IERG6120 Coding for Distributed Storage Systems Lecture 8 - 06/10/2016

The multiplicative structure of finite field and a construction of LRC
Lecturer: Kenneth Shum Scribe: Zhouyi Hu

Notations: We use the notation GF(q) for a finite field of size ¢, and GF(q)* for the set of non-zero
elements in GF'(q). We write a|b as a short-hand notation for a divides b.

1 The order of an element in a group

Consider a finite commutative group (G, -).
Definition For a € G, we define the order of a, as
ord(a) :=min{i > 1: a' = e}
where e denotes the identity element of G. The order of an element in a finite commutative group is well-

defined, because a/®! = e for each a € G. (|G| is the cardinality of G.) Tt is guaranteed that some power of
a is equal to the identity element. The order corresponds to the smallest one.

Example GF(9)* is the multiplicative group of GF(9). It can be generated by irreducible polynomial
f(x) = 22 + 22 + 2. We have 22 = x + 1 in the finite field so defined. Let ord(a) be the order of a nonzero
element a in the multiplicative group GF(9)*.

ord(z) =8
ord(1+z) =4
ord(2) =2

2 Existence of primitive element

Theorem In the multiplicative subgroup GF(q)* of a finite field GF(q), there exists an element a whose
(multiplicative) order is equal to ¢ — 1, i.e., a?" ' =1but a* # 1 fori =1,2,...,q — 2.

Definition An element of order ¢ — 1 is called a primitive element of GF(q).
To prove the existence of primitive element, we define Euler’s totient function, ¢(n), as the number of
integers between 1 and n that are relatively prime with n.

Definition ¢(n) £ |{i: 1 <i < n,gcd(i,n) = 1}

Example

o(1) = {1} = 1

P(2) =[{1}| =1

p(3) = {1,2}] =2

o(p) =1{1,2,...,p—1}| = p— 1, for prime number p.

o(12) = {1,5,7,11}| =4

If the prime factorization of n is p'p5? - - - pim, we have the formula
1 1 1

p(n) 2”(1—5)(1—];)"'(1—%)

Theorem For positive integer n, > dln ¢(d) = n. (The summation is extended over all divisors d of n.)

The proof is basically a counting argument. We illustrate this by the following example.

Example Consider n = 12. We classify the numbers between 1 and 12 according to their greatest
common divisor with 12. For i =1,2,...,12, if ged(i,12) = 1, we put ¢ in the first row of the following table.
If ged(i,12) = 2, we put 4 in the second row. If ged(i, 12) = 3, we put it in the third row, etc.

1 2 3 4 5 6 7 8 9 10 11 12
410 ® @ &)
2 @ ©

=2 &) &)
2
1
1

@ ®
©

(&

Each row of the table is associated to a divisor d of n. We can count ¢(n/d) integers in the row corresponding
to divisor d. As each number between 1 and 12 appears exactly in one row, it follows that

12 = ¢(12/1) + (12/2) + ¢(12/3) + $(12/4) + ¢(12/6) + ¢(12/12)
= ¢(12) + ¢(6) + ¢(4) + ¢(3) + &(2) + o(1).

Thus, we have 12 =3, ¢(d) =4+2+2+2+1+1.

Lemma Let (G, -) be a group written multiplicatively. If ¢ is an element in G with order n, i.e., a" =e
but a #e for k=1,2,...,n—1, then for kK =1,2,...,n — 1, we have

n

ord(a*) = (e’

Proof We let m denote the number m. We want to show that m is the smallest integer such that
(a¥)™ is equal to the identity element e in group G. Firstly, we check that (a*)™ is indeed equal to the

identity element e:
(ak)nL _ anigcd(kk,n)
k
— eged(kn)
=e.
Next, we show by contradiction that (a*)7 is not equal to e for 1 < j < m.

Suppose that (a*)? = r for some integer j strictly less than m. Since n is the order of a, we must have
n|kj. Divides both n and kj by ged(k,n), we get

ged(k,n) 1 ged(k, n)‘7

or
k .
m‘ ged(k,n) J
by the definition of m.
But m and m are relatively prime. Hence m must be a divisor of j. This contradicts the assumption
that j is strictly less than m. O

We now prove the theorem at the beginning of this section. Indeed, we will establish a stronger result.

