IERG 6120 Coding Theory for Storage Systems

The Minimum Distance of a Code

Lecturer: Kenneth Shum

Scribe: Yulin Shao

Lecture 2 - 13/09/2016

1 Hamming distance

- The Hamming distance between two strings of equal length, $d_H(\mathbf{u}, \mathbf{v})$, is defined as the number of positions at which the corresponding symbols are different.
- Triangular Inequality of Hamming distance:

$$d_H(\mathbf{u}, \mathbf{v}) \le d_H(\mathbf{u}, \mathbf{w}) + d_H(\mathbf{v}, \mathbf{w}). \tag{1}$$

- The Hamming weight of a string, $wt_H(\mathbf{u})$, is the number of symbols that are different from the zero-symbol of the alphabet used, i.e.

$$wt_H(\mathbf{u}) = wt(\mathbf{u}) \triangleq |\{i : u_i \neq 0\}|.$$
⁽²⁾

It is thus equivalent to the Hamming distance from the all-zero string of the same length.

- When the alphabet is *binary*, given two binary string \mathbf{u}, \mathbf{v} of equal length, we have

$$d_H(\mathbf{u}, \mathbf{v}) = wt(\mathbf{u}) + wt(\mathbf{v}) - 2(\mathbf{u} \cdot \mathbf{v}), \tag{3}$$

where \cdot denotes inner product, by treating the components of **u** and **v** as integer 0 and 1.

Example 1: Given $\mathbf{u} = (111110000)$ and $\mathbf{v} = (000111110)$, we have $wt(\mathbf{u}) = wt(\mathbf{v}) = 5$, $\mathbf{u} \cdot \mathbf{v} = 2$ and $d_H(\mathbf{u}, \mathbf{v}) = 5 + 5 - 4 = 6$.

2 The Minimum Distance of a Code

- The minimum distance of a code C is defined as the smallest Hamming distance between two distinct codewords in C. Specifically,

$$d(C) \triangleq \min \left\{ d_H(\mathbf{c}, \mathbf{c}') : \mathbf{c}, \mathbf{c}' \in C, \mathbf{c} \neq \mathbf{c}' \right\}.$$
(4)

- The notation $(n, M, d)_q$ -code C indicates that the code C is a q-ary code with length n, size M and minimum distance d. For binary code, i.e. q = 2, we simply write (n, M, d)-code.

Example 2: The rows of the following matrix are the codewords of a $(11, 12, 6)_2$ -code.

000000000000000
10100011101
11010001110
01101000111
10110100011
11011010001
11101101000
01110110100
00111011010
00011101101
10001110110
01000111011

Matlab program: Calculate the Hamming distance of a code C using Matlab.

Matlab codes can be found in https://piazza.com/class/isgy6spmwwm3ba?cid=15.

Theorem 1 (Error Correction). An $(n, M, d)_q$ -code C can correct t errors if $d \ge 2t + 1$.

Proof Suppose codeword **c** is transmitted and there are t errors, for some integer t satisfying $2t + 1 \le d$. Denote the received sequence by **y**. We have

$$d_H(\mathbf{c}, \mathbf{y}) = t. \tag{5}$$

The decoder we use is "nearest neighbor decoder":

$$Dec(\mathbf{y}) = \arg\min_{\mathbf{u}\in C} d_H(\mathbf{u}, \mathbf{y}).$$
(6)

Suppose that there is decoding error, say codeword \mathbf{c}' is decoded erroneously, i.e., $\mathbf{c}' \neq \mathbf{c}$, and

$$d_H(\mathbf{c}', \mathbf{y}) = \min_{\mathbf{u} \in C} d_H(\mathbf{u}, \mathbf{y}).$$
(7)

Since $d_H(\mathbf{c}, \mathbf{y}) = t$, we must have $d_H(\mathbf{c}', \mathbf{y}) \leq t$. Then, we get

$$d \leq d_H(\mathbf{c}, \mathbf{c}') \tag{8}$$

$$\leq d_H(\mathbf{c}, \mathbf{y}) + d_H(\mathbf{c}', \mathbf{y}) \tag{9}$$

$$\leq t+t=2t,\tag{10}$$

where (8) follows since $\mathbf{c} \neq \mathbf{c}'$ and the minimum distance of code C is d; (9) follows since Hamming distance satisfies Triangular Inequality.

