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Notations: Let C ⊆ Fnq be a code, x = (x1, x2, . . . , xn) denote a codeword in C. For any subset
I = {i1, i2, . . . , im} of the index set [n] := {1, 2, . . . , n}, let

CI := {(xi1 , xi2 , . . . , xim) : x = (x1, x2, . . . , xn) =∈ C}

be the restriction of C to I.
We note that |CI | ≤ |CJ | whenever I ⊆ J ⊆ [n].

Definition 1. For i ∈ [n], we say that code symbol i has locality r if there exists an index set I ⊆ [n] \ {i}
such that |I| ≤ r and |CI | = |CI∪{i}|. A code is said to have all-symbol locality if for any i ∈ {n} there
exists an I ⊆ [n] \ {i} such that |I| ≤ r and |CI | = |CI∪{i}|. For a systematic code, if these properties apply
to its systematic symbols, then the code is said to have information locality r.

Example 1 The generator matrix is shown as following.

G =

[
1 0 1 1
1 1 0 1

]
We can obtain the corresponding code:

C = {0000, 1011, 1101, 0110}.

When i = 1, we can find an I = {4} such that C{4} = {0, 1} and C{1,4} = {00, 11}, i.e., |CI | = |CI∪{i}|.
Thus symbol 1 has locality 1.

When i = 2, we can find an I = {1, 3} such that C{1,3} = {00, 01, 10, 11} and C{1,2,3} = {000, 101, 110, 011}.
Thus symbol 2 has locality 2.

Notation 1. Let (n, k, r)q-LRC, which is an abbreviation of Locally Repairable Code, denote a code of length
n, containing qk codewords and having all-symbol locality r.

Theorem 2. If C is an (n, k, r)q-LRC, then we have

• k
n ≤

r
r+1 ,

• d(C) ≤ n− k − dkr e+ 2.

In particular when k = r, we have d(C) ≤ n− k + 1, which is the Singleton bound.
The inequality in Theorem 2 was first proved by Gopalan et al. for codes with information locality [1].

In this notes, we follows the proof in [2], which is for codes with all-symbol locality.

Lemma 3. In a nonlinear q-ary code of length n, the minimum distance is characterized by

d = n− max
I⊆[n]
{|I| : |CI | < |C|}.
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Proof Let u and v be distinct codewords in C. If d(u,v) = d′, then we can find an index set I of size
n− d′, so that the two codewords are identical precisely at the positions indexed by I, and |CI | < |C|. Since
u and v are assumed to be distinct, the index set I is not equal to [n]. We obtain

d = min
u,v∈C
u6=v

d(u,v) = min
I&[n]
{n− |I| : |CI | < |C|}

= min
I⊆[n]
{n− |I| : |CI | < |C|}

= n− max
I⊆[n]
{|I| : |CI | < |C|}.

Consider a directed graph G = (V,E), where V = [n] and E ⊆ V × V . Suppose that the out degrees of
the vertices are d1, d2, . . . , dn. Let GU = (U,EU ) be the induced graph on a vertex subset U , where U ⊆ V
and EU := {(a, b) ∈ E : a, b ∈ U}.

Theorem 4. There exists an induced subgraph that is acyclic, with at least n

1+ 1
n

n∑
i=1

di

vertices.

Proof Pick a random permutation π : [n]→ [n]. Let Uπ be a subset of V , defined by i ∈ Uπ iff for every
outgoing edge (i, j), π(i) < π(j). Check that induced graph of Uπ has no cycle. We can define a function on
i as following.

1i =

{
1, i ∈ Uπ
0, i /∈ Uπ.

Then we can obtain the expect value of the number of vertices in EU ,

E(Uπ) = E(11) + E(12) + · · ·+ E(1n)

=
1

1 + d1
+

1

1 + d2
+ · · ·+ 1

1 + dn
(a)

≥ n

1 + 1
n

n∑
i=1

di

,

where (a) follows from that A.M. ≥ H.M. i.e., the arithmetic mean is larger than or equal to harmonic
mean.

Proof (of Theorem 2)
1) Firstly, we consider the number of the redundant symbols. For each i ∈ [n], there exists an index set

Ii ⊆ [n] \ {i} of size less than or equal to r, such that symbol i can be repaired by symbols indexed by Ii.
There may be more than one choice of such Ii, and we only need to pick one for each i.

We construct a directed graph G = (V,E) on n vertices. We label the vertices from 1 to n. For i ∈ [n],
we draw an edge from node i to node j for each j ∈ Ii. The out-degree of node i is |Ii|.

