Machine vision systems

¢ Problem definition

¢ Image acquisition

¢ Image segmentation

¢ Connected component analysis
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Problem definition

¢ Design a vision system to “see” a “flat” world
¢ Page of text
¢ Side panel of a truck
¢ X-ray image of separated potatoes

¢ General approach to recognition/inspection
¢ Acquire gray scale image using camera

¢ Reduce to black and white image - black objects on
white background

¢ Find individual black objects and measure their
properties
¢ Compare those properties to object models
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This is a printed
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We want to read == 1 -
the

ital 1image acquisition

characters

¢ Camera, such as a scanner, measures intensity of reflected light over a
regularly spaced grid of positions

¢ individual grid elements are called

¢ typical grid from a TV camera is 512 x 480 pixels created by a
process called sampling.

¢ scanner can produce much higher 1mages
¢ measurements at pixels are called or

¢ typical camera provides 6-8 bits of intensity per pixel created by a

... process called quantization. _
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Image segmentation

¢ How do we know which groups of pixels in a
digital image correspond to the objects to be
analyzed?

¢ objects may be uniformly darker or brighter than the
background against which they appear

¢ black characters imaged against the white background of a
page

¢ bright, dense potatoes imaged against a background that is
transparent to X-rays
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Image segmentation

¢ Ideally, object pixels would be black (0 intensity)
and background pixels white (maximum intensity)

¢ But this rarely happens

pixels overlap regions from both the object and the
background, yielding intensities between pure black
and white - edge blur

¢ cameras introduce “noise” during imaging -
measurement noise’

¢ potatoes have non-uniform “thickness”, giving
. . . . . 13 . b4
variations in brightness in X-ray - model noise

..
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Image segmentation by thresholding

¢ But 1f the objects and background occupy different
ranges of gray levels, we can “mark’ the object
pixels by a process called thresholding:
¢ Let F(i,)) be the original, gray level image

¢ B(1,)) 1s a binary image (pixels are either 0 or 1)
created by thresholding F(1,))
¢ B(i,j)) =1 if F(i,j) <t
¢ B(i,j) = 0if F(i,)) >=t
o We will assume that the 1’ s are the object pixels and the 0" s
are the background pixels
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Thresholding

¢ How do we choose the threshold t?
¢ Histogram (h) - gray level frequency distribution

of the gray

level image F.

h[b] Object . Background
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¢ hp(g) = number of pixels in F whose gray level is g
¢ Hi(g) = number of pixels in F whose gray level is <=g

h(g) /

peak

observed histogram

valley
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Thresholding

¢ P-tile method

¢ 1n some applications we know approximately what
percentage, p, of the pixels in the image come from
objects

+ might have one potato in the image, or one character.

¢ H; can be used to find the gray level, g, such that ~p%
of the pixels have intensity <= g

¢ Then, we can examine h; in the neighborhood of g to
find a good threshold (low valley point)
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Thresholding

¢ Peak and valley method

¢ Find the two most prominent peaks of h
o gisapeak if hp(g) > ho(g+ Ag), Ag=1, ...,k

¢ Let g, and g, be the two highest peaks, with g, < g,

¢ Find the deepest valley, g, between g, and g,
+ gis the valley if hp(g) <= hp(g') , g.¢" in[g,, g,]

¢ Use g as the threshold
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Triangle algorithm

¢ A line is constructed between the
maximum of the histogram at brightness
b,... and the lowest value b_. = (p=0)%
in the image.

¢ The distance d between the line and the
histogram h[b] 1s computed for all

values of b fromb=b_., tob=b_,..

¢ The brightness value b, where the
distance between h[b_ ] and the line is
maximal is the threshold value.

¢ This technique is particularly effective
when the object pixels produce a weak
peak in the histogram.
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Thresholding

¢ Hand selection
¢ select a threshold by hand at the beginning of the day
¢ use that threshold all day long!

