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Machine vision systems 

◆  Problem definition 
◆  Image acquisition 
◆  Image segmentation 
◆  Connected component analysis 
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Problem definition 

◆  Design a vision system to “see” a “flat” world 
◆  Page of text 
◆  Side panel of a truck 
◆  X-ray image of separated potatoes 

◆  General approach to recognition/inspection 
◆  Acquire gray scale image using camera 
◆  Reduce to black and white image - black objects on 

white background 
◆  Find individual black objects and measure their 

properties 
◆  Compare those properties to object models 
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Digital image acquisition 

◆  Camera, such as a scanner,  measures intensity of reflected light over a 
regularly spaced grid of positions 
◆  individual grid elements are called pixels 

◆  typical grid from a TV camera is 512 x 480 pixels created by a 
process called sampling. 

◆  scanner can produce much higher resolution images 
◆  measurements at pixels are called intensities or gray levels 

◆  typical camera provides 6-8 bits of intensity per pixel created by a 
process called quantization. 

  This is a printed 
page 
 
We want to read 
the 
characters 
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Image segmentation 

◆  How do we know which groups of pixels in a 
digital image correspond to the objects to be 
analyzed? 
◆  objects may be uniformly darker or brighter than the 

background against which they appear 
◆  black characters imaged against the white background of a 

page 
◆  bright, dense potatoes imaged against a background that is 

transparent to X-rays 
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Image segmentation 
◆  Ideally, object pixels would be black (0 intensity) 

and background pixels white (maximum intensity) 
◆  But this rarely happens 

◆  pixels overlap regions from both the object and the 
background, yielding intensities between pure black 
and white - edge blur 

◆  cameras introduce “noise” during imaging - 
measurement “noise” 

◆  potatoes have non-uniform “thickness”, giving 
variations in brightness in X-ray - model “noise” 
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Image segmentation by thresholding 

◆  But if the objects and background occupy different 
ranges of gray levels, we can “mark” the object 
pixels by a process called thresholding: 
◆  Let F(i,j) be the original, gray level image 
◆  B(i,j) is a binary image (pixels are either 0 or 1) 

created by thresholding F(i,j) 
◆  B(i,j) = 1 if F(i,j) < t 
◆  B(i,j) = 0 if F(i,j) >= t 
◆  We will assume that the 1’s are the object pixels and the 0’s 

are the background pixels 
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Thresholding 
◆  How do we choose the threshold t? 
◆  Histogram (h) - gray level frequency distribution 

of the gray level image F. 
◆  hF(g) = number of pixels in F whose gray level is g 
◆  HF(g) = number of pixels in F whose gray level is <=g 

intensity, g 

h(g) 

peak peak 

valley 

observed histogram 

ideal h 
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Thresholding 

◆  P-tile method 
◆  in some applications we know approximately what 

percentage, p,  of the pixels in the image come from 
objects 
◆  might have one potato in the image, or one character. 

◆  HF can be used to find the gray level, g,  such that ~p% 
of the pixels have intensity <=  g 

◆  Then, we can examine hF in the neighborhood of g to 
find a good threshold (low valley point)  
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Thresholding 

◆  Peak and valley method 
◆  Find the two most prominent peaks of h 

◆  g is a peak if hF(g) > hF(g ± Δg), Δg = 1, ..., k 

◆  Let g1 and g2 be the two highest peaks, with g1 < g2 
◆  Find the deepest valley, g,  between g1 and g2 

◆  g is the valley if hF(g) <= hF(g’) , g,g’ in [g1, g2]  

◆  Use g as the threshold 
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Triangle algorithm 
◆  A line is constructed between the 

maximum of the histogram at brightness 
bmax and the lowest value bmin = (p=0)% 
in the image.  

◆  The distance d between the line and the 
histogram h[b] is computed for all 
values of b from b = bmin to b = bmax.  

◆  The brightness value bo where the 
distance between h[bo] and the line is 
maximal is the threshold value.  

◆  This technique is particularly effective 
when the object pixels produce a weak 
peak in the histogram. 
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Thresholding 
◆  Hand selection 

◆  select a threshold by hand at the beginning of the day 
◆  use that threshold all day long! 

◆  Many threshold selection methods in the literature 
◆  Probabilistic methods 

◆  make parametric assumptions about object and background 
intensity distributions and then derive “optimal” thresholds 

◆  Structural methods 
◆  Evaluate a range of thresholds wrt properties of resulting 

binary images 
◆  one with straightest edges, most easily recognized objects, 

etc. 

