
IERG 6120 Coding Theory for Storage Systems Lecture 3 - 15/09/2016

Finite Field and Linear Codes
Lecturer: Kenneth Shum Scribe: Yulin Shao

Non-linear block code is not easy to construct and describe, and there is no fast decoding in general.
Thus, we study the linear code in this lecture.

1 Finite field

Definition 1.1. A finite field (or Galois field) is a field that contains a finite number of elements. It is a set
on which the operations of addition, subtraction, multiplication and division are defined and satisfy certain
basic rules.

In this lecture we consider finite field whose size is a prime number. This is usually called the prime field,
and is denoted by Zp (or GF (p), Fp), where p is a prime number. The elements are 0, 1, ..., p− 1. Further,
we define the following operations on Zp:

- addition: ∀x, y ∈ Zp, x+ y
def
= (x+ y) mod p.

- multiplication: ∀x, y ∈ Zp, x · y def
= (x · y) mod p.

- additive inverse: ∀x ∈ Zp, (p− x) mod p is the additive inverse of x.

- multiplicative inverse: ∀x ∈ Zp, x 6= 0, the multiplicative inverse of x, denoted by y, y ∈ Zp, satisfies
x · y ≡ 1 mod p.

(We will use the notation x ≡ y mod p to mean that x− y is an integral multiple of p.)

Example 1.1. If p = 5, then all the elements in Z5 are given by {0, 1, 2, 3, 4}. 2+3 ≡ 0 mod 5, 2·3 ≡ 1 mod 5.
The additive inverse of 2 is 3 and the multiplicative inverse of 2 is also 3.

Lemma 1.1 (No zero divisor). If x · y ≡ 0 mod p, then x ≡ 0 mod p or y ≡ 0 mod p.

Proof Since x · y ≡ 0 mod p, we have: “xy − 0 is divisible by p”, that is, “p divides xy”.
Thus, “p is a factor of x” or “p is a factor of y”.
Finally, we have: x ≡ 0 mod p or y ≡ 0 mod p.

Proposition 1.2. If a 6≡ 0 mod p, then multiplication by a is a bijection from Zp to Zp.

Proof Let f(x) = ax mod p.
Suppose that ∃x, y ∈ Zp, x 6= y, but f(x) = f(y), namely, ax ≡ xy mod p.

We have ax− ay ≡ 0 mod p, hence a(x− y) ≡ 0 mod p.
Since a 6≡ 0 mod p, by Lemma 1.1, we have x− y ≡ 0 mod p, namely, x ≡ y mod p.

Thus, f is an injection.
Since f is an injection from a finite set Zp to itself, f is also a surjection.
Finally, f is a bijection.

In Proposition 1.2, we have used the following elementary fact.
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Theorem 1.3. For finite sets S and T with the same cardinality, if g is a one-to-one mapping from S to
T , then g is also a surjection.

Proof We prove by contradiction and suppose that g is not surjective. Then there is an element in T , say
t, which does not have any pre-image. The function g can be regarded as a function from S to T \{t}. Since
the cardinality of T \ {t} is strictly less than that of S, by the Pigeonhole Principle, there are two elements
s and s′ in the domain S which are mapped to the same element in T \ {t}, contradicting the assumption
that g is injective.

Proposition 1.4. Multiplicative inverse of a nonzero element exists in Zp, and is unique.

Proof Let x ∈ Zp, a 6≡ 0 mod p. Multiply all the elements in Zp by a, then there is one and only one
element y satisfies a · y ≡ 1 mod p (Proposition 1.2). The element y is exactly the multiplicative inverse
of the nonzero element x.

Proposition 1.5 (Bezout’s theorem). Given two integers a and b, we can find two integers r and s such
that the greatest common devisor of a, b, denoted by gcd(a, b), is equal to ra+ sb.

