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1 Hamming distance

The Hamming distance between two strings of equal length, dg(u,v), is defined as the number of
positions at which the corresponding symbols are different.

Triangular Inequality of Hamming distance:

dy(u,v) <dg(u,w) +dy(v,w). (1)

The Hamming weight of a string, wtg(u), is the number of symbols that are different from the zero-
symbol of the alphabet used, i.e.
wtg(u) = wt(u) £ [{i: u; # 0} (2)

It is thus equivalent to the Hamming distance from the all-zero string of the same length.

When the alphabet is binary, given two binary string u, v of equal length, we have
dy(u,v) = wt(u) + wt(v) —2(u - v), (3)

where ‘-’ denotes inner product, by treating the components of u and v as integer 0 and 1.

Example 1: Given u = (111110000) and v = (000111110), we have wt(u) = wt(v) = 5, u-v = 2 and
di(w,v) =5+5—4=6.

2

The Minimum Distance of a Code

The minimum distance of a code C' is defined as the smallest Hamming distance between two distinct
codewords in C'. Specifically,

d(C) £ min {dy(c,c’) :c,c’ € C,c # '} (4)

The notation (n, M, d),—code C indicates that the code C is a g-ary code with length n, size M and
minimum distance d. For binary code, i.e. ¢ = 2, we simply write (n, M, d)-code.

Example 2: The rows of the following matrix are the codewords of a (11,12, 6)s-code.

00000000000]
10100011101
11010001110
01101000111
10110100011
11011010001
11101101000
01110110100
00111011010
00011101101
10001110110

01000111011 |




Matlab program: Calculate the Hamming distance of a code C' using Matlab.
Matlab codes can be found in https://piazza.com/class/isgy6spmwwm3ba?cid=15.

Theorem 1 (Error Correction). An (n, M,d)q-code C can correct t errors if d > 2t + 1.

Proof Suppose codeword c is transmitted and there are ¢ errors, for some integer ¢ satisfying 2t + 1 < d.
Denote the received sequence by y. We have

du(c,y) =t. (5)

The decoder we use is “nearest neighbor decoder”:
Dec(y) = argmindg(u,y). (6)
ueC
Suppose that there is decoding error, say codeword ¢’ is decoded erroneously, i.e., ¢’ # ¢, and
dH (C/a Y) = min dH(u7 y) (7)
ueC

Since dy(c,y) = t, we must have dy(c’,y) <. Then, we get

d < dg(c, ) (8)
< dn (C, Y) +dy (Clv Y) (9)
< t+4t=2t, (10)

where (8) follows since ¢ # ¢’ and the minimum distance of code C' is d; (9) follows since Hamming distance
satisfies Triangular Inequality.

Notice that (10) is a contradiction to our assumption that d > 2t + 1. Thus, given d > 2t + 1, any ¢
errors can be corrected. O

Theorem 2 (Error Detection). An (n, M,d),-code C can detect any s errors if s < d — 1.

Proof Suppose that a codeword ¢ € C' is transmitted, s errors occur, and y is received. The decoder we
use is
/

c I e, st.c=y;
Dec(y) = ’ ' 11
) { error otherwise. (11)

If there is an undetectable error, then we have ¢’ =y and ¢’ # c¢. That is
s=dy(c,y) =dg(c,c’) >d. (12)

Thus, the decode could detect any d — 1 errors. O

Theorem 3 (Erasure Correction). An (n, M,d),-code C' can recover r erasures if r < d — 1.

Proof Notation: For J C {1,2,...,n}, let uy £ (u;,j € J)
Example: If y = (0,1,1,1,0,0,1) and J = {1,2,5,6,7}, then uy = (0,1,0,0,1).
Suppose codeword c is transmitted, r erasures occur and y is received. Let J be the set of indices of the
unerased symbol. We note that |J| =n —r.



The decoder we use is

c 3 a unique ¢’ € C, s.t. ¢ =yy5;
Dec(y) = q 3=y (13)
error otherwise.
If there is decoding error, then the decoder’s output Dec(y) = ¢’ is a codeword different from the

transmitted codeword c, satisfying ¢ = cy. Since the components of codewords ¢ and ¢’ with indices in J
are the same, we get

du(c,dy<n—|J=n—(n—r)=r. (14)

This contradicts the assumption that the Hamming distance between two distinct codewords is at least d.
Thus, the decoder can recover any d — 1 erasures. O

Example 3: Using the (11,12, 6)-code in Example 2, we can
e correct 2 errors,
e detect 5 errors, or

e correct 5 erasures.

Exercises: Show that the converses of the above three theorems hold.

1. If we can design an error-correcting decoder for an (n, M, d)4-code that can correct any ¢ errors, then
d>2t+1.

2. If we have an error-detecting decoder for an (n, M, d),-code that can detect any s errors, then d > s+1.

3. If we have an erasure-correcting decoder for an (n, M,d),-code that can correct any r erasures, then
d>r+1.

Theorems 1 to 3, together with the above exercises, imply that an (n, M, d), code can

1. correct up to |(d — 1)/2] errors, but there exists an uncorrectable error pattern with |(d —1)/2] + 1
errors.

2. detect up to d — 1 errors, but there exists an undetectable error pattern with d errors.

3. recover up to d — 1 erasures, but there exists an unrecoverable erasure pattern consisting of d erasures.