◆  Local thresholding 
◆  apply thresholding methods to image windows 
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An advanced probabilistic threshold selection 
method - minimizing Kullback information distance 
◆  The observed histogram, f, is a mixture of the gray 

levels of the pixels from the object(s) and the 
pixels from the background 
◆  in an ideal world the histogram would contain just two 

spikes 
◆  but  

◆  measurement noise,  
◆  model noise  (e.g., variations in ink density within a character) 

and  
◆  edge blur (misalignment of object boundaries with pixel 

boundaries and optical imperfections of camera)  

spread these spikes out into hills 
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Kullback information distance 

◆  Make a parametric model of the 
shapes of the component 
histograms of the objects(s) and 
background 

◆  Parametric model - the 
component histograms are 
assumed to be Gaussian 
◆  po and pb are the proportions of the 

image that comprise the objects and 
background 

◆  µo and µb are the mean gray levels 
of the objects and background 

◆  σo and σb- are their standard 
deviations 

 

fo(g) = po
2πσo

e
−1 / 2( g− µo

σo
)2

o

fb(g) = pb
2πσb

e
−1 / 2( g− ub

σb
)2

g 

f(g) 

µo µb 

σo σb 
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Kullback information distance 

◆  Now, if we hypothesize a threshold, t, then all of 
these unknown parameters can be approximated 
from the image histogram. 

◆  Let f(g) be the observed and normalized histogram 
◆  f(g) = percentage of pixels from image having gray 

level g 
po(t) = f (g)

g= 0

t

∑

µo(t) = f (g)g
g= 0

t

∑ µb(t) = f (g)g
g= t+1

max

∑

pb(t) = 1− p0(t)
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Kullback information distance 

◆  So, for any hypothesized t, we can “predict” what 
the total normalized image histogram should be if 
our model (mixture of two Gaussians) is correct. 
◆  Pt(g) = pofo(g) + pbfb(g) 

◆  The total normalized image histogram is observed 
to be f(g) 

◆  So, the question reduces to: 
◆  determine a suitable way to measure the similarity of  P 

and f 
◆  then search for the t that gives the highest similarity 
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Kullback information distance 

◆  A suitable similarity measure is the Kullback 
directed divergence, defined as 

 
 
 
◆  If Pt matches f exactly, then each term of the sum 

is 0 and K(t) takes on its minimal value of 0 
◆  Gray levels where Pt and f disagree are penalized 

by the log term, weighted by the importance of 
that gray level (f(g)) 

K(t) =
g=0

max

∑ f (g)log[ f (g)
Pt(g)

]
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An alternative - minimize probability 
of error 
◆  Using the same mixture model, we can search for 

the t that minimizes the predicted probability of 
error during thresholding 

◆  Two types of errors 
◆  background points that are marked as object points.  

These are points from the background that are darker 
than the threshold 

◆  object points that are marked as background points. 
These are points from the object that are brighter than 
the threshold 
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An alternative - mimimize 
probability of error 

◆  For each “reasonable” 
threshold 
◆  compute the parameters of 

the two Gaussians and the 
proportions 

◆  compute the two probability 
of errors 

◆  Find the threshold that 
gives 
◆  minimal overall error 
◆  most equal errors 

t 

eo(t) = po fo(g)
g= t+1

max

∑

fo 

eb(t) = pb fb(g)
g =0

t

∑

fb 
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Object extraction from binary 
images - connected components 
◆  Definition:  Given a pixel (i,j) its 

4-neighbors are the points (i’,j’) 
such that |i-i’| + |j-j’| = 1 
◆  the 4-neighbors are (i±i, j) and (i,j

±1) 

◆  Definition: Given a pixel (i,j) its 
8-neighbors are the points (i’,j’) 
such that max(|i-i’|,|j-j’|) = 1 
◆  the 8- neighbors are (i, j±1), (i±1, j) 

and (i±1, j±1) 
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Adjacency 

◆  Definition:  Given two disjoint sets of pixels, A 
and B, A is 4-(8) adjacent to B is there is a pixel in 
A that is a 4-(8) neighbor of a pixel in B 
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Connected components 

◆  Definition: A 4-(8)path from pixel (i0,j0) to (in,jn) 
is a sequence of pixels (i0,j0) (i1,j1) (i2,j2) , ... (in,jn) 
such that (ik, jk) is a 4-(8) neighbor of (ik+1, jk+1), 
for k = 0, ..., n-1 

(i0,j0) 

(in, jn) 

(i0,j0) 

(in, jn) 

Every 4-path is an 8-path! 
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Connected components 

◆  Definition: Given a binary image, B, the set of all 
1’s is called the foreground and is denoted by S 

◆  Definition: Given a pixel p in S, p is 4-(8) 
connected to q in S if there is a path from p to q 
consisting only of points from S. 

