http://jasmine.github.io
http://reactkungfu.com/2015/07/approaches-to-testing-react-components-an-overview/
https://github.com/gmu-swe432/lecture12demos
https://gmu-swe432.github.io/lecture12demos/index.html

LaToza/Bell GMU SWE 432 Fall 2016

Unit Testing
• Unit testing is testing some program unit in

isolation from the rest of the system (which may not
exist yet)

• Usually the programmer is responsible for testing a
unit during its implementation (even though this
violates the rule about a programmer not testing
own software)

• Easier to debug when a test finds a bug
(compared to full-system testing)

3

LaToza/Bell GMU SWE 432 Fall 2016

Integration Testing
• Motivation: Units that worked in isolate may not

work in combination
• Performed after all units to be integrated have

passed all unit tests
• Reuse unit test cases that cross unit boundaries

(that previously required stub(s) and/or driver
standing in for another unit)

4

LaToza/Bell GMU SWE 432 Fall 2016

Unit vs Integration Tests

5

LaToza/Bell GMU SWE 432 Fall 2016

Automated Web App Testing
• Express to some script:

• What inputs to feed into your app
• How to feed those inputs in
• What the result should be
• How to identify the result

• For JS functions:
• Easy: write some code

• For interaction with DOM/browser...
• Trickier

6

LaToza/Bell GMU SWE 432 Fall 2016

Automating Browser Interactions

• Record & Playback (e.g. Selenium)
• Record your manual testing
• …and it plays it back automatically, checking

that the visual result is the same
• Good news:

• Really fast to get started
• Requires no prior experience with testing

7

LaToza/Bell GMU SWE 432 Fall 2016 8

Recording web interactions

LaToza/Bell GMU SWE 432 Fall 2016 9

Playing back web interactions

LaToza/Bell GMU SWE 432 Fall 2016

Record & Playback: The Dirty Side

• Very brittle:
• Tools usually record absolute path to an element:

• “Click the first button in the second div in the
3rd row of the first table in the body”

• To write new tests, need to record a whole new
interaction

• Maintaining these things is tough
• End up with a lot of duplication

• Unable to re-use setup between different tests

10

LaToza/Bell GMU SWE 432 Fall 2016

Writing good tests
• How do we know when we have tested “enough”?

• Did we test all of the features we created?
• Did we test all possible values for those

features?

11

LaToza/Bell GMU SWE 432 Fall 2016

Behavior Driven Development
• Establish specifications that say what an app

should do
• We write our spec before writing the code!
• Only write code if it’s to make a spec work
• Provide a mapping between those specifications,

and some observable application functionality
• This way, we can have a clear map from

specifications to tests

12

LaToza/Bell GMU SWE 432 Fall 2016

Investment Tracker
• Users make investments by entering a ticker

symbol, number of shares, and the price that the
user paid per share

• Once the investment is inputted, the user can see
the current status of their investments

• How do we test this?

13

LaToza/Bell GMU SWE 432 Fall 2016

Investment Tracker
• What’s an investment for our app?

• Given an investment, it:
• Should be of a stock
• Should have the invested shares quantity
• Should have the share paid price
• Should have a current price
• When its current price is higher than the paid price:

• It should have a positive return of investment
• It should be a good investment

14

LaToza/Bell GMU SWE 432 Fall 2016 15

LaToza/Bell GMU SWE 432 Fall 2016

Jasmine lets you specify behavior in specs

• Specs are written in JS
• Key functions:

• describe, it, expect
• Describe a high level scenario by providing a

name for the scenario and a function that contains
some test information by saying what it should be

• Example:
describe("Investment", function() { 
 it("should be of a stock", function() { 
  
 }); 
});

16

expect(investment.stock).toBe(stock);

LaToza/Bell GMU SWE 432 Fall 2016

Writing Specs
• Can specify some code to run before or after checking a

spec
describe("Investment", function() { 
 var stock, investment;  
 
 beforeEach(function() { 
 stock = new Stock(); 
 investment = new Investment({ 
 stock: stock,  
 shares: 100,  
 sharePrice: 20  
 }); 
 }); 
 
 it("should be of a stock", function() { 
 expect(investment.stock).toBe(stock);  
 }); 
});