¢ Many threshold selection methods in the literature
¢ Probabilistic methods

+ make parametric assumptions about object and background
intensity distributions and then derive “optimal” thresholds
¢ Structural methods
¢ Evaluate a range of thresholds wrt properties of resulting
binary images
¢ one with straightest edges, most easily recognized objects,
etc.
¢ Local thresholding

¢ apply thresholding methods to image windows
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An advanced probabilistic threshold selection
method - minimizing Kullback information distance

¢ The observed histogram, f, 1s a mixture of the gray
levels of the pixels from the object(s) and the
pixels from the background

¢ 1n an 1deal world the histogram would contain just two
spikes
¢ but

& measurement noise,

+ model noise (e.g., variations in ink density within a character)
and

¢ edge blur (misalignment of object boundaries with pixel
boundaries and optical imperfections of camera)

spread these spikes out 1nto hills
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Kullback information distance

f(g)
¢ Make a parametric model of the

shapes of the component W, W,
histograms of the objects(s) and B |
background o o,

¢ Parametric model - the : / =
component histograms are —g
assumed to be Gaussian ~1/2 8§ — o %

¢ p, and p, are the proportions of the _ 0 Oo
:© . . Jo(g) = e
image that comprise the objects and .‘/ 27T O
background

g — ub

¢ u, and w, are the mean gray levels —1/2(
of the objects and background

b = €
¢ 0, and o, - are their standard JA8) J 27T Ob

~deviations _
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Kullback information distance

¢ Now, i1f we hypothesize a threshold, t, then all of
these unknown parameters can be approximated
from the 1image histogram.

¢ Let {(g) be the observed and normalized histogram

¢ f(g) = percentage of pixels from 1image having gray
level g

po(t)= Y f(&)  pu(t) =1- po(t)

win=3 g wn=Y @3

g=t+1
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Kullback information distance

¢ So, for any hypothesized t, we can “predict” what
the total normalized image histogram should be 1f
our model (mixture of two Gaussians) 1s correct.

* P(2) = poto(8) T puln(2)
¢ The total normalized 1image histogram 1s observed
to be f(g)

¢ So, the question reduces to:

¢ determine a suitable way to measure the similarity of P
and f

¢ then search for the t that gives the highest similarity
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Kullback information distance

¢ A suitable similarity measure 1s the Kullback
directed divergence, defined as

K =3, filod f(‘?)]

¢ If P, matches f exactly, then each term of the sum
1s 0 and K(t) takes on 1ts minimal value of 0

¢ Gray levels where P, and f disagree are penalized
by the log term, weighted by the importance of
that gray level (f(g))
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An alternative - minimize probability
of error

¢ Using the same mixture model, we can search for
the t that minimizes the predicted probability of
error during thresholding

¢ Two types of errors

¢ background points that are marked as object points.
These are points from the background that are darker

than the threshold

¢ object points that are marked as background points.
These are points from the object that are brighter than
the threshold
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An alternative - mimimize
probability of error

¢ For each “reasonable”
threshold

¢ compute the parameters of
the two Gaussians and the
proportions

¢ compute the two probability
of errors

¢ Find the threshold that
gives

¢ minimal overall error eb(t) pbz fb( g) eo(t) = Do Efo(g)

¢ most equal errors g=t+1
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Object extraction from binary
1mages - connected components

¢ Definition: Given a pixel (1,)) its
4-neighbors are the points (i’ ,j )
such that [i-1 |+ [j-j | = 1
¢ the 4-neighbors are (i+1, j) and (i,]

+1)

¢ Definition: Given a pixel (1,)) 1ts
8-neighbors are the points (i ,j’ )
such that max(|i-i’ |,[j-j |) =1

¢ the 8- neighbors are (1, j£1), (1£1, j)
and (i1, j£1)

Machine vision systems - 21 Zoran Duric



Adjacency

¢ Definition: Given two disjoint sets of pixels, A
and B, A 1s 4-(8) adjacent to B 1s there 1s a pixel in
A that 1s a 4-(8) neighbor of a pixel in B
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Connected components

¢ Definition: A 4-(8)path from pixel (1,,),) to (1,.],,)
1s a sequence of pixels (1,]¢) (115]1) (155]5) 5 -+ (15],)
such that (i, j,) 1s a 4-(8) neighbor of (i, , Ji+1),
fork=0, ..., n-1

(ioaj 0) (ioaj O)

G,i.) (1 Jn)

Every 4-path is an 8-path!
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Connected components

¢ Definition: Given a binary image, B, the set of all
1" s is called the and is denoted by S

¢ Definition: Given a pixel pin S, p 1s
to q in S 1f there 1s a path from p to g
consisting only of points from S.