◆  The relation “is-connected-to” is an equivalence 
relation 
◆  Reflexive - p is connected to itself by a path of length 0 
◆  Symmetric - if p is connected to q, then q is connected to p by the 

reverse path 
◆  Transitive - if p is connected to q and q is connected to r, then p is 

connected to r by concatenation of the paths from p to q and q to r 
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Connected components 
◆  Since the “is-connected-to” relation is an 

equivalence relation, it partitions the set S into a 
set of equivalence classes or components 
◆  these are called connected components 

◆  Definition:  S is the complement of S - it is the 
set of all pixels in B whose value is 0 
◆  S  can also be partitioned into a set of connected 

components 
◆  Regard the image as being surrounded by a frame of 

0’s 
◆  The component(s) of S that are adjacent to this frame 

is called the background of B. 
◆  All other components of S are called holes 
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Examples - Black = 1, Green = 0 

How many 4- (8) components of S? 
What is the background? 
Which are the 4- (8) holes? 



Machine vision systems - 27 Zoran Duric 

Background and foreground 
connectivity 
◆  Use opposite connectivity for the foreground and 

the background 
◆  4-foreground, 8-background: 4 single pixel objects and 

no holes 
◆  4-background, 8-foreground: one 4 pixel object 

containing a 1 pixel hole 
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Boundaries 
◆  The boundary of S is the set of all pixels of S that 

have 4-neighbors in S.  The boundary set is 
denoted as S’.  

◆  The interior is the set of pixels of S that are not in 
its boundary: S-S’ 

◆  Definition: Region T surrounds region R (or R is 
inside T) if any 4-path from any point of R to the 
background intersects T 

◆  Theorem:  If R and T are two adjacent 
components, then either R surrounds T or T 
surrounds R. 
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Examples 

A 

B 

A

A

A

A

A

B

A

A B 

B

Even levels are components of 0’s 
The background is at level 0 
Odd levels are components of 1’s 
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Component labeling 

◆  Given:  Binary image B 
◆  Produce: An image in which all of the pixels in 

each connected component are given a unique 
label. 

◆  Solution 1:  Recursive, depth first labeling 
◆  Scan the binary image from top to bottom, left to right 

until encountering a 1 (0). 
◆  Change that pixel to the next unused component label 
◆  Recursively visit all (8,4) neighbors of this pixel that 

are 1’s (0’s) and mark them with the new label 
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Example 
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Disadvantages of recursive 
algorithm 
◆  Speed 

◆  requires number of iterations proportional to the largest 
diameter of any connected component in the image 

◆  Topology 
◆  not clear how to determine which components of 0’s 

are holes in which components of 1’s  
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Solution 2 - row scanning up and 
down 
◆  Start at the top row of the image 

◆  partition that row into runs of 0’s and 1’s 
◆  each run of 0’s is part of the background, and is given the special 

background label 
◆  each run of 1’s is given a unique component label 

◆  For all subsequent rows 
◆  partition into runs 
◆  if a run of 1’s (0’s) has no run of 1’s(0’s) directly above it, then it is 

potentially a new component and is given a new label 
◆  if a run of 1’s (0’s) overlaps one or more runs on the previous row 

give it the minimum label of those runs 
◆  Let a  be that minimal label and let {ci} be the labels of all other 

adjacent runs in previous row.  Relabel all runs on previous row 
having labels in {ci} with a 
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Local relabeling 

◆  What is the point of the last step? 
◆  We want the following invariant condition to hold after 

each row of the image is processed on the downward 
scan: The label assigned to the runs in the last row 
processed in any connected component is the minimum 
label of any run belonging to that component in the 
previous rows. 