The integers r and s in Proposition 1.5 can be computed by extended Euclidean algorithm.
Implication: ∀a 6≡ 0 mod p, gcd(a, p) = 1. By Proposition 1.5, we have ra + sp = 1 from some integers
r and s. Thus, ra ≡ 1 mod p. This implies that r is the multiplicative inverse of a, and we can utilize the
extended Euclidean algorithm to calculate the multiplicative inverse.

Example 1.2. Given p = 11, find 3−1 mod 11 in Z11.

- Scheme 1 (The general way when p is not large): We try all the nonzero elements in Z11. Specifically,
3 · 1 ≡ 3 mod 11, 3 · 2 ≡ 6 mod 11, 3 · 3 ≡ 9 mod 11, 3 · 4 ≡ 1 mod 11. Thus, 4 is the multiplicative
inverse of 3.

- Scheme 2 (Utilize extended Euclidean algorithm):

r s ra sp

0 1

1 0

3 1

4 1 1

2

11p 

3a 

①

②

④

③

Initialization

Initialization

11 mod 3 =2

3 mod 2 =1

In the above table, row 3 is obtained by subtracting 3 times row 2 from row 1. Row 4 is obtained by
subtracting row 3 from row 2. By the extended Euclidean algorithm, we have 4·3−11 = gcd(3, 11) = 1.
Thus, 3−1 ≡ 4 mod 11.
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2 Vector space

Definition 2.1 (Vector space). Let Zq be the finite field of order q, q is a prime number. A nonempty set
V ⊆ Zn

q , together with some (vector) addition ‘+’ and scalar multiplication by elements of Zq, is a vector
space over Zq if it satisfies the following conditions. ∀ u,v,w ∈ V and ∀ λ, µ ∈ Zq:

(1) u + v ∈ V ;
(2) λu ∈ V ;
(3) u + v = v + u, (u + v) + w = u + (v + w);
(4) λ(u + v) = λu + λu, (λ+ µ)u = λu + µu, (λµ)u = λ(µu);
(5) There is an element 0 ∈ V with the property 0 + u = u,∀ u ∈ V ;
(6) ∀ u ∈ V , there is an element −u ∈ V , s.t. −u + u = 0.

Example 2.1. For instance, V1 = {(0, 0, 0, 0), (1, 0, 1, 0)(0, 1, 0, 1)(1, 1, 1, 1)} ⊆ Z4
2 is a vector space over Z2;

V2 = {(0, 0, 0), (0, 1, 2)(0, 2, 1)} ⊆ Z3
3 is a vector space over Z3.

Definition 2.2 (Subspace). A nonempty subset C of a vector space V is a subspace of V if it is itself a
vector space under the same vector addition and scalar multiplication as V .

Proposition 2.1. A nonempty subset C of a vector space V over Zq is a subspace if and only if the following
condition is satisfied:

if x,y ∈ C and λ, µ ∈ Zq, then λx + µy ∈ C.

Example 2.2. For instance, the V1 in Example 2.1 is a vector space itself, while it is also a subspace of
Z4
2; similarly, V2 is a subspace of Z3

3.

3 Linear codes

Definition 3.1 (Linear code). A linear code C of length n over Zq is a subspace of Zn
q .

Example 3.1. The following are linear codes:
(i) The repetition code: C = {(λ, λ, ..., λ) : λ ∈ Zq,∀ q};
(ii) C = {000, 001, 010, 011} over Z2 is a subspace of Z3

2;
(iii) C = {0000, 1100, 2200, 0001, 0002, 1101, 1102, 2201, 2202} over Z3 is a subspace of Z4

3.

Definition 3.2 (Basis of C). Let C be a linear code over Zq. A nonempty subset B = {g1,g2, ...,gk} of
C is called a basis for C if B is linearly independent and any codeword c ∈ C can be expressed as a unique
linear combination of vectors in B. i.e.,

∀c ∈ C, c = {α1g1 + α2g2 + ...+ αkgk : α1, α2, ..., αk ∈ Zq}.