By Theorem 4, there exists a subset U ⊆ V of size

|U | ≥ n

1 + 1
n

n∑
i=1

|Ii|
,

such that the induced graph GU containing no directed cycle. Considering that |Ii| ≤ r, we can obtain that

|U | ≥ n

1 + 1
n

n∑
i=1

di

≥ n

1 + r
.
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If vertex i ∈ U has no out-going edge in EU , then Ii ⊂ U c, i.e., symbol i is a function of the code symbols
indexed by U c. (The notation U c signifies the complement of U in V .) Repeat the argument for GU\{i}, we
will eventually get an empty graph. Therefore, each code symbol in U is a function of code symbol in U c.
In other words, the code symbols with indices in U are redundant symbols. The number of codewords qk

must be less than or equal to qn−|U | ≤ qnr/(1+r).
Hence,

k ≤ nr

1 + r

and this implies the first part of Theorem 2.
2) Next, we try to find an index set I such that |CI | < qk. Since

|U | ≥ n

1 + r
≥ k

r
≥ bk − 1

r
c,

we can pick a subset of U ′ ⊆ U of size bk−1r c. The choice of U ′ is arbitrary as long as the size of U ′ is equal

to bk−1r c.
Let N :=

(⋃
i∈U ′ Ii

)
\ U ′ be the neighborhood of U ′. The symbols in U ′ are uniquely determined by

symbols in N . Considering that |Ii| ≤ r, we have

|N | ≤ r|U ′| = rbk − 1

r
c ≤ k − 1.

As |N | ≤ k − 1, we can pick a set in (U ′)c with size k − 1 exactly, denoted by N ′, such that N ⊆ N ′. If
|N | = k− 1 then this step is trivial, otherwise we can arbitrarily pick any k− 1− |N | elements in (U ′)c and
add them to N . This can always be done because

n− |U ′| = n− bk − 1

r
c

≥ k r + 1

r
− k − 1

r

≥ k +
k

r
− k

r
+

1

r
> k > k − 1.

Thus, the symbols in U ′ are determined by N ′, and

|CU ′∪N ′ | = |CN ′ | ≤ qk−1.

The last inequality follows from |N ′| = k − 1.
We have already found an index set I = U ′ ∪N ′ such that |CI | < qk, so we have

max
I
{|I| : |CI | < qk} ≥ |U ′ ∪N ′| = k − 1 + bk − 1

r
c.

Thus we can obtain

d = n− max
I⊆[n]
{|I| : |CI | < qk} ≤ n− (k − 1 + bk − 1

r
c) (a)

= n− k − dk
r
e+ 2,

where (a) follows from that 1 + bk−1r c = dkr e.
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Exercises

1. [3] We say that a code symbol with index i has t disjoint repair sets if we can find t disjoint index sets
Iji , for j = 1, 2, . . . , t, such that (i) Iji ⊂ [n] \ {i} for all j, (ii) Iji ∩ I`i = ∅ for all j 6= `, and (iii) for each

j = 1, 2, . . . , t, we can recover the code symbol at location i from the code symbols indexed by Iji . For
an (n, k, r)-LRC C in which all code symbols have t distinct repair sets of size less than or equal to r,
prove that

k

n
≤

t∏
j=1

1

1 + 1
jr

,

and

d(C) ≤ n−
t∑

j=0

⌊k − 1

rj

⌋
.

2. This exercise is the analog of Theorem 4 for undirected graph. For an undirected graph G on vertex
set V , a subset U of the vertex set is called an independent set if no two vertices in U are adjacent in
G. The size of the largest independent set of an undirected graph G is called the independence number
of G, and is commonly denoted by α(G).

If G is an directed graph in which the vertices has maximal degree D, then it is easy to show that

α(G) ≥ n

1 +D

where n is the number of vertices. Indeed, we can iteratively create an independence set. The procedure
is: (i) arbitrarily select a vertex v in G, (ii) remove v and its adjacent vertices from G, repeat (i) and
(ii) until we obtain an empty graph. In each iteration we remove at most

1 +D

vertices, and hence at least n/(1 +D) vertices are selected in the process.

If the degrees of all vertices are known, then we can have a better bound. Suppose that the degrees of
the n vertices in graph G are d1, d2, . . . , dn, which may or may not be equal to each other. Prove that

α(G) ≥
n∑
i=1

1

1 + di
≥ n

1 + (d1 + d2 + . . .+ dn)/n
.

See the “The probabilistic lens: Turán’s theorem” in [4].
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