◆  Note that this only applies to the connectivity of pixels 
in that part of B already processed.  There may be 
subsequent merging of components in later rows 
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Example 
a a B b B B B B a a B b/a B B B B 

a a a a B c c c 

a a B a B B B B 
a a a a B c/a c/a c/a 
B a a a a a C a 

a a B a B B B B 
a a a a B a a a 
B a a a a a C a 
a a a a D a a a 

a a B a B B B B 
a a a a B a a a 
B a a a a a C a 
a a a a D/B a a a 
a a a a B B B B 

If we did not change the c’s to a’s, then the rightmost a will be labeled as a c and 
our invariant condition will fail. 
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Upward scan 

◆  A bottom to top scan will assign a unique label to 
each component 
◆  we can also compute simple properties of the 

components during this scan 

◆  Start at the bottom row 
◆  create a table entry for each unique component label, 

plus one entry for the background if there are no 
background runs on the last row 

◆  Mark each component of 1’s as being “inside” the 
background 
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Upward scan 
◆  For all subsequent rows 

◆  if a run of 1’s (0’s) (say with label c) is adjacent to no run of 1’s 
(0’s) on the subsequent row, and its label is not in the table, and no 
other run with label c on the current row is adjacent to any run of 1’s 
on the subsequent row, then: 
◆  create a table entry for this label 
◆  mark it as inside the run of 0’s (1’s) that it is adjacent to on the 

subsequent row 
◆  property values such as area, perimeter, etc. can be updated as 

each run is processed. 
◆  if a run of 1’s (0’s) (say, with label c) is adjacent to one or more run 

of 1’s on the subsequent row, then it is marked with the common 
label of those runs, and the table properties are updated.   
◆  All other runs of “c’s” on the current row are also given the 

common label. 
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Example 

-------aaa 
ccc---aaa 
c-c---aaa 
c-c---aaa 
---c--aaa 
aaaaaaaa 

• changed to a during first pass 
• but c’s in first column will not 
be changed to a’s on the upward pass 
unless all runs are once equivalence is  
detected 
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Example 
a a B b B B B B 
a a a a B c c c 
B a a a a a C a 
a a a a D a a a 
a a a a B B B B 
a a a a 

a a a 
a a a 

B 
B 

B 
B 
B 

d d d 
d d d 
d d d 

B 

a d 

a a B b B B B B 
a a a a B c c c 
B a a a a a C a 
a a a a B a a a 
a a a a B B B B 
a a a a 

a a a 
a a a 

B 
B 

B 
B 
B 

d d d 
d d d 
d d d 

a a B b B B B B 
a a a a B c c c 
B a a a a a C a 
a a a a B a a a 
a a a a B B B B 
a a a a 

a a a 
a a a 

B 
B 

B 
B 
B 

d d d 
d d d 
d d d 

process row 
4 

B 

a d 

C 

process row 3 

a a B a B B B B 
a a a a B a a a 
B a a a a a C a 
a a a a B a a a 
a a a a B B B B 
a a a a 

a a a 
a a a 

B 
B 

B 
B 
B 

d d d 
d d d 
d d d 

process row 
2, then 1 
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Properties 

◆  Our goal is to recognize each connected 
component as one of a set of known objects 
◆  letters of the alphabet 
◆  good potatoes versus bad potatoes 

◆  We need to associate measurements, or properties, 
with each connected component that we can 
compare against expected properties of different 
object types. 
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Properties 

◆  Area 
◆  Perimeter 
◆  Compactness:  P2/A 

◆  smallest for a circle: 4π2r2/πr2 = 4π
◆  higher for elongated objects 

◆  Properties of holes 
◆  number of holes 
◆  their sizes, compactness, etc. 
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How do we compute the perimeter of a 
connected component? 
1. Count the number of pixels in 

the component adjacent to 0’s 
◆  perimeter of black square 

would be 1 
◆  but perimeter of gray square, 

which has 4x the area, would 
be 4 

◆  but perimeter should go up as 
sqrt of area 

2. Count the number of 0’s 
adjacent to the component 
◆  works for the black and 

gray squares, but fails for 
the red dumbbell   
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How do we compute the perimeter of a 
connected component? 

3) Count the number of sides of pixels in 
the component adjacent to 0’s 
◆  these are the cracks between the 

pixels 
◆  clockwise traversal of these cracks 

is called a crack code 
◆  perimeter of black is 4, gray is 8 

and red is 8 
◆  What effect does rotation have on the 

value of a perimeter of the digitization 
of a simple shape? 
◆  rotation can lead to large changes 

in the perimeter and the area! 
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Perimeter computation (cont.) 