Example 3.2. For the linear code C = {0000, 0001, 0010, 0100, 0011, 0101, 0110, 0111} over Z2, one of its
bases is B = {0001, 0010, 0100}.

Definition 3.3 (Dual code, dimension of C). Let C be a linear code in Zn
q ,

(i) The dual code of C, denoted by C⊥, is defined as the orthogonal complement of the subspace C of Zn
q .

Specifically, each element in C⊥ is orthogonal to all the elements in C. C⊥ , {v ∈ Zn
q : ∀ c ∈ C,v · c = 0}.

(ii) The dimension of the linear code C is the number of elements in its bases, and is denoted by dim(C).

Theorem 3.1. Let C be a linear code of length n over Zq. Then
(i) dim(C) = logq |C|;
(ii) C⊥ is a linear code and dim(C) + dim(C⊥) = n;
(iii) (C⊥)⊥ = C.

Example 3.3. (i) For code C = {0000, 1010, 0101, 1111} over Z2, we have C⊥ = C = {0000, 1010, 0101, 1111},
and dim(C)=dim(C⊥)= log2 4 = 2

(ii) For code C = {000, 001, 002, 010, 020, 011, 012, 021, 022} over Z3, we have C⊥ = {000, 100, 200},
dim(C)=2 and dim(C⊥)=1.
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4 Generator matrix and parity-check matrix

Knowing a basis for a linear code enables us to describe its codewords explicitly.

Definition 4.1.
(i) A generator matrix G for a linear code C is a matrix G whose rows form a basis for C.
(ii) A parity-check matrix H for a linear code C is a generator matrix for the dual code C⊥.

Lemma 4.1. (i) GHT = 0;
(ii) The code C can also defined as C = {v ∈ Zn

q : vHT = 0}.

Example 4.1. Let C be the linear code over Z3 defined by the generator matrix G =

[
1 1 1 0 0
2 2 1 1 1

]
.

(i) We can write down all the codewords by the linear combination of the two rows in G, and we have
C = {00000, 11100, 22200, 22111, 00211, 11011, 11222, 22022, 00122}.

(ii) We can obtain the parity-check matrix H as follows. First, we transform the matrix G to the reduced
row echelon form by elementary row operations.[

1 1 1 0 0
2 2 1 1 1

]
row1+row2−−−−−−−→

[
1 1 1 0 0
0 0 2 1 1

]
row2*2−−−−→

[
1 1 1 0 0
0 0 1 2 2

]
row1-row2−−−−−−→

[
1 1 0 1 1
0 0 1 2 2

]
Then, we could obtain a parity-check matrix H using the defining property that GHT = 0,

H =

2 1 0 0 0
2 0 1 1 0
2 0 1 0 1

 .
5 Cosets and standard array decoding

Definition 5.1 (Coset). Let C be a linear code of length n over Zq, and let u ∈ Zn
q be any vector of length

n; we define the coset of C determined by u to be the set
C + u = {v + u : v ∈ C}

Example 5.1. For a code C = {000, 101, 010, 111} over Z2, we have C + 101 = {101, 000, 111, 010}.

Theorem 5.1. Let C be a linear code of length n over Zq, dim(C) = k. Then
(i) every vectors of Zn

q is contained in some coset of C;
(ii) two cosets are either identical or they have empty intersection;
(iii) there are qn−k different cosets of C;
(iv) ∀ u,v ∈ Zn

q ,u− v ∈ C if and only if u and v are in the same coset;

Implication: Let C be a linear code. Assume the codeword v is transmitted and the word u is received.
Define the error pattern (or error string) as e = u−v. Then, u−e = v ∈ C. This implies that error pattern
e is contained in the coset u +C(part (iv) in Theorem 5.1). On the other hand, any vector in coset u +C
may be an error pattern leading to the received word u.

Since error patterns e with smaller Hamming weight are the more likely to occur, nearest neighbour
decoding works for a linear code C in the following manner. Upon receiving the word u, we choose a word
e of least weight in the coset u + C and declare that u− e was the codeword transmitted.