¢ The relation “is-connected-to” is an equivalence

relation
¢ Reflexive - p 1s connected to itself by a path of length 0

¢ Symmetric - if p 1s connected to q, then q 1s connected to p by the
reverse path

¢ Transitive - if p i1s connected to q and q 1s connected to r, then p is
connected to r by concatenation of the paths fromptoqandqtor
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Connected components

¢ Since the “is-connected-to” relation is an
equivalence relation, 1t partitions the set S into a
set of equivalence classes or components
¢ these are called

¢ Definition: S is the complement of S - it is the
set of all pixels in B whose value 1s 0

¢ S can also be partitioned into a set of connected
components

¢ Regard the image as being surrounded by a frame of
0's

¢ The component(s) of S that are adjacent to this frame
is called the of B.
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Examples - Black = 1, Green =0

How many 4- (8) components of S?

What is the background?

Which are the 4- (8) holes?
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Background and foreground
connectivity

¢ Use opposite connectivity for the foreground and
the background

¢ 4-foreground, 8-background: 4 single pixel objects and
no holes

¢ 4-background, 8-foreground: one 4 pixel object
containing a 1 pixel hole
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Boundaries

¢ The boundary of S 1s the set of all pixels of S that
have 4-neighbors in S. The boundary set is
denoted as S .

¢ The interior 1s the set of pixels of S that are not in
its boundary: S-S’
¢ Definition: Region T surrounds region R (or R 1s

inside T) 1f any 4-path from any point of R to the
background intersects T

¢ Theorem: If R and T are two adjacent
components, then either R surrounds T or T
surrounds R.
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Examples

Bl A
EEEE EEE

A HEHENE:E
HENINE EEE
HEEN /

EEEE EEE
HEE EEE
AlEE HEN

Even levels are components of 0" s
The background is at level 0
Odd levels are components of 1" s
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Component labeling

¢ Given: Binary image B
¢ Produce: An image in which all of the pixels in
each connected component are given a unique

label.

¢ Solution 1: Recursive, depth first labeling

¢ Scan the binary image from top to bottom, left to right
until encountering a 1 (0).

¢ Change that pixel to the next unused component label

¢ Recursively visit all (8,4) neighbors of this pixel that
are 1’ s (0" s) and mark them with the new label
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Disadvantages of recursive
algorithm
¢ Speed

¢ requires number of iterations proportional to the largest
diameter of any connected component in the image

¢ Topology

¢ not clear how to determine which components of 0 s
are holes in which components of 1" s
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Solution 2 - row scanning up and

down
¢ Start at the top row of the 1image
¢ partition that row into runs of 0" s and 1’ s

¢ cach run of 0 s is part of the background, and is given the special
background label

¢ cachrun of 1’ s is given a unique component label

¢ For all subsequent rows

¢ partition into runs

¢ ifarunof 1's (0" s) hasno run of 1" s(0’ s) directly above it, then it is
potentially a new component and 1s given a new label

¢ ifarun of 1’ s (0’ s) overlaps one or more runs on the previous row
give it the minimum label of those runs

¢ Leta be that minimal label and let {c.} be the labels of all other
adjacent runs in previous row. Relabel all runs on previous row
having labels in {c,} with a
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Local relabeling

¢ What 1s the point of the last step?

¢ We want the following invariant condition to hold after
each row of the image 1s processed on the downward
scan: The label assigned to the runs in the last row
processed 1n any connected component 1s the minimum
label of any run belonging to that component in the
previous rows.

