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1 Equivalence of Codes

Two linear codes are said to be equivalent if one of them can be obtained from the other by means of a
sequence of transformations of the following types:

(i) a permutation of the positions of the code;

(ii) multiplication of symbols in a fixed position by a non-zero scalar in F .

Note that these transformations can be applied to all code symbols.

2 Reed-Solomon Code

In RS code each symbol in the codewords is the evaluation of a polynomial at one point α, namely,

f(α) =
[
c0 c1 c2 · · · ck−1

]


1
α
α2

...
αk−1

 .

The whole codeword is given by n such evaluations at distinct points α1, · · · , αn,

[
f(α1) f(α2) · · · f(αn)

]
=
[
c0 c1 c2 · · · ck−1

]


1 1 · · · 1
α1 α2 · · · αn

α2
1 α2

2 · · · α2
n

...
...

. . .
...

αk−1
1 αk−1

2 · · · αk−1
n

 = cTG.

G is the generator matrix of RSq(n, k, d) code. The order of writing down the field elements α1 to αn is not
important as far as the code structure is concerned, as any permutation of the αi’s give an equivalent code.

The generator matrix G is a Vandermonde matrix, which is of the form [aij ]
j=1,...,n
i=0,...,k−1. The following

theorem concerns the determinant of a Vandermonde matrix.

Theorem 1. The determinant of a Vandermonde matrix is given by:

Vn =

∣∣∣∣∣∣∣∣∣∣∣

1 1 · · · 1
a1 a2 · · · an
a21 a22 · · · a2n
...

...
. . .

...
an−11 an−12 · · · an−1n

∣∣∣∣∣∣∣∣∣∣∣
=
∏
j>i

(aj − ai)
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Proof If ∃i 6= j such that aj = ai, the determinant is zero and hence the theorem holds.
If all ai’s are distinct, we proof the theorem by induction. For n = 1 and n = 2, one can easily check the
theorem holds. Assume that the theorem is true for n = k ≥ 2. For n = k + 1, the determinant is given by

Vk+1 =

∣∣∣∣∣∣∣∣∣∣∣

1 1 · · · 1
x a2 · · · ak+1

x2 a22 · · · a2k+1
...

...
. . .

...
xk ak2 · · · akk+1

∣∣∣∣∣∣∣∣∣∣∣
.

Expand Vk+1 in terms of the first column and the result is a polynomial f(x) in x whose degree is no greater
than k. If we substitute ai, 2 ≤ i ≤ n for x, the value of the determinant will be 0. Since ai are distinct, it
follows that

f (a2) = f (a3) = . . . = f (ak+1) = 0.

Therefore,
f (x) = C (x− a2) (x− a3) · · · (x− ak) (x− ak+1) .

As the degree of f(x) is no greater than k, it follows that C is independent of x. From the expansion of
determinant, the coefficient of xk is

(−1)k−1

∣∣∣∣∣∣∣∣∣
1 1 · · · 1
a2 a3 · · · ak+1

...
. . .

...
...

ak−12 ak−13 · · · ak−1k+1

∣∣∣∣∣∣∣∣∣ ,
which, by induction hypothesis when n = k, is equal to∏

2≤ i < j≤ k+1

(aj − ai) .

Hence, we have

f (x) = (x− a2) (x− a3) · · · (x− ak) (x− ak+1) (−1)k−1
∏

2≤ i < j≤ k+1

(aj − ai) .

So the theorem holds for n = k + 1. Therefore,

Vn = (a2 − a1) (a3 − a1) · · · (ak − a1) (ak+1 − a1)
∏

2≤ i < j≤n

(aj − ai) =
∏

1≤ i < j≤n

(aj − ai) .

Notice that when ai are distinct, the determinant of any k × k sub-matrix of a k × n Vandermonde matrix
is non-zero. Therefore, we have the following corollary.

Corollary 2. Any k × k sub-matrix of a k × n Vandermonde matrix is invertible if all ai are distinct.

