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The Minimum Distance of a Code
Lecturer: Kenneth Shum Scribe: Yulin Shao

1 Hamming distance

- The Hamming distance between two strings of equal length, dH(u,v), is defined as the number of
positions at which the corresponding symbols are different.

- Triangular Inequality of Hamming distance:

dH(u,v) ≤ dH(u,w) + dH(v,w). (1)

- The Hamming weight of a string, wtH(u), is the number of symbols that are different from the zero-
symbol of the alphabet used, i.e.

wtH(u) = wt(u) ,
∣∣{i : ui ̸= 0}

∣∣. (2)

It is thus equivalent to the Hamming distance from the all-zero string of the same length.

- When the alphabet is binary, given two binary string u,v of equal length, we have

dH(u,v) = wt(u) + wt(v)− 2(u · v), (3)

where ‘·’ denotes inner product, by treating the components of u and v as integer 0 and 1.

Example 1: Given u = (111110000) and v = (000111110), we have wt(u) = wt(v) = 5, u · v = 2 and
dH(u,v) = 5 + 5− 4 = 6.

2 The Minimum Distance of a Code

- The minimum distance of a code C is defined as the smallest Hamming distance between two distinct
codewords in C. Specifically,

d(C) , min
{
dH(c, c′) : c, c′ ∈ C, c ̸= c′

}
. (4)

- The notation (n,M, d)q−code C indicates that the code C is a q-ary code with length n, size M and

minimum distance d. For binary code, i.e. q = 2, we simply write (n,M, d)-code.

Example 2: The rows of the following matrix are the codewords of a (11, 12, 6)2-code.

00000000000
10100011101
11010001110
01101000111
10110100011
11011010001
11101101000
01110110100
00111011010
00011101101
10001110110
01000111011


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Matlab program: Calculate the Hamming distance of a code C using Matlab.
Matlab codes can be found in https://piazza.com/class/isgy6spmwwm3ba?cid=15.

Theorem 1 (Error Correction). An (n,M, d)q-code C can correct t errors if d ≥ 2t+ 1.

Proof Suppose codeword c is transmitted and there are t errors, for some integer t satisfying 2t+ 1 ≤ d.
Denote the received sequence by y. We have

dH(c,y) = t. (5)

The decoder we use is “nearest neighbor decoder”:

Dec(y) = argmin
u∈C

dH(u,y). (6)

Suppose that there is decoding error, say codeword c′ is decoded erroneously, i.e., c′ ̸= c, and

dH(c′,y) = min
u∈C

dH(u,y). (7)

Since dH(c,y) = t, we must have dH(c′,y) ≤ t. Then, we get

d ≤ dH(c, c′) (8)

≤ dH(c,y) + dH(c′,y) (9)

≤ t+ t = 2t, (10)

where (8) follows since c ̸= c′ and the minimum distance of code C is d; (9) follows since Hamming distance
satisfies Triangular Inequality.

Notice that (10) is a contradiction to our assumption that d ≥ 2t + 1. Thus, given d ≥ 2t + 1, any t
errors can be corrected.

Theorem 2 (Error Detection). An (n,M, d)q-code C can detect any s errors if s ≤ d− 1.

Proof Suppose that a codeword c ∈ C is transmitted, s errors occur, and y is received. The decoder we
use is

Dec(y) =

{
c′ ∃ c′ ∈ C, s.t. c′ = y;

error otherwise.
(11)

If there is an undetectable error, then we have c′ = y and c′ ̸= c. That is

s = dH(c,y) = dH(c, c′) ≥ d. (12)

Thus, the decode could detect any d− 1 errors.

Theorem 3 (Erasure Correction). An (n,M, d)q-code C can recover r erasures if r ≤ d− 1.

Proof Notation: For J ⊆ {1, 2, ..., n}, let uJ , (uj , j ∈ J)
Example: If y = (0, 1, 1, 1, 0, 0, 1) and J = {1, 2, 5, 6, 7}, then uJ = (0, 1, 0, 0, 1).

Suppose codeword c is transmitted, r erasures occur and y is received. Let J be the set of indices of the
unerased symbol. We note that |J| = n− r.
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The decoder we use is

Dec(y) =

{
c′ ∃ a unique c′ ∈ C, s.t. c′J = yJ;

error otherwise.
(13)

If there is decoding error, then the decoder’s output Dec(y) = c′ is a codeword different from the
transmitted codeword c, satisfying c′J = cJ. Since the components of codewords c and c′ with indices in J
are the same, we get

dH(c, c′) ≤ n− |J| = n− (n− r) = r. (14)

This contradicts the assumption that the Hamming distance between two distinct codewords is at least d.
Thus, the decoder can recover any d− 1 erasures.

Example 3: Using the (11, 12, 6)-code in Example 2, we can

• correct 2 errors,

• detect 5 errors, or

• correct 5 erasures.

Exercises: Show that the converses of the above three theorems hold.

1. If we can design an error-correcting decoder for an (n,M, d)q-code that can correct any t errors, then
d ≥ 2t+ 1.

2. If we have an error-detecting decoder for an (n,M, d)q-code that can detect any s errors, then d ≥ s+1.

3. If we have an erasure-correcting decoder for an (n,M, d)q-code that can correct any r erasures, then
d ≥ r + 1.

Theorems 1 to 3, together with the above exercises, imply that an (n,M, d)q code can

1. correct up to ⌊(d − 1)/2⌋ errors, but there exists an uncorrectable error pattern with ⌊(d − 1)/2⌋ + 1
errors.

2. detect up to d− 1 errors, but there exists an undetectable error pattern with d errors.

3. recover up to d− 1 erasures, but there exists an unrecoverable erasure pattern consisting of d erasures.
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