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1 Minimum Hamming distance and minimum Hamming weight

Notation 1. A q-ary linear code of block length n and dimension k will be referred to as an [n, k]q-code.
Further, if the code has minimum distance d, it will be referred to as an [n, k, d]q-code. The alphabet is a
finite field GF (q) of size q.

Remark: We showed in lecture 3 how to perform calculations in a prime field. In this lecture we can take q
as a prime number. Anyway, all materials in this lecture note holds true for a finite field in general.

Here we give the definition of the Hamming distance and Hamming weight for a linear code C.

Definition 1. The minimum Hamming distance d between codewords in a linear code C is defined as:

dH(C) , min {dH(u, v) : u, v ∈ C,u 6= v} (1)

The minimum weight w of a linear code C is defined as:

wH(C) , min {wH(u) : u ∈ C,u 6= 0} (2)

Now for theorem about Hamming distance.

Theorem 1. The minimum Hamming distance d between codewords in a linear code C is equal to the
minimum number of non-zero symbols in a code vector u 6= 0 of C, which is dH(C) = wH(C).

Proof Let u and v be distinct code vectors with minimum distance dH(u,v) = d. Then a = u − v is
also a code vector in C, the number of non-zero symbols in a is equal to d. This shows that the minimum
number of non-zero symbols in a code is less than or equal to d, i.e., dH(C) ≥ wH(C). To prove the opposite
inequality, note that 0 is a code vector in a linear code. Let u be a nonzero codeword in C whose Hamming
weight is the smallest among the nonzero codewords. We have dH(u,0) equal to the number of non-zero
symbols in u, so dH(C) ≤ dH(u,0) = wH(C).

Example 1 Consider a linear code over Z3 whose codewords are in the row span of matrix[
1 1 2 0
2 0 1 1

]
.

The codewords are listed as follows:

0 0 0 0

1 1 2 0

2 2 1 0

2 0 1 1

0 1 0 1

1 2 2 1

1 0 2 2

2 1 1 2

0 2 0 2

It’s easy to verify dH(C) = wH(C).
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2 Minimal distance and parity-check matrix

Recall that a k × n matrix G is a generator matrix of an [n, k]q-code C if the rows of G form a basis
of C. An (n − k) × n matrix H is a parity-check matrix of C if the rows of H form a basis of the dual
code C⊥ := {u : u · c = 0,∀c ∈ C}. The matrix G and H satisfy GHT = 0.

We can characterize the minimum distance of a code in terms of a generator matrix or a parity-check
matrix.

Theorem 2. Suppose that H is a parity-check matrix of a linear [n, k]q-code C. Then C has minimum
distance d if and only if any d− 1 or less columns of H are linearly independent, but we can find d columns
of H that are linearly dependent.

Proof For i = 1, 2, . . . , n, let hi denote the i-th column of the parity-matrix H.
Consider a general vector (a1, a2, . . . , an) of length n. The vector (a1, a2, . . . , an) is a codeword if and

only if (a1, a2, . . . , an) · HT = 0. Denote the indices of the nonzero components of (a1, a2, . . . , an) by
i1 < i2 < . . . < iw, so that ai1 , ai2 , . . . aiw are all nonzero. A nonzero vector (a1, a2, . . . , an) with nonzero
components precisely at i1, i2, . . . , iw is a codeword if and only if

ai1hi1 + ai2hi2 + · · ·+ aiwhiw = 0.

By Theorem 1, a linear code C has minimum distance d if and only if there is a codeword of weight d,
but no codeword of weight strictly less than d, except the zero codeword. Hence, dH(C) = d if and only if
there are d column indices, say j1 < j2 < · · · < jd, such that the columns of H with indices j1, j2, . . . , jd are
linearly dependent, but any d− 1 or less columns of H are linearly independent.

Theorem 3. Suppose G is a generator matrix of a linear [n, k]q-code C. Then C has minimum distance d
if and only if any n− d+ 1 or more columns of G form a matrix with rank k, but we can find a k× (n− d)
submatrix of G which has rank strictly less than k.

Proof Consider a nonzero vector (a1, a2, . . . , an) of length n. It is a codeword in C if and only if there is
a nonzero message vector (m1, . . . ,mk) such that

(m1, . . . ,mk) ·G = (a1, a2, . . . , an).

Denote the indices of the zero components of (a1, a2, . . . , an) by i1 < i2 < . . . < in−w, so that ai1 , ai2 , . . . ain−w

are all zero. A nonzero vector (a1, a2, . . . , an) with zero components precisely at positions i1, i2, . . . , in−w is
a codeword if and only if the rows of the k × (n − w) submatrix of G, with column indices i1, i2, . . . in−w,
has a nontrivial linear combination that is equal to zero, i.e., the submatrix has rank strictly less than k.

By Theorem 1, a linear code C has minimum distance d if and only if there is a codeword of weight d,
but no codeword of weight strictly less than d, except the zero codeword. Hence, dH(C) = d if and only if
there are n− d column indices, say j1 < j2 < . . . , jn−w, such that the submatrix of G obtained by retaining
columns j1, j2, . . . , jn−w has rank strictly less than k, but any n−d+ 1 or more columns of G form a matrix
with rank k.

As an example consider the code in Example 1. The matrix

H =

[
1 2 0 1
0 1 1 2

]
is a parity-check matrix. The vector (0, 1, 0, 1) is a codeword with minimum weight 2, and the non-zero
components of (0, 1, 0, 1) are located at position 2 and 4. Columns 2 and 4 of H,[

2
1

]
,

[
1
2

]
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are scalar multiple of each other. However, each column of H is non-zero, and thus linearly independent.
We can also check that any 3 or more columns of the generator matrix form a matrix of rank k, but the
submatrix of G obtained by retaining columns 1 and 3, namely[

1 2
2 1

]
only has rank 1.