4



Example 5.2. Consider a linear code C = {00000, 11100, 00111, 11011} over Z2, dim(C)=2. We first write
down a standard array of C as

00000 + C : 00000, 11100, 00111, 11011

10000 + C : 10000, 01100, 10111, 01011

01000 + C : 01000, 10100, 01111, 10011

00100 + C : 00100, 11000, 00011, 11111

00010 + C : 00010, 11110, 00101, 11001

00001 + C : 00001, 11101, 00110, 11010

10010 + C : 10010, 01110, 10101, 01001

10001 + C : 10001, 01101, 10110, 01010

Each row in the standard array are the vectors in a coset. The first vector is the one with smallest
Hamming weight in the corresponding coset, and is called the coset leader.

Standard array decoding: We declare that the coset leader of the coset containing the received word as the
error pattern, and the transmitted codeword is the difference between the received word and the associated
coset leader.

For example, if the received word u = 11010, then we decode as follows: the error pattern e is 00001,
and transmitted codeword is u− e = 11011, the the vector in the first row of the standard array lying above
11010.

We note that in general there are more than one way to write down a standard array. Whenever there
are two or more vectors with the smallest Hamming weight in a coset, we can choose one of them arbitrarily
as the coset leader. For example, the following is also a standard array of C in Example 5.2,

00000 + C : 00000, 11100, 00111, 11011

10000 + C : 10000, 01100, 10111, 01011

01000 + C : 01000, 10100, 01111, 10011

00100 + C : 00100, 11000, 00011, 11111

00010 + C : 00010, 11110, 00101, 11001

00001 + C : 00001, 11101, 00110, 11010

10010 + C : 10010, 01110, 10101, 01001

01010 + C : 01010, 10110, 01101, 10001

The coset leader of the last coset is 01010.

Exercises:

1. Recall that a relation ∼ on a set E is called an equivalence relation if it satisfies

(i) for all x ∈ E, we have x ∼ x;

(ii) for all x, y ∈ E, x ∼ y implies y ∼ x;

(iii) for all x, y, z ∈ E, x ∼ y and y ∼ z implies x ∼ z;
For a fixed integer m, show that the relation x ∼ y on the set of integers defined by x ≡ y mod m is
an equivalence relation, and integers with the same remainder after division by m form an equivalence
class.
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For a given linear code C in Zn
p , show that the relation u ∼ v defined by u− v ∈ C is an equivalence

relation, and the cosets of the code C are the equivalence classes. (This proves parts (i) and (ii) in
Theorem 5.1.)

2. Let C be a linear code over Zp of dimension k and length n, and H be a parity-check matrix of C. We
define the syndrome of a vector u ∈ Zn

p by the vector-matrix product uHT . Show that the vector in
a coset of C has the same syndrome. Thus, the syndrome is indeed a function from the collection of
cosets of C to the vector space Zn−k

p . Show that this is a bijection between the cosets and the vectors

in Zn−k
p , i.e., no two cosets has the same syndrome, and every vector in Zn−k

p is the syndrome of some
coset of C.

3. Using the first standard array in p.5, decode the word (i) y = 11110, (ii) y = 01101.

Using the second standard array in p.5, decode the word (i) y = 11110, (ii) y = 01101.

4. We index the components of a linear code C of length n by 1, 2, . . . , n. A collection of indices is called
an information set of C if we can determine the codeword uniquely from these indices. It is easy to see
that the size of an information set equals the dimension of C. If a generator matrix G of C is given,
then a set of indices I is an information set if and only if the columns of G with indices in I form a
square non-singular matrix. For instance, the information sets of the linear code in Example 4.1 are
{1, 3}, {1, 4}, {1, 5}, {2, 3}, {2, 4}, {2, 5}, {3, 4}, and {3, 5}.
Show that if I is an information set of C, then the complement of I in {1, 2, . . . , n} is an information
set of C⊥.
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