Theorem In the multiplicative group GF(q)*, there are ¢(d) elements with order d, for d|(¢g — 1). In

particular, there are ¢(q — 1) primitive elements in GF(q).
Proof Let 6(d) denote the number of elements in GF(¢)* with multiplicative order d. We want to show
that 6(d) = ¢(d) for all divisors d of ¢ — 1. For each divisor d of ¢ — 1, we distinguish two cases: either there
is no nonzero element with order d, or there exists at least one nonzero element with order d. In the first
case, we have 6(d) = 0.

Consider the second case. Let a be an element in GF(¢)* with order d. We note that an element of
order d must be a root of polynomial #% — 1. Indeed, if ord(b) = d, then b = 1 and hence b% — 1 = 0. The
following powers of a,

a, a°, a>, ...,a (1)

are distinct roots of polynomial z¢ — 1. (We can check that for i = 1,2,....d, (a’)? = (a?) = 1* = 1.) We
have thus found all the roots of % — 1 in GF(q), because the number of roots of a polynomial is no more
than the degree of the polynomial (at this point we are using the property of polynomials over a field). An
element of order d must be in the list in (1). However, not all elements in (1) have order d. By the lemma
in p.2, a’ has order d precisely when gcd(i,d) = 1, for i = 1,2,...,d. Hence, there are exactly ¢(d) powers
of a which have order d. It follows that 6(d) = ¢(d) in the second case.

In either case, we have 6(d) < ¢(d).

On the other hand, we have

> 0(d)=q-1.

d|lg—1

This equality follows by a counting argument. Since a?~! for all non-zero a in GF(q), any nonzero element
in GF(q) should have some order, and the order must be a divisor of ¢ — 1. If we group the ¢ — 1 nonzero
elements in GF(q) according to their orders, then each of them must be counted exactly once in 6(d), with
d ranging over all divisors of ¢ — 1.

We get
0= 0d)— > od)= > [0(d)—)

dlg—1 dlg—1 dlg—1

The difference in the square bracket is less than or equal to zero. We thus have a bunch of non-positive
numbers which sum to zero. This is possible only if each of the non-positive numbers is zero. Therefore, we
get 0(d) = ¢(d) for all d|(q —1). O

3 Tamo-Barg construction of LRC

Using the multiplicative structure of finite field, we have the following simplified version of Tamo-Barg
construction of locally repairable code (LRC) [1]. Suppose that we want to construct an LRC with locality
r, meaning that any code symbol is a function of r other code symbols. The value of r is a system parameter
and is usually less than the dimension of the code. In the followings we give a construction of LRC whose
length n is a multiple of r 4+ 1. We choose the size of a finite field ¢ > n such that ¢ — 1 is a multiple of r + 1.
In GF(q), we can find precisely r 4+ 1 elements whose (r 4+ 1)-st power is equal to 1. For example, we can
pick a primitive element, say 3, of GF(q), and let a = (4=1/"+1) Then

A ={l,a,0% ...,a"}

is a multiplicative subgroup of GF(q)*.
A coset of A is a subset of elements in the form

vAy :={yz: z € A}

where 7 is a nonzero element in GF(q). The cosets partition GF(q)*, and each coset contains r + 1 elements.
We use the key property that the function g(z) = 2"*! is constant on each of these cosets. In fact, if
w € yAjp, then w = va' for some integer i, and g(w) = (ya!)"! = 4"+ (a?)"+! = 4"*+1 depends on v only.
Let m be n/(r+ 1), which is an integer by our assumption on n. Suppose that As, As,..., A, are m —1
other cosets of A;. Let P be the union of Ay, As, ..., A,,. The set P contains n distinct elements in GF(q).
Let D(k,r) be the set of the k& smallest non-negative integers whose residue is not equal to » mod r + 1.
For example if r = 2 and k = 4, then D(4,2) ={0,1,3,4}.

Construction. With the above notations, define a linear code over GF(q) whose codewords are obtained
by evaluating polynomials of the form:
S o

i€D(k,r)

on the elements in P. The above polynomial is called the message polynomial. The coefficients ¢;’s are
elements in GF(q), and are the message symbols to be encoded.

The integers in D(k,r) are the exponents of the message polynomial. There is no polynomial with degree
one less than a multiple of r + 1. The code can be considered as a subcode of RS code. We note that if
r = k, then the above construction gives an RS code.