¢ Note that this only applies to the connectivity of pixels
in that part of B already processed. There may be
subsequent merging of components 1n later rows
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Example

ala|Bla B|B|B| |a]a|Bja B|B|B
alalala alala alajala alala
Bl aja |a al|Cla Bl aja |a al|Cla
alalala alala alalalapnBalala

alala|a|B|B|B|B

If we did not change the ¢ s to a” s, then the rightmost a will be labeled as a ¢ and

our invariant condition will fail. [Jj]
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Upward scan

¢ A bottom to top scan will assign a unique label to
each component

¢ we can also compute simple properties of the
components during this scan

¢ Start at the bottom row

¢ create a table entry for each unique component label,
plus one entry for the background if there are no
background runs on the last row

¢ Mark each component of 1’ s as being “inside” the
background
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Upward scan

¢ For all subsequent rows

¢ ifarunof 1’ s (0’ s) (say with label ¢) is adjacent to no run of 1" s
(0’ s) on the subsequent row, and its label is not in the table, and no
other run with label ¢ on the current row is adjacent to any run of 1" s
on the subsequent row, then:

¢ create a table entry for this label

¢ mark it as inside the run of 0" s (1’ s) that it is adjacent to on the
subsequent row

+ property values such as area, perimeter, etc. can be updated as
each run 1s processed.

¢ ifarunof 1" s (0 s) (say, with label ¢) is adjacent to one or more run
of 1" s on the subsequent row, then it is marked with the common
label of those runs, and the table properties are updated.

¢ All other runs of “¢’s” on the current row are also given the
common label.
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------- aaa
CCC---aaa
C-C---aaa
C-C---aaa
-#-C--dad
daddaadadaa

 changed to a during first pass

e but ¢’ s in first column will not

be changed to a’ s on the upward pass
unless all runs are once equivalence is

detected
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process row 3
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Properties

¢ Our goal 1s to recognize each connected
component as one of a set of known objects
¢ letters of the alphabet
¢ good potatoes versus bad potatoes

¢ We need to associate measurements, or properties,
with each connected component that we can
compare against expected properties of different
object types.
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Properties

¢ Area
¢ Perimeter
¢ Compactness: P?/A

¢ smallest for a circle: 4mt?r?/nir? = 4x
¢ higher for elongated objects

¢ Properties of holes
¢ number of holes

¢ their sizes, compactness, etc.
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How do we compute the perimeter of a
connected component?

EEEERE

1. Count the number of pixels in ==.===

the component adjacent to 0" s L1 L L L |

¢ perimeter of black square ======
would be 1 .-

¢ but perimeter of gray square,
which has 4x the area, would
be 4

¢ but perimeter should go up as
sqrt of area

2. Count the number of 0" s
adjacent to the component

¢ works for the black and
gray squares, but fails for

the red dumbbell
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How do we compute the perimeter of a

connected component?

3) Count the number of sides of pixels in
the component adjacent to 0" s

¢ these are the cracks between the
pixels

¢ clockwise traversal of these cracks
1s called a crack code

¢ perimeter of black is 4, gray 1s 8
and red 1s 8

¢ What effect does rotation have on the
value of a perimeter of the digitization
of a simple shape?

¢ rotation can lead to large changes
in the perimeter and the area!
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Perimeter computation (cont.)

¢ We can give different weights to boundary pixels
¢ 1 — vertical and horizontal pairs

¢ 212 _diagonal pairs

¢ The boundary can be approximated by a polygon line (or
splines) and its length could be used

¢ It matters most for small (low resolution objects)
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Bounding Box and Extremal Points

Topmost left Topmost right

Leftmost top Rightmost top

Leftmost bottor Rightmost bottom

Bottommost left Bottommost right
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Other features

¢ Convex hull:

¢ Create a monotone polygon from the boundary
(leftmost and rightmost points in each row)

¢ Connect the extremal points by removing all
concavities (can be done by examining triples of
boundary points)

¢ Minimal bounding box from the convex hull
¢ Deficits of convexity
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A better (and universal)set of features

¢ An “ideal” set of features should be independent
of
¢ the position of the connected component
¢ the orientation of the connected component
¢ the size of the connected component

¢ ignoring the fact that as we “zoom in” on a shape we tend to
see more detail

¢ These problems are solved by features called
moments
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Central moments

¢ Let S be a connected component 1n a binary
1mage

¢ generally, S can be any subset of pixels, but for our
application the subsets of interest are the connected
components