◆  We can give different weights to boundary pixels  
◆  1 – vertical and horizontal pairs 
◆  21/2  – diagonal pairs 

◆  The boundary can be approximated by a polygon line (or 
splines) and its length could be used 

◆  It matters most for small (low resolution objects) 
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Bounding Box and Extremal Points 

Topmost left Topmost right 

Leftmost top 

Leftmost bottom 

Rightmost top 

Rightmost bottom 

Bottommost left Bottommost right 
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Other features 

◆  Convex hull: 
◆  Create a monotone polygon from the boundary 

(leftmost and rightmost points in each row) 
◆  Connect the extremal points by removing all 

concavities (can be done by examining triples of 
boundary points) 

◆  Minimal bounding box from the convex hull 
◆  Deficits of convexity 
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A better (and universal)set of features 

◆  An “ideal” set of features should be independent 
of 
◆  the position of the connected component 
◆  the orientation of the connected component 
◆  the size of the connected component 

◆  ignoring the fact that as we “zoom in” on a shape we tend to 
see more detail 

◆  These problems are solved by features called 
moments 
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Central moments 

◆  Let S be a  connected component in a binary 
image 
◆  generally, S can be any subset of pixels, but for our 

application the subsets of interest are the connected 
components 

◆  The (j,k)’th moment of S is defined to be 

∑
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Central moments 

◆  M00 = the area of the connected component 

◆  The center of gravity of S can be expressed as 
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Central moments 

◆  Using the center of gravity, we can define the 
central (j,k)’th moment of S as 

◆  If the component S is translated, this means that 
we have added some numbers (a,b) to the 
coordinates of each pixel in S 
◆  for example, if a = 0 and b = -1, then we have shifted 

the component up one pixel 

kj
jk yyxx )()( −−=∑µ
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Central moments 

◆  Central moments are not affected by translations of S.  
Let S’={(x’, y’):x’=x+a, y’=y+b, (x,y) in S} 
◆  The center of gravity  of S’ is the c.o.g. of S shifted by (a,b) 

◆  The central moments of S’ are the same as those of S 
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Central moments 
◆  The standard deviations of the x and y coordinates of S can 

also be obtained from central moments: 

◆  We can then created a set of normalized coordinates of S 
that we can use to generate moments unchanged by 
translation and scale changes 
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Normalized central moments 
◆  The means of these new variables are 0, and their standard 

deviations are 1.  If we define the normalized moments; 
mjk as follows 

◆  then these moments are not changed by any 
scaling or translation of S 

◆  Let S* = {(x*,y*): x* = ax + b, y* = ay + c, (x,y) 
in S} 
◆  if b and c are 0, then we have scaled S by a 
◆  if a is 0, then we have translated S by (b,c) 
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Normalized central moments 

◆  Details of the proof are simple. 
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Shortcomings of our machine vision 
system 
◆  Object detection 

◆  thresholding will not extract intact objects in complex 
images 
◆  shading variations on object surfaces 
◆  texture 

◆  advanced segmentation methods 
◆  edge detection - locate boundaries between objects and 

background, between objects and objects 
◆  region analysis - find homogeneous regions; small 

combinations might correspond to objects. 
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Shortcomings of our machine vision 
system 
◆  Occlusion 

◆  What if one object is partially hidden by another? 
◆  properties of the partially obscured, or occluded, object will 

not match the properties of the class model 

◆  Correlation - directly compare image of the “ideal” 
objects against real images 
◆  in correct overlap position, matching score will be high 

◆  Represent objects as collection of local features such as 
corners of a rectangular shape 
◆  locate the local features in the image 
◆  find combinations of local features that are configured 

consistently with objects 
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Shortcomings of our machine vision 
system 
◆  Recognition of three dimensional objects 

◆  the shape of the image of a three dimensional object 
depends on the viewpoint from which it is seen 

◆  Model a three dimensional object as a large 
collection  of view-dependent models 

◆  Model the three dimensional geometry of the 
object and mathematically relate it to its possible 
images 
◆  mathematical models of image geometry 
◆  mathematical models for recognizing three dimensional 

structures from two dimensional images 
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Shortcomings of our machine vision 
system 
◆  Articulated objects 

◆  pliers 
◆  derricks 

◆  Deformable objects 
◆  faces 
◆  jello 

◆  Amorphous objects 
◆  fire 
◆  water 
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Agenda ◆  Advanced segmentation methods 
◆  edge detection 
◆  region recovery 

◆  Occlusion in 2-D 
◆  correlation 
◆  clustering 

◆  Articulations in 2-D 
◆  Three dimensional object recognition 

◆  modeling 3-D shape 
◆  recognizing 3-D objects from 2-D images 
◆  recognizing 3-D objects from 3-D images 

◆  stereo 
◆  structured light range sensors 
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