Edges and Scale
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From Sandlot Science

Today’ s reading
» Cipolla & Gee on edge detection (available online)
« Szeliski 3.4.1 —3.4.2




Origin of Edges

surface normal discontinuity

. < depth discontinuity
/—(\.h surface color discontinuity
\____/Z illumination discontinuity

Edges are caused by a variety of factors




Detecting edges

What’ s an edge?

* intensity discontinuity (= rapid change)

How can we find large changes in intensity?
« gradient operator seems like the right solution



Math Refresher: Vectors and Derivatives

Partial derivatives: 0f/0x, of/dy
f (x)=df/dx=tan® [of(x,y)/ 0x|y==F" (X,¥,)]
Gradient:
Vi(x,y)=iof/ox + jof/dy
[1,j — unit vectors 1n x,y directions]



Math Refresher: Vectors and Derivatives

(cont.)
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Inner product:
f-e =x,x,ty,y, =t]|e|cosa
Directional derivative: 0f/on = Vf'n
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Smoothing and convolution

The convolution of two functions, f(x) and g(x) is defined
as

h(x) = [g(x')f(x—x)dx' = g(x) * f(x)

When the functions f and g are discrete and when g is
nonzero only over a finite range [-n,n] then this
integral is replaced by the following summation:

hi) = 3 g()f G+ ) T



Example of 1-d convolution

g V13 | 1] 3] 53] 1

h 121171 18

h(4) = 2 g(Nf(4+))

=8(=2)f(2)+ g(=Df(3)+g(0)f(4) +g()f(5) +g(2)f(6)



Smoothing and convolution

These integrals and summations extend simply to functions
of two variables:

hGi,j)= fljyg= Y Y &l fG+kj+1)

k=—-nl=—n

Convolution computes the weighted sum of the gray levels
In each nxn neighborhood of the image, f, using the
matrix of weights g.

Convolution is a so-called linear operator because
* g7(af, + bfy) =a(g*f,) + b(gf)



2-D convolution

h(5,5) = j jg(k,l)f(S +k,5+1)

k=-1l=-1

= g(_la_l)f(494) + g(—l,O)f(4,5) + g(_lal)f(4a4)
+8(0,-Df(5,4) +g(0,0)£(5,5) + g(0,1) £(5,6)
+8(1,-1)1(6,4) + g(1,0)£(6,5) + g(1,1) £ (6,6)



Separability

2 |3 11
112 |1 3 15 18
4 |4 18

1 11
5 18 65

1 18

=2+6+3=11
=6+20+10=36
=4+8+6=18

65



Smoothing and convolution

4.2. LINEAR SYSTEMS
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Effects of noise

Consider a single row or column of the image
» Plotting intensity as a function of position gives a signal
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Where is the edge?



Solution:

smooth first
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Where is the edge? Look for peaks in 2=(h  f)



Associative property of convolution

D (hxf)=(2Zh)*f

This saves us one operation:
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Laplacian of Gaussian

2
Consider 75(h* f)

Sigma = 50

%
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Where is the edge?  Zero-crossings of bottom graph



2D edge detection filters
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The Sobel operator

Common approximation of derivative of Gaussian

-1 0] 1 1121
a 2
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» The standard defn. of the Sobel operator omits the 1/8 term

— doesn’ t make a difference for edge detection
— the 1/8 term is needed to get the right gradient value, however



The effect of scale on edge detection

M i Mn N ﬂY il

Scale space (Witkin 83)



Some times we want many resolutions

Idea: Represent NxN image as a “pyramid” of
1x1, 2x2, 4x4,..., 2¥x2X images (assuming N=2¥)

level k (= 1 pixc]q

level k-1 // / 1\\.//\
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level 0 (= original image)

Known as a Gaussian Pyramid [Burt and Adelson, 1983]
* In computer graphics, a mip map [Williams, 1983]
» A precursor to wavelet transform

Gaussian Pyramids have all sorts of applications in computer vision



Gaussian pyramid construction
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Repeat
* Filter
* Subsample

Until minimum resolution reached
» can specify desired number of levels (e.g., 3-level pyramid)

The whole pyramid is only 4/3 the size of the original image!



Subsampling with Gaussian pre-filtering

Gaussian 1/2

Filter the image, then subsample



Subsampling with Gaussian pre-filtering

Gaussian 1/2

Filter the image, then subsample



Subsampling without pre-filtering
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1/2 1/4 (2x zoom) 1/8 (4x zoom)



Sampling and the Nyquist rate

Aliasing can arise when you sample a continuous signal or image

« occurs when your sampling rate is not high enough to capture the
amount of detail in your image

« Can give you the wrong signal/image—an alias
« formally, the image contains structure at different scales
— called “frequencies” in the Fourier domain
« the sampling rate must be high enough to capture the highest
frequency in the image
To avoid aliasing:
« sampling rate = 2 * max frequency in the image
— said another way: = two samples per cycle
« This minimum sampling rate is called the Nyquist rate



Image resampling

So far, we considered only power-of-two subsampling
* What about arbitrary scale reduction?
 How can we increase the size of the image?

A

he image
cannot be

fisplayed. Your
computer may

d =1 in this
example

>

1 2 3 4 5

Recall how a digital image is formed
Flx,y] = quantize{ f(xzd, yd)}
 ltis a discrete point-sampling of a continuous function

 If we could somehow reconstruct the original function, any
new image could be generated, at any resolution and scale



Image resampling

So far, we considered only power-of-two subsampling
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Recall how a digital image is formed
Flx,y] = quantize{ f(xzd, yd)}
 ltis a discrete point-sampling of a continuous function

 If we could somehow reconstruct the original function, any
new image could be generated, at any resolution and scale



Image resampling

So what to do if we don’ t know *

« Answer: guess an approximation #
« Can be done in a principled way: filtering
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Image reconstruction
« Convert = to a continuous function
fr(z) = F(3) when 7 is an integer, 0 otherwise

* Reconstruct by cross-correlation:

~

f=h&fF



Resampling filters

What does the 2D version of this hat function look like?

<N M) %\

performs (tent function) performs
linear interpolation b|||near mterpolatlon

Often implemented without cross-correlation
* E.g., http://en.wikipedia.org/wiki/Bilinear interpolation

Better filters give better resampled images

« Bicubic is common choice
— fit 37 degree polynomial surface to pixels in neighborhood




Example: Subsample at V2

Subsample at V2 rather than 2
N, NAN2, N/2, N/2N2, N/4, ...
1024, 724, 512, 362, 256, ...

Q: How do you determine values for lower resolution images?
A: Use bilinear interpolation

Given
fx,y), f(x+1,y), flx,y+1), f(x+1,y+1), 0<a<l, 0<b<lI

Estimate f(x+a,y+b) as
J1 = (1-a)f(x.y) + af(x+1y)
f2 = (-a)f(x.y+1)+af(x+1y+1)
f(x+a,y+b) = (1-b)f, + bf,