¢ The (j,k)' th moment of S is defined to be

M, (S) = Exjyk
(x,y)ES
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Central moments

¢ M,,, = the area of the connected component

Mu($)= S = 14

(x,y)=5 (x,y)=S
¢ The center of gravity of S can be expressed as
; _ MIO(S) _ Xx
My(S) 8]
;= M, (S) _ E:y
My(S) ]
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Central moments

¢ Using the center of gravity, we can define the
central (j,k)’ th moment of S as

W=y (x=x)(y=-»)

¢ If the component S 1s translated, this means that
we have added some numbers (a,b) to the
coordinates of each pixel in S

¢ for example, if a =0 and b = -1, then we have shifted
the component up one pixel
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Central moments

¢ Central moments are not affected by translations of S.
Let S ={(x,y ):x =x+a,y =y+b, (x,y)in S}

¢ The center of gravity of S’ is the c.0.g. of S shifted by (a,b)

x(S' z'x _2(x+a) 2x+2a__

N N NI

¢ The central moments of S are the same as those of S

(8 = 3 (x'=x(5) ('=r(SH)
= S (x+a~[x(S)+al) (y +b~[¥(S) + b])*
= S (=0 (7= )" = (S
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Central moments

¢ The standard deviations of the x and y coordinates of S can
also be obtained from central moments:

T
s

_ | Mo
77

¢ We can then created a set of normalized coordinates of S
that we can use to generate moments unchanged by
translation and scale changes

- x-x ~ v
_ Y=y
X =

o) Y O

X
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Normalized central moments

¢ The means of these new variables are 0, and their standard
deviations are 1. If we define the normalized moments;

m,, as follows
j ik

DL

00
¢ then these moments are not changed by any

scaling or translation of S
¢ Let S* = {(x*,y*): x*=ax+b, y*=ay +c, (x,y)
in S}
¢ 1f b and c are 0, then we have scaled S by a
¢ 1f a 1s 0, then we have translated S by (b,c)
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Normalized central moments

x*=x(S%),; ¥ *-3(S%)
2 oism " Coism )
S|

mjk(S*) =

a’(x - x(S))f @ ‘(v - »(9))
E( a’o’(S) a‘o,(S) )
N

=mjk(S)

¢ Details of the proof are simple.
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Shortcomings of our machine vision
system
¢ Object detection

¢ thresholding will not extract intact objects in complex
1mages
+ shading variations on object surfaces

¢ texture

¢ advanced segmentation methods

¢ edge detection - locate boundaries between objects and
background, between objects and objects

¢ region analysis - find homogeneous regions; small
combinations might correspond to objects.
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Shortcomings of our machine vision
system

¢ Occlusion

¢ What if one object 1s partially hidden by another?

¢ properties of the partially obscured, or occluded, object will
not match the properties of the class model

¢ Correlation - directly compare image of the “ideal”
objects against real images
¢ 1n correct overlap position, matching score will be high
¢ Represent objects as collection of local features such as
corners of a rectangular shape

¢ locate the local features in the image

+ find combinations of local features that are configured
consistently with objects
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Shortcomings of our machine vision
system

¢ Recognition of three dimensional objects

¢ the shape of the image of a three dimensional object
depends on the viewpoint from which it 1s seen

¢ Model a three dimensional object as a large
collection of view-dependent models

¢ Model the three dimensional geometry of the
object and mathematically relate it to its possible
1mages
¢ mathematical models of image geometry

¢ mathematical models for recognizing three dimensional
structures from two dimensional images
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Shortcomings of our machine vision
system

¢ Articulated objects
¢ pliers
¢ derricks

¢ Deformable objects
¢ faces

¢ jello

¢ Amorphous objects
¢ fire

¢ water
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¢ Advanced segmentation methods
¢ edge detection

¢ region recovery

¢ Occlusion in 2-D

¢ correlation
¢ clustering

¢ Articulations 1in 2-D

¢ Three dimensional object recognition
¢ modeling 3-D shape
¢ recognizing 3-D objects from 2-D images
¢ recognizing 3-D objects from 3-D images

¢ stereo

¢ structured light range sensors
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