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1 Group and Field

A group (G, ·) is a set, G, together with an operation · that combines any two elements a and b to form
another element, denoted by a · b or ab. (G, ·) satisfies the following group axioms.

1. Closed: a · b ∈ G,∀a, b ∈ G.

2. Associative: (a · b) · c = a · (b · c),∀a, b, c ∈ G.

3. Identity: ∃e ∈ G, e · a = a · e = a,∀a ∈ G.

4. Inverse: ∀a ∈ G,∃a−1 ∈ G such that a · a−1 = a−1 · a = e, where e is the identity element.

We can show from the above axioms that the identity element is unique.
If a · b = b · a, namely, · is commutative, then G is called an abelian group.
Examples:

• (R,+). Real numbers form an abelian group under addition. The number 0 is the identity element.

• (R>0, ·). Positive real numbers form an abelian group under multiplication. The number 1 is the
identity element.

• (Rn,+). The set of all real vectors of dimension n is an abelina group under addition.

• (Zm,+). The integers mod m is a finite abelian group under addition.

• The collection of all bijections from {1, 2, . . . , n} to itself form a group under composition. This is a
finite group with n! elements. This is a non-abelian group when n > 2.

A field (F,+, ·) is a set, F , together with two operations + and · that satisfies the following axioms.

1. F is an abelian group under +, with 0 as the additive identity.

2. F\{0} , F ∗ is an abelian group under ·.

3. a · (b+ c) = a · b+ a · c and (b+ c) · a = b · a+ c · a.

A subset of a field (F,+, ·) is called a subfield of F if it satisfied the above field axioms.
Example:

• The complex numbers C form a field.

• The set of real numbers is a subfield of C.

• The set of rational numbers is a subfield of R.
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A finite field is a field with finitely many elements, e.g. Zp, where p is prime.
A group table, a.k.a. Cayley table, describes the structure of a finite group by arranging all the possible
products of all the group’s elements in a square table. For example, the group table for the additive group
(Z5,+) is

+ 0 1 2 3 4

0 0 1 2 3 4
1 1 2 3 4 0
2 2 3 4 0 1
3 3 4 0 1 2
4 4 0 1 2 3

The multiplicative table for the multiplicative group (Z5 \ {0}, ·) is

· 1 2 3 4

1 1 2 3 4
2 2 4 1 3
3 3 1 4 2
4 4 3 2 1

Proposition 1. In each row/column of the group table of G, every element in G appears exactly once.

Proof Suppose that there are two identical entry in a row of the group table of (G, ·), say in the row
corresponding to multiplication by an element a on the left. Then

a · x = a · y
a−1 · (a · x) = a−1 · (a · y)

(a−1 · a) · x = (a−1 · a) · y
e · x = e · y
x = y

This proves that all elements of G appear once in each row of the group table.

Proposition 2. For an abelian (commutative) group of size m, we have

∀g ∈ G, gm , g · g · · · g︸ ︷︷ ︸
m

= e,

where e is the identity element in G.

Proof Suppose G = {x1, x2, . . . , xm}.

x1 · x2 · · ·xm = (g · x1) · (g · x2) · · · (g · xm)︸ ︷︷ ︸
permutation of x1·x2···xm

= gm · (x1 · x2 · · ·xm)

⇒ e = gm
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2 Algebraic Structure of Finite Fields

Definition 3. Consider a (finite or infinite) field (F,+, ·) with additive identity 0 and multiplicative iden-
tity 1. If

∑c
i=1 1 = 1 + 1 + · · ·+ 1︸ ︷︷ ︸

c

= 0 for some positive integer c, then the least positive integer c for which∑c
i=1 1 = 0 is called the characteristic of the filed, denoted as char(F). Otherwise, if there is no positive

number c such that
∑c
i=1 1 is equal to 0, then we say that the characteristic of the field is zero.

Theorem 4. The characteristic of any finite field char(F) must be a prime number.

Proof Let q be the number of element in F. We have
∑q
i=1 1 = 0 by applying Proposition 2 to the additive

group of F. Hence, the set {
m : m > 0,

m∑
i=1

1 = 0
}

is not empty. Let c be the least integer in the above set.
We prove by contradiction that c is a prime number. If c is a composite number, say c = c1c2 with c1 < c

and c2, c, then by the distributive law, we have(
c1∑
i=1

1

)
·

(
c2∑
i=1

1

)
=

(
c∑
i=1

1

)
= 0

⇒
c1∑
i=1

1 = 0 or

c2∑
i=1

1 = 0.

This contradicts the minimality of c.

Theorem 5. The size of a finite field F must be a power of its characteristic, namely, q = char(F)k.

Proof Let p be the characteristic of F. Consider the set A0 = {1,
∑2
i=1 1, . . . ,

∑p−1
i=1 1,

∑p
i=1 1}. If F = A0,

then |F| = p.
Otherwise, pick any element α1 in F\A0. Let

A1 = {x0 · 1 + x1 · α1 : x0, x1 = 0, 1, . . . , p− 1}.

We now show that for distinct pairs (x0, x1) and (x′0, x
′
1), the elements in A1 are distinct. Suppose x01 +

x1α1 = x′01 + x′1α1. If x1 = x′1, then x01 = x′01. This implies (x0, x1) = (x′0, x
′
1). If x1 6= x′1, we have

(x′1 − x1)−1(x0 − x′0) = α1 ∈ A0. This contradicts the choice of α1. Hence, |A1| = p2.
If F = A1, then |F| = p2. Otherwise, we pick any element α2 in F\A1 and repeat the above argument

and show |A2| = p3.
This process cannot go on forever because the size of the finite field is finite. Therefore, |F| must be a

power of its characteristic.

Exercises:
1. Let p be a prime. Prove that any group of size p is isomorphic to the additive group Zp.
2. Suppose that GF (q) is a field of size q, for some prime power q. Show that the elements of GF (q) are

roots of polynomial xq − x. Hence, show that xq − x can be factorized as

xq − x =
∏

α∈GF (q)

(x− α).

Prove that the sum of of all elements in GF (q) is equal to 0, and product of all non-zero elements in GF (q)
is equal to −1. (Hint: Given a polynomial f(x) of degree n, the coefficient of the term with degree n− 1 is
equal to the sum of roots, and the constant term is equal to the product of all roots times (−1)n.)
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