
IERG6120 Coding for Distributed Storage Systems Lecture 1 - 08/09/2016

Hamming Distance
Lecturer: Kenneth Shum Scribe: Qiaoqiao Zhou

We first review some basic materials in coding theory.
According to Shannon, a communication system can be described as

source      encoder        Channel        decoder     sink 

Figure 1: communication system

Discrete Channel:
Channel input alphabet A = {a1, . . . , aq}
Channel output alphabet B = {b1, . . . , bm}
Transition probability

Pr(bj received | ai sent), for i = 1, . . . , q, j = 1, . . . ,m. (1)

Memoryless:
Consider using the channel n times
The symbols transmitted x = (x1, x2, . . . , xn)
The symbols received y = (y1, y2, . . . , yn)
The transition probability satisfies

Pr(y | x) =

n∏
t=1

Pr(yt received | xt sent) (2)

Binary symmetric channel (BSC):
A = {0, 1} = B

Pr(1 received | 1 transmitted) = 1− ε.
Pr(0 received | 0 transmitted) = 1− ε.
Pr(1 received | 0 transmitted) = ε.

Pr(0 received | 1 transmitted) = ε. (3)

Here, ε is called the crossover probability.
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Figure 2: BSC channel

q-ary symmetric channel:
A = {0, 1, . . . , q − 1} = B. See Fig. 3.
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Figure 3: q-ary symmetric channel
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Figure 4: Binary erasure channel

Binary erasure channel (BEC):
A = {0, 1}, B = {0, 1, ?} The transition probabilities are illustrated in Fig. 4.

A block code, C, of length n, with alphabet A = {a1, a2, . . . , aq} is a non-empty collection of An.
The elements of C are called the codewords.

Example 1 : Repetition code: A = {0, 1}, C = {00000, 11111}
Encoder :

0→ 00000

1→ 11111
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Majority-vote decoder:

00000→ 0

00001→ 0

00010→ 0

00100→ 0

01000→ 0

10000→ 0

. . .︸︷︷︸
2 1′s

→ 0

. . .︸︷︷︸
3 1′s

→ 1

. . .︸︷︷︸
4 1′s

→ 1

. . .︸︷︷︸
5 1′s

→ 1

Pr(error | 0 sent)

= Pr(3 or more 1′s in the received vector)

=

(
5

3

)
ε3(1− ε)2 +

(
5

4

)
ε4(1− ε)1 +

(
5

5

)
ε5 (4)

Maximal likelihood decoder:
In this lecture, a “decoding error” means block error, i.e., Dec(y) 6= c but c is sent.
Assume Pr(c is sent) = 1

M , ∀c ∈ C, where M = |C| is the size of the code.

Pr(correct decoding)

=
∑

y∈An

Pr(correct decoding | y received)Pr(y received)

=
∑

y∈An

Pr(Dec(y) is sent | y received)Pr(y received) (5)

Pick a decoder Dec such that

Pr(Dec(y) is sent | y received)

= max
c∈C

Pr(c is sent | y received) (6)

According to Bayes’ rule

Pr(c is sent | y received)

=
Pr(y received | c is sent)

= 1
M︷ ︸︸ ︷

Pr(c sent)∑
c′∈C Pr(y received | c′ is sent) Pr(c′ sent)︸ ︷︷ ︸

= 1
M

=
Pr(y received | c is sent)∑

c′∈C Pr(y received | c′ is sent)
(7)
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Hence, the maximization of Pr(c is sent | y received) is equivalent to the maximization of Pr(y received |
c is sent), provided that the codewords are transmitted with equal probability. We have thus proved the
following

Theorem 1. (ML decoding): Suppose that the codewords in a code C are transmitted with the same
probability. If we choose the decoder Dec such that

DecML(y) = argmax
c∈C

Pr(y received | c is sent), (8)

with ties broken arbitrarily, then the probability of error is minimized.

Example 2: Consider the BSC with repetition code C = {00000, 11111}. Suppose 11000 is received.

Pr(11000 received | 00000 sent) = ε2(1− ε)3

Pr(11000 received | 11111 sent) = ε3(1− ε)2 (9)

For ε < 1
2 , we have ε2(1− ε)3 > ε3(1− ε)2. Therefore, DecML(11000) = 00000.

Now, consider the q-ary symmetric channel, i.e., A = B = {0, . . . , q − 1}, with block length n.

Pr(no error) = (1− ε)n

Pr(error at the ith location) = ε(1− ε)n−1

Pr(error at the ithand jth location) = ε2(1− ε)n−2 (10)

We can see that the probability of error is independent of the exactly error location, it only depends on the
number of errors.

Definition 2. Let u and v be n-tuples in An. Define the Hamming distance between u and v as the
number of locations in which u and v are different,

dH(u,v) :=

∣∣∣∣{i : ui 6= vi}
∣∣∣∣ (11)

where u = (u1, . . . , un) and v = (v1, . . . , vn).

Theorem 3. For q-ary symmetric channel with ε � 1, the ML decoder outputs the codeword c such that
dH(c,y) is minimized.

When the probability of channel error is sufficiently small, the ML decoder is the same as the nearest-
neighbor decoder

DecNN(y) = argmax
c∈C

dH(y, c).

Example 3: C = {11111, 11000, 00110, 00001}. The received vector is y = 01000. Then,

dH(11111, 01000) = 4

dH(11000, 01000) = 1

dH(00110, 01000) = 3

dH(00001, 01000) = 2

Therefore, according to Theorem 3, the ML decoder will decode the received vector to 11000.
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Properties of Hamming distance:

dH(u,v) ≥ 0 with equality iff u = v (12)

dH(u,v) = dH(v,u) (13)

dH(u,v) ≤ dH(u,w) + dH(w,v) (14)

Hamming sphere: Given u ∈ A and r ≥ 0, define the Hamming sphere with radius r and center u as the
set

B(u, r) := {v ∈ An : dH(u,v) ≤ r}. (15)

Theorem 4. A code C can correct t errors under nearest-neighbor decoding iff B(c, t) for all c ∈ C are
disjoint.

Proof (⇐) Assume that B(c, t) and B(c′, t) are disjoint for c, c′ ∈ C and c 6= c′. Suppose c ∈ C is sent,
and the channel introduces no more than t errors. The received vector y satisfies dH(c,y) ≤ t. Hence
y ∈ B(c, t) by the definition of Hamming sphere. Consider a codeword c′ which is not equal to c. Since the
Hamming spheres B(c, t) and B(c′, t) are disjoint, we have

y 6∈ B(c′, t),

which means that dH(y, c′) > t. As this is true for all c′ 6= c, we get dH(y, c) = minc′∈C dH(y, c′). The
codeword c is outputted by the nearest-neighbor decoder correctly.

(⇒) Suppose that there are two distinct codewords c and c′ such that B(c, t) and B(c′, t) are not disjoint.
Let y be a vector in the intersection of B(c, t) and B(c′, t), i.e., dH(y, c) ≤ t and dH(y, c′) ≤ t. We consider
three cases.
Case 1, DecNN(y) = c.
Case 2, DecNN(y) = c′.
Case 3, DecNN(y) is not equal to c or c′.

In case 1, we have a decoding error if c′ is transmitted and y is received. In case 2, we have a decoding
error if c is transmitted and y is received. In case 3, we have a decoding error if y is received but the
transmitted codeword is c or c′. In all three cases, an erroneous codeword is returned by the decoder even
though the number of channel errors is no more than t.

Exercise: Show that the code in Example 3 with block length 5 can correct 1 error. Find all 5-tuples in
{0, 1}5 that are at Hamming distance at least 2 from all codewords.
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