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Group and Field
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1 Group and Field

A group (G,-) is a set, G, together with an operation - that combines any two elements ¢ and b to form
another element, denoted by a - b or ab. (G, -) satisfies the following group axioms.

1. Closed: a-b € G,Va,b e G.

2. Associative: (a-b)-c=a-(b-c),Va,b,c € G.

3. Identity: de € G,e-a=a-e=a,Va € G.

4. Inverse: Va € G,3a~ ! € G such that a-a~' =a~! - a = e, where e is the identity element.

We can show from the above axioms that the identity element is unique.
If a-b=0"b-a, namely, - is commutative, then G is called an abelian group.
Examples:

e (R,+). Real numbers form an abelian group under addition. The number 0 is the identity element.

(Rso,+). Positive real numbers form an abelian group under multiplication. The number 1 is the
identity element.

(R™,+). The set of all real vectors of dimension n is an abelina group under addition.

(Zp,,+). The integers mod m is a finite abelian group under addition.

The collection of all bijections from {1,2,...,n} to itself form a group under composition. This is a
finite group with n! elements. This is a non-abelian group when n > 2.

A field (F,+,") is a set, I, together with two operations + and - that satisfies the following axioms.
1. F'is an abelian group under +, with 0 as the additive identity.
2. F\{0} £ F* is an abelian group under -
3.a-(b+c)=a-b+a-cand (b+c)-a=b-a+c-a.

A subset of a field (F,+, ) is called a subfield of F' if it satisfied the above field axioms.
Example:

e The complex numbers C form a field.
e The set of real numbers is a subfield of C.

e The set of rational numbers is a subfield of R.



A finite field is a field with finitely many elements, e.g. Z,, where p is prime.
A group table, a.k.a. Cayley table, describes the structure of a finite group by arranging all the possible
products of all the group’s elements in a square table. For example, the group table for the additive group
(ZEH +) iS

(foft]2]3[4]
0 Jo[1[2]3]4
1 [[1][2]3]4]0
2 [2]3]4]0]1
3 [3]4]0[1]2
4 4fo[1[2]3

The multiplicative table for the multiplicative group (Zs \ {0}, ) is

L [L[2]3]4]
1[[1]2]3]4
2([2]4[1[3
3[[3]1[4]2
4l4[3]2]1

Proposition 1. In each row/column of the group table of G, every element in G appears exactly once.

Proof Suppose that there are two identical entry in a row of the group table of (G, ), say in the row
corresponding to multiplication by an element a on the left. Then

a-xr=a-y
al(a-z)=a"1 (a-y)
(' a)-z=(""a)y
e-r=e-y
=Yy
This proves that all elements of G appear once in each row of the group table. O

Proposition 2. For an abelian (commutative) group of size m, we have

1>

VgeG, g"=g-g---g=ce,
S—_——

m
where e is the identity element in G.

Proof Suppose G = {x1,z2,...,2m}.

x1~x2~~~xm:(g~x1)~(g'xz)~~'(g~xm)

permutation of x1 g T,

:gm(mI:Eme)

=e=g"



2 Algebraic Structure of Finite Fields

Definition 3. Consider a (finite or infinite) field (F,+,-) with additive identity 0 and multiplicative iden-
tity 1. If Zf_l 1=1414---4+1=0 for some positive integer c, then the least positive integer ¢ for which
= ~—_———

(&
i1 =0 is called the characteristic of the filed, denoted as char(F). Otherwise, if there is no positive
number ¢ such that Y ;_, 1 is equal to 0, then we say that the characteristic of the field is zero.

Theorem 4. The characteristic of any finite field char(F) must be a prime number.

Proof Let g be the number of element in F. We have _¢_, 1 = 0 by applying Proposition 2 to the additive
group of F. Hence, the set

{m: m>0,21:0}
i=1

is not empty. Let ¢ be the least integer in the above set.
We prove by contradiction that c is a prime number. If ¢ is a composite number, say ¢ = ¢1¢2 with ¢; < ¢
and co, ¢, then by the distributive law, we have

) (E)- ()
;sglo or il(l

This contradicts the minimality of c. O

Theorem 5. The size of a finite field F must be a power of its characteristic, namely, ¢ = char(F)~.

Proof Let p be the characteristic of F. Consider the set Ay = {1, 23:1 1,..., Zf:_ll LY? 1} IfF = A,
then |F| = p.
Otherwise, pick any element oy in F\Ap. Let

Alz{l‘o-l-i-.’)?l-al:.’)30,,@1:0,1,...,])—1}.

We now show that for distinct pairs (zg,z1) and (x, z}), the elements in A; are distinct. Suppose zol +
rion = x5l + 2oy If 21 = ), then xol = x{1. This implies (zg,z1) = (z{,2}). If 1 # 2}, we have
(xh — 21)"Y(xo — 2)) = a1 € Ag. This contradicts the choice of ;. Hence, |A;| = p?.

If F = Ay, then |F| = p?>. Otherwise, we pick any element as in F\.A; and repeat the above argument
and show |As| = p3.

This process cannot go on forever because the size of the finite field is finite. Therefore, |F| must be a
power of its characteristic. O

Exercises:

1. Let p be a prime. Prove that any group of size p is isomorphic to the additive group Z,,.

2. Suppose that GF(q) is a field of size ¢, for some prime power q. Show that the elements of GF(q) are
roots of polynomial x? — x. Hence, show that 9 — x can be factorized as

2l —x = H (z — «).
a€GF(q)

Prove that the sum of of all elements in GF(q) is equal to 0, and product of all non-zero elements in GF(q)
is equal to —1. (Hint: Given a polynomial f(z) of degree n, the coefficient of the term with degree n — 1 is
equal to the sum of roots, and the constant term is equal to the product of all roots times (—1)™.)



