Hamming Distance
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Lecturer: Kenneth Shum Scribe: Qiaogiao Zhou

We first review some basic materials in coding theory.
According to Shannon, a communication system can be described as
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Figure 1: communication system

Discrete Channel:

Channel input alphabet A = {a1,...,a4}
Channel output alphabet B = {by,..., by}
Transition probability

Pr(b; received | a;sent), for ¢ =1,...,q, j=1,...,m.
Memoryless:
Consider using the channel n times
The symbols transmitted x = (z1, za,...,T,)

The symbols received y = (y1,Y2, ..., Yn)
The transition probability satisfies

n
Pr(y | x) = H Pr(y; received | x; sent)
t=1

Binary symmetric channel (BSC):
A={0,1} =8

Pr(1received | 1transmitted) = 1 — .

( )

Pr(Oreceived | 0 transmitted) = 1 — e.

Pr(1received | 0 transmitted) = e.
)=¢.

Pr(0received | 1 transmitted

Here, € is called the crossover probability.
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Figure 2: BSC channel

g-ary symmetric channel:
A=1{0,1,...,9 — 1} = B. See Fig. 3.
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Figure 3: g-ary symmetric channel
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Figure 4: Binary erasure channel

Binary erasure channel (BEC):
A=1{0,1}, B=1{0,1,7} The transition probabilities are illustrated in Fig. 4.

A block code, C, of length n, with alphabet A = {a1,as,...,a4} is a non-empty collection of A™.
The elements of C are called the codewords.
Examplel : Repetition code: A = {0,1}, C = {00000,11111}

Encoder :

0 — 00000
1 — 11111



Majority-vote decoder:

00000 — 0
00001 — 0
00010 — 0
00100 — 0
01000 — 0
10000 — 0

—0
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Pr(error | Osent)

= Pr(3or more 1'sin the received vector)

(e (- ()

Maximal likelihood decoder:
In this lecture, a “decoding error” means block error, i.e., Dec(y) # ¢ but c is sent.
Assume Pr(c is sent) = -7, Ve € C, where M = |C| is the size of the code.

Pr(correct decoding)

= Z Pr(correct decoding | y received)Pr(y received)
yeA™

Z Pr(Dec(y) is sent | y received)Pr(y received) (5)
yeAn

Pick a decoder Dec such that
Pr(Dec(y) is sent | y received)
= max Pr(c is sent | y received) (6)
ce
According to Bayes’ rule

Pr(cis sent | y received)
- M

Pr(y received | c is sent) Pr(csent)

> rec Pr(y received | ¢ is sent) Pr(c’ sent)
—_——
=2
Pr(y received | ¢ is sent)

= (7)

,-» Pr(y received | ¢’ is sent
Zc eC y




Hence, the maximization of Pr(cis sent | yreceived) is equivalent to the maximization of Pr(y received |
c is sent), provided that the codewords are transmitted with equal probability. We have thus proved the
following

Theorem 1. (ML decoding): Suppose that the codewords in a code C are transmitted with the same
probability. If we choose the decoder Dec such that

Decmr,(y) = argmax Pr(y received | ¢ is sent), (8)
ceC

with ties broken arbitrarily, then the probability of error is minimized.
Example 2: Consider the BSC with repetition code C = {00000,11111}. Suppose 11000 is received.

Pr(11000 received | 00000 sent) = ¢?(1 — €)3
Pr(11000 received | 11111 sent) = €*(1 — €)? (9)

For e < 1, we have €*(1 — €)® > €*(1 — ¢€)2. Therefore, Decy,(11000) = 00000.

Now, consider the g-ary symmetric channel, i.e., 4 =B =1{0,...,q — 1}, with block length n.

Pr(noerror) = (1 —¢€)"

Pr(error at the i*" location) = e(1 — €)™~

Pr(error at the i"and j'" location) = €*(1 — €)" 2 (10)

We can see that the probability of error is independent of the exactly error location, it only depends on the
number of errors.

Definition 2. Let u and v be n-tuples in A™. Define the Hamming distance between u and v as the
number of locations in which u and v are different,
{Z Ujg 7& ’Ui}

dy(u,v) =

(11)

where u = (u1,...,uy) and v = (v1,...,0y,).

Theorem 3. For g-ary symmetric channel with ¢ < 1, the ML decoder outputs the codeword c such that
dy(c,y) is minimized.

When the probability of channel error is sufficiently small, the ML decoder is the same as the nearest-
neighbor decoder

Decnn(y) = argmax dy (y, c).
ceC

Example3: C = {11111,11000,00110,00001}. The received vector is y = 01000. Then,

dg (11111,01000
d (11000, 01000
(
(

d(00110,01000
dx (00001, 01000

4
1
3
2

— — — —

Therefore, according to Theorem 3, the ML decoder will decode the received vector to 11000.



Properties of Hamming distance:

dg(u,v) >0 with equality if u=v (12)
di(u,v) =dg(v,u) (13)
dH (ua V) < dH(uv W) + dH (W7 V) (14)

Hamming sphere: Given u € A and r > 0, define the Hamming sphere with radius r and center u as the
set

B(u,r) :={veA": dgy(u,v) <r}. (15)

Theorem 4. A code C can correct t errors under nearest-neighbor decoding iff B(c,t) for all ¢ € C are
disjoint.

Proof (<) Assume that B(c,t) and B(c’,t) are disjoint for ¢,c¢’ € C and ¢ # ¢/. Suppose ¢ € C is sent,
and the channel introduces no more than ¢ errors. The received vector y satisfies dy(c,y) < t. Hence
y € B(c,t) by the definition of Hamming sphere. Consider a codeword ¢’ which is not equal to c. Since the
Hamming spheres B(c,t) and B(c’,t) are disjoint, we have

y & B(c,t),

which means that dgy(y,c’) > t. As this is true for all ¢’ # ¢, we get dgy(y,c) = mineec dy(y,c’). The
codeword c is outputted by the nearest-neighbor decoder correctly.

(=) Suppose that there are two distinct codewords ¢ and ¢’ such that B(c,t) and B(c', t) are not disjoint.
Let y be a vector in the intersection of B(c,t) and B(c/,t), i.e., dg(y,c) <t and dy(y,c’) < t. We consider
three cases.

Case 1, Decyn(y) = c.
Case 2, Decyn(y) = ¢'.
Case 3, Decyn(y) is not equal to ¢ or ¢’.

In case 1, we have a decoding error if ¢’ is transmitted and y is received. In case 2, we have a decoding
error if ¢ is transmitted and y is received. In case 3, we have a decoding error if y is received but the
transmitted codeword is ¢ or c¢’. In all three cases, an erroneous codeword is returned by the decoder even
though the number of channel errors is no more than ¢. O

Exercise: Show that the code in Example 3 with block length 5 can correct 1 error. Find all 5-tuples in
{0,1}® that are at Hamming distance at least 2 from all codewords.



