IERG6120 Coding for Distributed Storage Systems

Lecture 6 - 29/09/2016

Group and Field

Lecturer: Kenneth Shum Scribe: Xishi Wang

1 Group and Field

A group (G, \cdot) is a set, G, together with an operation \cdot that combines any two elements a and b to form another element, denoted by $a \cdot b$ or ab. (G, \cdot) satisfies the following group axioms.

- 1. Closed: $a \cdot b \in G, \forall a, b \in G$.
- 2. Associative: $(a \cdot b) \cdot c = a \cdot (b \cdot c), \forall a, b, c \in G$.
- 3. Identity: $\exists e \in G, e \cdot a = a \cdot e = a, \forall a \in G$.
- 4. Inverse: $\forall a \in G, \exists a^{-1} \in G$ such that $a \cdot a^{-1} = a^{-1} \cdot a = e$, where e is the identity element.

We can show from the above axioms that the identity element is unique.

If $a \cdot b = b \cdot a$, namely, \cdot is commutative, then G is called an *abelian group*. Examples:

- $(\mathbb{R},+)$. Real numbers form an abelian group under addition. The number 0 is the identity element.
- $(\mathbb{R}_{>0},\cdot)$. Positive real numbers form an abelian group under multiplication. The number 1 is the identity element.
- $(\mathbb{R}^n, +)$. The set of all real vectors of dimension n is an abelina group under addition.
- $(\mathbb{Z}_m, +)$. The integers mod m is a finite abelian group under addition.
- The collection of all bijections from $\{1, 2, ..., n\}$ to itself form a group under composition. This is a finite group with n! elements. This is a non-abelian group when n > 2.

A field $(F, +, \cdot)$ is a set, F, together with two operations + and \cdot that satisfies the following axioms.

- 1. F is an abelian group under +, with 0 as the additive identity.
- 2. $F \setminus \{0\} \triangleq F^*$ is an abelian group under .
- 3. $a \cdot (b+c) = a \cdot b + a \cdot c$ and $(b+c) \cdot a = b \cdot a + c \cdot a$.

A subset of a field $(F, +, \cdot)$ is called a *subfield* of F if it satisfied the above field axioms.

Example:

- The complex numbers \mathbb{C} form a field.
- The set of real numbers is a subfield of \mathbb{C} .
- The set of rational numbers is a subfield of \mathbb{R} .

A finite field is a field with finitely many elements, e.g. \mathbb{Z}_p , where p is prime.

A group table, a.k.a. Cayley table, describes the structure of a finite group by arranging all the possible products of all the group's elements in a square table. For example, the group table for the additive group $(\mathbb{Z}_5, +)$ is

+	0	1	2	3	4
0	0	1	2	3	4
1	1	2	3	4	0
2	2	3	4	0	1
3	3	4	0	1	2
4	4	0	1	2	3

The multiplicative table for the multiplicative group $(\mathbb{Z}_5 \setminus \{0\}, \cdot)$ is

•	1	2	3	4
1	1	2	3	4
2	2	4	1	3
3	3	1	4	2
4	4	3	2	1

Proposition 1. In each row/column of the group table of G, every element in G appears exactly once.

Proof Suppose that there are two identical entry in a row of the group table of (G, \cdot) , say in the row corresponding to multiplication by an element a on the left. Then

$$a \cdot x = a \cdot y$$

$$a^{-1} \cdot (a \cdot x) = a^{-1} \cdot (a \cdot y)$$

$$(a^{-1} \cdot a) \cdot x = (a^{-1} \cdot a) \cdot y$$

$$e \cdot x = e \cdot y$$

$$x = y$$

This proves that all elements of G appear once in each row of the group table.

Proposition 2. For an abelian (commutative) group of size m, we have

$$\forall g \in G, \quad g^m \triangleq \underbrace{g \cdot g \cdots g}_{m} = e,$$

where e is the identity element in G.