17

LaToza/Bell GMU SWE 432 Fall 2016

Making it work
• Download jasmine standalone and unpack it.
• Include jasmine in your HTML files
<link rel="stylesheet" type="text/css" href="../jasmine/lib/jasmine-2.5.2/jasmine.css">  
 
<script type="text/javascript" src="../jasmine/lib/jasmine-2.5.2/jasmine.js"></script>  
<script type="text/javascript" src="../jasmine/lib/jasmine-2.5.2/jasmine-html.js"></script>  
<script type="text/javascript" src="../jasmine/lib/jasmine-2.5.2/boot.js"></script>

• Include your specs
• Open browser to page:

18

LaToza/Bell GMU SWE 432 Fall 2016

Multiple Specs
• Simply keep saying what “it” is
describe("Investment", function() { 
 var stock, investment;  
 
 beforeEach(function() { 
 stock = new Stock(); 
 investment = new Investment({ 
 stock: stock,  
 shares: 100,  
 sharePrice: 20 
 }); 
 }); 
 
 it("should be of a stock", function() { 
 expect(investment.stock).toBe(stock);  
 }); 
 it("should have the invested shares quantity", function() { 
 expect(investment.shares).toEqual(100); 
 }); 
 it("should have the share payed price", function() { 
 expect(investment.sharePrice).toEqual(20); 
 }); 
 it("should have a cost", function() { 
 expect(investment.cost).toEqual(2000); 
 });

19

LaToza/Bell GMU SWE 432 Fall 2016

Nesting Specs
• “When its current price is higher than the paid price:

• It should have a positive return of investment
• It should be a good investment”

• How do we describe that?
describe("Investment", function() { 
 var stock, investment;  
 beforeEach(function() { 
 stock = new Stock(); 
 investment = new Investment({  
 stock: stock,  
 shares: 100,  
 sharePrice: 20  
 }); 
 }); 
 describe("when its current price is higher than the paid price", function() { 
 beforeEach(function() { 
 stock.sharePrice = 40;  
 }); 
 it("should have a positive return of investment", function() { 
 expect(investment.roi()).toBeGreaterThan(0); 
 }); 
 it("should be a good investment", function() { 
 expect(investment.isGood()).toBeTruthy(); 
 }); 
 }); 
});

20

LaToza/Bell GMU SWE 432 Fall 2016

Matchers
• How does Jasmine determine that something is

what we expect?
expect(investment.roi()).toBeGreaterThan(0);
expect(investment).isGood().toBeTruthy(); 
expect(investment.shares).toEqual(100);
expect(investment.stock).toBe(stock);
• These are “matcher” for Jasmine - that compare a

given value to some criteria
• Basic matchers are built in:

• toBe, toEqual, toBeTruthy, toBeNaN, toBeNull,
toBeUndefined, >, <, >=, <=, !=, regular
expressions

• Can also define your own matcher

21

LaToza/Bell GMU SWE 432 Fall 2016

toEqual vs toBe
describe("toEqual", function() { 
 it("should pass equal numbers", function() { 
 expect(1).toEqual(1); 
 }); 
 
 it("should pass equal strings", function() { 
 expect("testing").toEqual("testing");  
 }); 
 
 it("should pass equal booleans", function() { 
 expect(true).toEqual(true); 
 }); 
 
 it("should pass equal objects", function() { 
 expect({a: "testing"}).toEqual({a: "testing"}); 
 }); 
 
 it("should pass equal arrays", function() { 
 expect([1, 2, 3]).toEqual([1, 2, 3]); 
 }); 
});