3 Application

Reed-Solomon Code can be applied to disk storage. Suppose we have n disks. In the i-th disk, a symbol
f(αi) of RS code is stored. If we pick any k disks i1, i2, . . . , ik, we have

[
f(αi1) f(αi2) · · · f(αik)

]
=
[
c0 c1 c2 · · · ck−1

]


1 1 · · · 1
αi1 αi2 · · · αik

α2
i1

α2
i2

· · · α2
ik

...
...

. . .
...

αk−1
i1

αk−1
i2

· · · αk−1
ik


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The k × k matrix is invertible and hence one can recover n nodes by any k nodes, namely, RS code satisfies
(n, k)-recovery property. However, to recover any one node, RS code needs to query k nodes, which is not
desirable for distributed storage systems. This motivates the the construction of code such that it can recover
one erasure symbol from a small number of other symbols. A locally repairable code is thus defined as a code
in which any code symbol is a function of r other code symbols, where r is an integer less than the dimension
of the code.
An example of binary code with locality r = 2 is the (7, 3, 4)2 simplex code. The generator matrix G is given
by

G =

0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1

 .
The locality r = 2 can be shown in a Fano plane. We can compute any point by adding two other points in
the same line.

4 LRC by Modifying RS Code

In this section, we give an example of locally repairable code by modifying Reed-Solomon code. The con-
struction hinges on the property that the function f(x) = x3 takes on only two values on the non-zero element
in GF (7). We can obtain the codewords of the LRC by evaluating a polynomial of the form c0 + c1x+ c3x

3

on the non-zero elements of GF (7). By appropriately permuting the components of the code, we can write
the generator matrix as

G =

1 1 1 1 1 1
1 2 4 3 6 5
1 1 1 6 6 6

 .
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And the parity-check matrix is

H =

2 4 1 0 0 0
0 0 0 2 4 1
1 1 1 6 6 6

 .
Observe that H has non-zero element in the first three symbols of the first row and in the last three symbols
of the second row. Hence this code has locality 2. To recover one erasure, accessing two other symbols is
sufficient. To recover two erasures, access four other symbols. In summary, this code has n = 6, k = 3, r = 2.
Since each codeword is obtained by evaluating a polynomial of degree at most 3, there are at most three
zeros in a codeword. Hence the and minimum distance is d = 6− 3 = 3.

Exercises: 1. Let p be a prime and s be a positive integer. Let GF (p) be a finite field of size p. Consider
the set of nonzero vectors (x, y, z) in GF (p)3. There are p3 − 1 such vectors. Define an equivalence relation
∼ on them by declaring that (x, y, z) ∼ (x′, y′, z′) if there exists a non-zero λ ∈ GF (p) such that

(x, y, z) = λ · (x′, y′, z′).

In other words, two nonzero vectors are said to be equivalent if they are in the same direction. Each
equivalence class contains p − 1 vectors. Arbitrarily pick a representative from each equivalence class, and

form a 3× (p3−1
p−1 ) matrix. Take this matrix as the generator of a code. Determine the locality and minimum

distance of this code. (When p = 2, this is equal to the (7, 3, 4)2 simplex code.) (The choice of representative
of each equivalence class is not very important, because a different set of representatives will give an equivalent
code.)

2. Construct a locally repairable code of length n = 10 over GF (11), that has minimum distance d = 5
and locality r = 4. Write down a generator matrix of your code. Explain why your code has minimum
distance 5 and locality 4.

Hint: The polynomial f(x) = x5 takes two values on the non-zero elements of GF (11),

x5 =

{
1 mod 11 if x = 1, 3, 4, 5, 9

10 mod 11 if x = 2, 6, 7, 8, 10.

Obtain the codewords by evaluating polynomials of the form

c0 + c1x+ c2x
2 + c3x

3 + c5x
5

on the non-zero elements of GF (11).
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