Theorem The code obtained by the above construction has locality r, dimension k, and minimum
distance n — max D(k,r).

We illustrate the construction by the following example.
Example: We have an LRC with r = 2, r 4+ 1 = 3, and let GF'(13) be the alphabet. Then, we can check
that 2 is a primitive element in GF(13
i1 2
2012 4

).
3 4 5 6 7T 8 9 10 11 12
8 3 6 12 11 9 5 10 7 1
Furthermore, the field elements 2* = 3, 28 = 9 and 2'2 = 1 are elements whose 3" power is equal to 1.
Hence, Let A; be the set {3,9,1}, Ay be the coset 2- A} = {6, 5,2} and A3 be the coset 22 - A; = {12,10,4}.
We check that g(z) = 23 is constant on each of these cosets.

If we want a code with dimension 4, we note that D(4,2) = {0,1, 3,4}, and the message polynomial has
the form

3 4
ag + a1x + az3x” + aax,

where ag, a1, az and a4 are message symbols in GF(13). The codewords are obtained by evaluating a message
polynomial on the points in A; |J Az |J A3. Note that we skip the degree 2 in the message polynomial.
A generator matrix can be computed as below:

Al A2 A3
3 9 1]/6 5 2[12 10 4
1 1 1|1 1 1]1 1 1 20
3 9 1]/6 5 212 10 4 x?t
1 1 1|8 8 8[12 12 12| 2®2=g(2)
39 119 1 3|1 3 9| zt=zlg)

In the first row we list the elements in Ag, A; and As. In the next four rows we tabulate the zeroth, first,
third and fourth powers of the elements.
Thus, we have

11 11111 1 1
G |39 165 212 10 4
T T T 18 8 812 12 12
39119131 3 9

The generator matrix can be divided into six blocks. The block on the bottom left is equal to the block in the
upper left. The first three columns form a submatrix of row-rank 2. Since row-rank is equal to column-rank,
the column-rank of this submatrix is also equal to 2. This implies that the first three columns are linearly
dependent. In this example, it is obvious that the first and second columns of G are identical. The first
three code symbols form a local group. Any symbol in this group can be uniquely determined by the other
two.

The two blocks in the middle are scalar multiple of each other. The submatrix formed by the middle
three columns has rank 2. The middle three columns are linearly dependent, and the three code symbols in
the middle form a local group. Likewise, we can see that last three symbols form another local group.

By reducing the generator matrix to row-echelon form, we can write down a parity-check matrix as
follows,

100 0 11 9 0 10 8
0100 12 8 0 2 3
P=10 01 0 2 5 0 4 1
0001 3 90 0 0
0000 0O OT1 3 9

The last row is a parity-check equation for the last three code symbols. The second last row is a parity-check
equation for the middle three code symbols. We can check that the vector [1 39 00 0 0 0 0] is also in the
dual code. Hence, every code symbol has locality 2.

Another choice of the parity-check matrix is

139 0 0 00 0 O
0001 3 90 0 0
P=10 0 00 0O 001 3 9
100 0 11 9 0 10 8
0100 12 8 0 2 3

Since the message polynomial has degree less then or equal to 4, the minimum distance is larger than
or equal to 9 — 4 = 5. This is indeed the minimum distance, because this achieves the bound of LRC by

Gopalan et al. [2]

d<n—k— mw.

We shall prove the bound by Gopalan et al. in lecture 9.
Exercises:
1. Find all primitive elements in GF(17).

2. Construct a linear locally repairable code over GF(17) with locality 3, length 15, and dimension 10.
Write down either the generator matrix or the parity-check matrix. Illustrate how to recover a single
loss of code symbol by accessing 3 other symbols. Determine the minimum distance of the code.

3. Is it true that any LRC obtained by the construction in p.4 achieves the bound by Gopalan et al. with
equality?

References

[1] I. Tamo and A. Barg, “A family of optimal locally recoverable codes,” IEEE Trans. Information Theory,
vol. 60, no.8, pp.4661-4676, 2014.

[2] P. Gopalan, C. Huang, H. Simitci and S. Yakhanin, “On the locality of codeword symbols,” IEEE Trans.
on Information Theory, vol. 58, no. 11, pp.6925-6934, 2012.