Theorem 4 (Singleton bound). The minimum distance of an linear [n, k]q-code satisfies

d ≤ n− k + 1.

Proof We can prove the Singleton bound by Theorem 2 or 3.
(Proof 1) Since there are n−k rows in a parity-check matrix of C, any n−k+1 columns of a parity-matrix

are linearly dependent. By Theorem 2, we obtain d ≤ n− k + 1.
(Proof 2) Pick any k − 1 columns of a generator matrix of C. They form a matrix with rank strictly less

than k. By Theorem 3, we have n− d ≥ k − 1.

Definition 5. Any code satisfying the Singleton bound with equality is called a maximal-distance separable
(MDS) code.

In the next section, we give an important family of MDS codes.

3 Reed-Solomon Codes

All linear codes offer the advantages that they are easy to encode, and the minimum Hamming distance
reduces to a simpler concept, the weight. However, the weight of an arbitrary linear code is still not easy
to determine. Also, the mere fact that a code is linear doesn’t help all that much in applying the standard
decoding algorithm. In order to compute the weight an decode more easily, we need to use linear codes with
special properties. Usually the special properties are based on algebra, in which case the code is called an
algebraic code. The Reed-Solomon codes that we will define are examples of algebraic codes.

Definition 6. Let p be a prime number and let k ≤ n ≤ p. The Reed-Solomon code over the field GF (p)
with dimension k and length n is defined as follows. Let A = {α1, α2, . . . , αn} be a set of n distinct element
in GF (p). Let P(k) be the set of polynomials

P(k) ,
{
c0 + c1x

1 + . . .+ ck−1x
k−1 : ci ∈ GF (p))

}
(3)

with degree strictly less than k. P(k) is a vector space on GF (p). The cardinality of P(k) is pk and the
dimension of P(k) over GF (p) is k. The coefficients ci’s are the message symbol to be encoded. The code
vector corresponding to the message vector (c0, . . . , ck−1) is obtained by evaluating the polynomial f(x) =
c0 + c1x

1 + . . .+ ck−1x
k−1 at the points in A,

(f(α1), f(α2), . . . , f(αn)).

We now show that the encoding function mapping a polynomial f in P(k) to the codeword vector
(f(α1), f(α2), . . . , f(αn)) is one-to-one. This amounts to saying that if two message polynomials P1(x) and
P2(x) give rise to the the same code vector, that is, if

P1(αi) = P2(αi) for i = 1, 2, . . . , n, (4)

then we must have P1(x) = P2(x). To see this, observe that P1(x) − P2(x) is a polynomial of degree less
than k, and it has n distinct roots α1, . . . , αn. Since k ≤ n, the results follows from
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Theorem 7. Let F be a field and P (x) be a non-zero polynomial of degree e with coefficients in F . Then,
P (x) has no more than e distinct roots in F .

Proof If degree e = 0, then the polynomial is a nonzero constant, which has no root. So, the number of
roots is zero and the degree is also zero.

Suppose the theorem holds for all degree strictly less than e, and consider a polynomial P (x) with degree
e. If P (x) has no root in F , then the theorem holds for P (x). Otherwise, if α is a root of P (x), then by
performing long division, we can factor P (x) as (x − α)f(x) for some polynomial f(x) with degree e − 1.
Any root of p(x), say β, which is not equal to α must be a root of f(x), because

(β − α)f(β) = P (β) = 0⇒ f(β) = 0.

By applying the induction hypothesis, the polynomial f(x) has no more than e− 1 distinct roots, and hence
the polynomial P (x) has no more than e distinct roots.

Theorem 8. A Reed-Solomon code is a linear code with length n, dimension k and generator matrix

G =


1 1 . . . 1
α1 α2 . . . αn

...
...

. . .
...

αk−1
1 αk−1

2 . . . αk−1
n

 (5)

Theorem 9. The minimum distance d of an [n, k] Reed-Solomon code is equal to n− k + 1.

Proof (proof 1) Any k×k submatrix of the generator matrix in (5) is a nonsingular Vandermonde matrix.
Hence any k or more columns of (5) form a matrix with rank k. By Theorem 3, we have n − d + 1 ≤ k,
implying d ≥ n− k + 1. Together with the Singleton bound d ≤ n− k + 1, we conclude that d = n− k + 1.

(proof 2) The components of a codeword is obtained by evaluating a polynomial of degree less than or
equal to k − 1 at n distinct points. By Theorem (7), there are at most k − 1 points which are evaluated to
zero. Therefore, the number of nonzero components is at least n− k + 1.

Example 2 Take GF (7) as the alphabet. A Reed-Solomon code of length 7 and dimension 3 has
minimum distance 5. If we associate the columns of a generator with finite field elements 0, 1, . . . , 6, we can
write down a generator matrix as

G =

1 1 1 1 1 1 1
0 1 2 3 4 5 6
0 1 22 32 42 52 62

 =

1 1 1 1 1 1 1
0 1 2 3 4 5 6
0 1 4 2 2 4 1


We note that any 3× 3 submatrix of G is nonsingular.

Exercise: Show that

H =


1 1 1 1 1 1 1
0 1 2 3 4 5 6
0 1 22 32 42 52 62

0 1 23 33 43 53 63


is a parity-check matrix of the Reed-Solomon matrix in Example 2.
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