22

describe("toBe", function() { 
 it("should pass equal numbers", function() { 
 expect(1).toBe(1); 
 }); 
 
 it("should pass equal strings", function() { 
 expect("testing").toBe("testing"); 
 }); 
 
 it("should pass equal booleans", function() { 
 expect(true).toBe(true); 
 }); 
 
 it("should pass same objects", function() { 
 var object = {a: "testing"}; 
 expect(object).toBe(object); 
 }); 
 
 it("should pass same arrays", function() { 
 var array = [1, 2, 3];  
 expect(array).toBe(array); 
 }); 
 
 it("should not pass equal objects", function() { 
 expect({a: "testing"}).not.toBe({a:
"testing"}); 
 }); 
 
 it("should not pass equal arrays", function() { 
 expect([1, 2, 3]).not.toBe([1, 2, 3]); 
 }); 
});

LaToza/Bell GMU SWE 432 Fall 2016 23

Truthiness

describe("toBeTruthy", function() { 
 it("should pass the true boolean value", function() { 
 expect(true).toBeTruthy(); 
 }); 
 
 it("should pass any number different than 0", function() { 
 expect(1).toBeTruthy(); 
 }); 
 it("should pass any non empty string", function() { 
 expect("a").toBeTruthy(); 
 }); 
 
 it("should pass any object (including an array)", function() { 
 expect([]).toBeTruthy(); 
 expect({}).toBeTruthy(); 
 }); 
}); 

LaToza/Bell GMU SWE 432 Fall 2016

Custom Matchers
• We can define a matcher however we want: return

true if the value is OK, false if not
describe("Investment", function() { 
 beforeEach(function() { 
 this.addMatchers({  
 toBeAGoodInvestment: function() { 
 return investment.isGood(); 
 } 
 });
...

it("should be a bad investment", function() { 
 expect(investment).toBeAGoodInvestment(); 
});

...
 });

24

LaToza/Bell GMU SWE 432 Fall 2016

Testing Asynchronous Code
• When we need to get some data asynchronously

then use it, we structure it so that we get our data
in a beforeEach

• And change our beforeEach to take a parameter:
done. Then when we are done, call done()

beforeEach(function(done){ 
 //do something async and on its completion call done()
}

• No “it” statements will run until done() is called
(default timeout: 5 seconds)

25

LaToza/Bell GMU SWE 432 Fall 2016

Testing Asynchronous Code
• Example: Assume our stock object from the investment

example has a “fetch” function to update its price using AJAX
• Test that we can fetch the price, and then see the new price

describe("Stock", function(){
 describe("should be able to update its share price", function () { 
 var fetched = false;  
 beforeEach(function(done){ 
 stock.fetch({ 
 success: function () { 
 fetched = true;  
 done(); 
 } 
 }); 
 }); 
 it("will get the updated price eventually", function(){ 
 expect(stock.sharePrice).toEqual(23.67);  
 }); 
 }); 
});

26

LaToza/Bell GMU SWE 432 Fall 2016

Spies
• Sometimes, when you are testing, you don’t want to

deal with external components
• For instance: in the investment app - maybe don’t

care about HOW stock.fetch() gets the stock price
- just care about it updating its state

• Solution: Mocks (Jasmine: spies)
• Spies replace existing methods on objects
• Spies track the parameters sent to those methods

27

LaToza/Bell GMU SWE 432 Fall 2016

Spies
• Can also say that a spy should return a specific

value
• Or say that it should instead call a specific function
• …or so that it can also let the original function be

called
• Really, really powerful

28

LaToza/Bell GMU SWE 432 Fall 2016 29

Spies - Example

• Make a spy to remove the async fetch from our investment:
describe("should be able to update its share price", function () { 
 var fetched = false;  
 beforeEach(function(done){ 
 spyOn(stock,"fetch").and.callFake(function(param) 
 { 
 this.sharePrice = 23.67;  
 done(); 
 }); 
 stock.fetch({ 
 success: function () { 
 fetched = true;  
 done(); 
 } 
 }); 
 
 }); 
 it("will get the updated price eventually", function(){ 
 expect(stock.sharePrice).toEqual(23.67);  
 }); 
});