Notice that (10) is a contradiction to our assumption that $d \ge 2t + 1$. Thus, given $d \ge 2t + 1$, any t errors can be corrected.

Theorem 2 (Error Detection). An $(n, M, d)_q$ -code C can detect any s errors if $s \leq d - 1$.

Proof Suppose that a codeword $\mathbf{c} \in C$ is transmitted, *s* errors occur, and **y** is received. The decoder we use is

$$Dec(\mathbf{y}) = \begin{cases} \mathbf{c}' & \exists \ \mathbf{c}' \in C, \text{ s.t. } \mathbf{c}' = \mathbf{y}; \\ error & \text{otherwise.} \end{cases}$$
(11)

If there is an undetectable error, then we have $\mathbf{c}' = \mathbf{y}$ and $\mathbf{c}' \neq \mathbf{c}$. That is

$$s = d_H(\mathbf{c}, \mathbf{y}) = d_H(\mathbf{c}, \mathbf{c}') \ge d. \tag{12}$$

Thus, the decode could detect any d-1 errors.

Theorem 3 (Erasure Correction). An $(n, M, d)_q$ -code C can recover r erasures if $r \leq d-1$.

Proof Notation: For $\mathbf{J} \subseteq \{1, 2, ..., n\}$, let $\mathbf{u}_{\mathbf{J}} \triangleq (u_j, j \in \mathbf{J})$

Example: If $\mathbf{y} = (0, 1, 1, 1, 0, 0, 1)$ and $\mathbf{J} = \{1, 2, 5, 6, 7\}$, then $\mathbf{u}_{\mathbf{J}} = (0, 1, 0, 0, 1)$.

Suppose codeword **c** is transmitted, r erasures occur and **y** is received. Let **J** be the set of indices of the unerased symbol. We note that $|\mathbf{J}| = n - r$.

The decoder we use is

$$Dec(\mathbf{y}) = \begin{cases} \mathbf{c}' & \exists a \text{ unique } \mathbf{c}' \in C, \text{ s.t. } \mathbf{c}'_{\mathbf{J}} = \mathbf{y}_{\mathbf{J}};\\ error & \text{otherwise.} \end{cases}$$
(13)

If there is decoding error, then the decoder's output $Dec(\mathbf{y}) = \mathbf{c}'$ is a codeword different from the transmitted codeword \mathbf{c} , satisfying $\mathbf{c}'_{\mathbf{J}} = \mathbf{c}_{\mathbf{J}}$. Since the components of codewords \mathbf{c} and \mathbf{c}' with indices in \mathbf{J} are the same, we get

$$d_H(\mathbf{c}, \mathbf{c}') \le n - |\mathbf{J}| = n - (n - r) = r.$$
(14)

This contradicts the assumption that the Hamming distance between two distinct codewords is at least d. Thus, the decoder can recover any d-1 erasures.

Example 3: Using the (11, 12, 6)-code in Example 2, we can

- correct 2 errors,
- detect 5 errors, or
- correct 5 erasures.

Exercises: Show that the converses of the above three theorems hold.

- 1. If we can design an error-correcting decoder for an $(n, M, d)_q$ -code that can correct any t errors, then $d \ge 2t + 1$.
- 2. If we have an error-detecting decoder for an $(n, M, d)_q$ -code that can detect any s errors, then $d \ge s+1$.
- 3. If we have an erasure-correcting decoder for an $(n, M, d)_q$ -code that can correct any r erasures, then $d \ge r+1$.

Theorems 1 to 3, together with the above exercises, imply that an $(n, M, d)_q$ code can

- 1. correct up to $\lfloor (d-1)/2 \rfloor$ errors, but there exists an uncorrectable error pattern with $\lfloor (d-1)/2 \rfloor + 1$ errors.
- 2. detect up to d-1 errors, but there exists an undetectable error pattern with d errors.
- 3. recover up to d-1 erasures, but there exists an unrecoverable erasure pattern consisting of d erasures.