Proof Suppose $G = \{x_1, x_2, ..., x_m\}$.

$$x_1 \cdot x_2 \cdots x_m = \underbrace{(g \cdot x_1) \cdot (g \cdot x_2) \cdots (g \cdot x_m)}_{\text{permutation of } x_1 \cdot x_2 \cdots x_m}$$
$$= g^m \cdot (x_1 \cdot x_2 \cdots x_m)$$
$$\Rightarrow e = g^m$$

$\mathbf{2}$ Algebraic Structure of Finite Fields

Definition 3. Consider a (finite or infinite) field $(\mathbb{F}, +, \cdot)$ with additive identity 0 and multiplicative identity 1. If $\sum_{i=1}^{c} 1 = \underbrace{1+1+\cdots+1}_{i=1} = 0$ for some positive integer c, then the least positive integer c for which

 $\sum_{i=1}^{c} 1 = 0$ is called the characteristic of the filed, denoted as $char(\mathbb{F})$. Otherwise, if there is no positive number c such that $\sum_{i=1}^{c} 1$ is equal to 0, then we say that the characteristic of the field is zero.

Theorem 4. The characteristic of any finite field $char(\mathbb{F})$ must be a prime number.

Proof Let q be the number of element in \mathbb{F} . We have $\sum_{i=1}^{q} 1 = 0$ by applying Proposition 2 to the additive group of \mathbb{F} . Hence, the set

$$\left\{m: \ m > 0, \sum_{i=1}^{m} 1 = 0\right\}$$

is not empty. Let c be the least integer in the above set.

We prove by contradiction that c is a prime number. If c is a composite number, say $c = c_1 c_2$ with $c_1 < c_2$ and c_2, c , then by the distributive law, we have

$$\left(\sum_{i=1}^{c_1} 1\right) \cdot \left(\sum_{i=1}^{c_2} 1\right) = \left(\sum_{i=1}^{c} 1\right) = 0$$

$$\Rightarrow \sum_{i=1}^{c_1} 1 = 0 \text{ or } \sum_{i=1}^{c_2} 1 = 0.$$

This contradicts the minimality of c.

Theorem 5. The size of a finite field \mathbb{F} must be a power of its characteristic, namely, $q = char(\mathbb{F})^k$.

Proof Let p be the characteristic of \mathbb{F} . Consider the set $\mathcal{A}_0 = \{1, \sum_{i=1}^2 1, \dots, \sum_{i=1}^{p-1} 1, \sum_{i=1}^p 1\}$. If $\mathbb{F} = A_0$, then $|\mathbb{F}| = p$.

Otherwise, pick any element α_1 in $\mathbb{F}\backslash \mathcal{A}_0$. Let

$$A_1 = \{x_0 \cdot 1 + x_1 \cdot \alpha_1 : x_0, x_1 = 0, 1, \dots, p-1\}.$$

We now show that for distinct pairs (x_0, x_1) and (x'_0, x'_1) , the elements in \mathcal{A}_1 are distinct. Suppose $x_0 1 + x_1 \alpha_1 = x'_0 1 + x'_1 \alpha_1$. If $x_1 = x'_1$, then $x_0 1 = x'_0 1$. This implies $(x_0, x_1) = (x'_0, x'_1)$. If $x_1 \neq x'_1$, we have $(x_1'-x_1)^{-1}(x_0-x_0')=\alpha_1\in\mathcal{A}_0$. This contradicts the choice of α_1 . Hence, $|\mathcal{A}_1|=p^2$. If $\mathbb{F}=\mathcal{A}_1$, then $|\mathbb{F}|=p^2$. Otherwise, we pick any element α_2 in $\mathbb{F}\setminus\mathcal{A}_1$ and repeat the above argument

and show $|\mathcal{A}_2| = p^3$.

This process cannot go on forever because the size of the finite field is finite. Therefore, $|\mathbb{F}|$ must be a power of its characteristic.

Exercises:

- 1. Let p be a prime. Prove that any group of size p is isomorphic to the additive group \mathbb{Z}_p .
- 2. Suppose that GF(q) is a field of size q, for some prime power q. Show that the elements of GF(q) are roots of polynomial $x^q - x$. Hence, show that $x^q - x$ can be factorized as

$$x^{q} - x = \prod_{\alpha \in GF(q)} (x - \alpha).$$

Prove that the sum of of all elements in GF(q) is equal to 0, and product of all non-zero elements in GF(q)is equal to -1. (Hint: Given a polynomial f(x) of degree n, the coefficient of the term with degree n-1 is equal to the sum of roots, and the constant term is equal to the product of all roots times $(-1)^n$.)