LaToza/Bell GMU SWE 432 Fall 2016

Testing Frontend Code
• How do we test our interface?
• We can describe them
• It’s a lot easier with components
• We’ll cover how you can test React components

with Jasmine
• Docs: https://facebook.github.io/react/docs/test-

utils.html
• Make sure to include react-with-addons (and not

just react) in your pages

30

https://facebook.github.io/react/docs/test-utils.html
https://facebook.github.io/react/docs/test-utils.html
https://facebook.github.io/react/docs/test-utils.html

LaToza/Bell GMU SWE 432 Fall 2016

Testing React Components
• High level:

• Render a component (but don’t put it into the page)
• Expect certain things about that component

• Example
• TodoApp

• Has a new button
• Has a TodoList component
• The new item button:

• Causes fireBase push to be called
• The TodoList:

• Updates firebase when text is changed
• Removes items from firebase when delete is clicked

31

LaToza/Bell GMU SWE 432 Fall 2016

React TestUtilities
• renderIntoDocument

• Renders a component into the DOM but does not attach it to the page
• Simulate

• Simulates an event
• findAllInRenderedTree

• Finds any components that match a function provided
• scryRenderedDOMComponents

• Return all DOM components rendered by CSS class
• findRenderedDOMComponentWithClass

• Return the only DOM component rendered w/ the given CSS class, errors if
more than 1 or less than 1.

• scryRenderedDOMComponentsWithTag
• Return all DOM components rendered with a given type

• findRenderedDOMComponentWithTag
• Return single DOM component rendered with a given tag, error if < or > 1

• findRenderedComponentWithType
• Return single React component rendered with a given type, error if < or > 1

• Plus a whole lot more: https://facebook.github.io/react/docs/test-utils.html

32

https://facebook.github.io/react/docs/test-utils.html

LaToza/Bell GMU SWE 432 Fall 2016

Testing React Components
• Todo:
describe('TodoApp', function() { 
 var TestUtils = React.addons.TestUtils; 
 var component, element, renderedDOM;  
 beforeEach(function(){ 
 element = React.createElement(TodoApp);  
 component = TestUtils.renderIntoDocument(element);  
 }); 
 it("Has a new button", function(){ 
 let button = TestUtils.findRenderedDOMComponentWithTag(component,"button");  
 expect(button).not.toBeUndefined(); 
 expect(button.innerHTML).toBe("New"); 
 }); 
 it("Has a TodoList component", function(){ 
 expect(function(){ 
 TestUtils.findRenderedComponentWithType(component,TodoList); 
 }).not.toThrow(); 
 });
});

33

How do we test the
new button?

LaToza/Bell GMU SWE 432 Fall 2016

Testing Events
TestUtils.Simulate.eventType(eventTarget, params)

• Test the new button:
it(“Can click on new button", function(){ 
 let button = TestUtils.findRenderedDOMComponentWithTag(todoAppComponent,"button"); 
 TestUtils.Simulate.click(button); 
});

• Problem: We trust that Firebase works. Just need to
make sure button works. But this code will actually create
a new item….

• Solution: spies!
describe("New item button", function(){ 
 beforeEach(function(){ 
 spyOn(todoAppComponent.fireRef,"push"); 
 }); 
 it("Causes fireBase push to be called", function(){ 
 let button = TestUtils.findRenderedDOMComponentWithTag(todoAppComponent,"button"); 
 TestUtils.Simulate.click(button);  
 expect(todoAppComponent.fireRef.push).toHaveBeenCalledWith({"text": ""}); 
 }); 
});

35

Big huge Todo
Jasmine Example

https://gmu-swe432.github.io/lecture12demos/02todojasmine/

https://gmu-swe432.github.io/lecture12demos/02todojasmine/

LaToza/Bell GMU SWE 432 Fall 2016

Performance Best Practices
• CDNs

• Server might be closer to client than yours, clients
can cache

• Minification
• Reduce size of JS being transferred

• Pre-fetch data
• Profile using Chrome Developer Tools
• PageSpeed Insights:

• https://developers.google.com/speed/pagespeed/
insights/

37

https://developers.google.com/speed/pagespeed/insights/
https://developers.google.com/speed/pagespeed/insights/

