IERG6120 Coding for Distributed Storage Systems Lecture 9 - 18/10/2016

Non-linear LRC and the bound by Gopalan et al.
Lecturer: Kenneth Shum Scribe: Cao Qi

Notations: Let C' C Fy be a code, x = (x1,xa,...,2,) denote a codeword in C. For any subset
I ={iy,ia,...,im} of the index set [n] := {1,2,...,n}, let

Cr:={(zi,, @iy, 2, ) & = (T1,22,...,T,) =€ C}

be the restriction of C to I.
We note that |C;| < |C;| whenever I C J C [n].

Definition 1. For i € [n], we say that code symbol i has locality r if there exists an index set I C [n]\ {i}
such that |I| < r and |Cr| = |Crugy]. A code is said to have all-symbol locality if for any i € {n} there
exists an I C [n]\ {i} such that |I| <1 and |C1| = |Crugy|. For a systematic code, if these properties apply
to its systematic symbols, then the code is said to have information locality r.

Example 1 The generator matrix is shown as following.

1011
G_L101}

We can obtain the corresponding code:
C = {0000,1011,1101,0110}.

When i = 1, we can find an I = {4} such that Cy; = {0,1} and Cy; 4y = {00,11}, i.e., |Cr| = |[Cruqayl-
Thus symbol 1 has locality 1.

When i = 2, we can find an I = {1, 3} such that C; 3, = {00,01, 10,11} and C{; 5 33 = {000, 101,110,011}.
Thus symbol 2 has locality 2.

Notation 1. Let (n, k,r),-LRC, which is an abbreviation of Locally Repairable Code, denote a code of length
n, containing q* codewords and having all-symbol locality r.

Theorem 2. If C is an (n,k,7)q-LRC, then we have

k T
¢ n S r+1’

e dC)<n—k—[%]+2.

In particular when k = r, we have d(C) < n — k + 1, which is the Singleton bound.
The inequality in Theorem 2 was first proved by Gopalan et al. for codes with information locality [1].
In this notes, we follows the proof in [2], which is for codes with all-symbol locality.

Lemma 3. In a nonlinear q-ary code of length n, the minimum distance is characterized by

d=n— I|: .
n = mae{|1]:1C1] < |C1)



Proof Let u and v be distinct codewords in C. If d(u,v) = d’, then we can find an index set I of size
n—d’, so that the two codewords are identical precisely at the positions indexed by I, and |C| < |C|. Since
u and v are assumed to be distinct, the index set I is not equal to [n]. We obtain
d= min d(u,v) = min{n — |I|: |C;| < |C
min,d(u,) = min fn — 1]+ 1] <[C1)
uFv

= mi E
Ingn[g]{n 1] [Cr] < |C|}

=n — I|: .
= suax((1]: C4] < [C1)

O

Consider a directed graph G = (V, E), where V = [n] and E C V x V. Suppose that the out degrees of
the vertices are dy, da,...,d,. Let Gy = (U, Ey) be the induced graph on a vertex subset U, where U C V
and Ey :={(a,b) € E: a,b € U}.

Theorem 4. There exists an induced subgraph that is acyclic, with at least —"— vertices.

1+1 '21 d;
Proof Pick a random permutation 7 : [n] — [n]. Let U, be a subset of V, defined by i € U, iff for every
outgoing edge (i,7), (i) < w(j). Check that induced graph of U, has no cycle. We can define a function on
1 as following.
1 — { 1, ieU,
=V 0, i¢U,.

Then we can obtain the expect value of the number of vertices in Ey,

E(Uz) = E(11) + E(12) + -+ + E(1,)

! 1 1
154 1vd4 T T 1xa,
(a) n
> >
14+ 1354,
=1

where (a) follows from that A.M. > H.M. i.e., the arithmetic mean is larger than or equal to harmonic
mean. O

Proof (of Theorem 2)

1) Firstly, we consider the number of the redundant symbols. For each ¢ € [n], there exists an index set
I; C [n]\ {i} of size less than or equal to r, such that symbol i can be repaired by symbols indexed by I;.
There may be more than one choice of such I;, and we only need to pick one for each i.

We construct a directed graph G = (V, E) on n vertices. We label the vertices from 1 to n. For i € [n],
we draw an edge from node i to node j for each j € I;. The out-degree of node i is |I;].

By Theorem 4, there exists a subset U C V of size

n

U| = o
1T+ 5 > il
i=1
such that the induced graph Gy containing no directed cycle. Considering that |I;| < r, we can obtain that
n n
>

Ul > .
Ul = 1 ;147




If vertex ¢ € U has no out-going edge in Ey, then I; C U¢, i.e., symbol ¢ is a function of the code symbols
indexed by U¢. (The notation U¢ signifies the complement of U in V'.) Repeat the argument for Gy iy, we
will eventually get an empty graph. Therefore, each code symbol in U is a function of code symbol in U°€.
In other words, the code symbols with indices in U are redundant symbols. The number of codewords ¢*
must be less than or equal to ¢"~ 1Vl < gnr/(1+7)

Hence,
nr

k<
147

and this implies the first part of Theorem 2.
2) Next, we try to find an index set I such that |C;| < ¢*. Since

ul>—— > >
||_1—|—T_ =

n k k—1
; Ja

r

k—1
s

we can pick a subset of U’ C U of size |
to L@J

Let NV := (UiEU’ IZ-) \ U’ be the neighborhood of U’. The symbols in U’ are uniquely determined by
symbols in N. Considering that |I;| < r, we have

|. The choice of U’ is arbitrary as long as the size of U’ is equal

k-1

IN| <r|lU|=r]| | <k-—1.

As |N| <k —1, we can pick a set in (U’)° with size k — 1 exactly, denoted by N’, such that N'C N’. If
|N] =k — 1 then this step is trivial, otherwise we can arbitrarily pick any & — 1 — |V elements in (U’)¢ and
add them to N. This can always be done because

k—1
n— U =n =~
Zkr—i—l_k—l
T T
1
LN,
T
>k>k—1

Thus, the symbols in U’ are determined by A/, and
|Comone| = |Cnr] < ¢*

The last inequality follows from |[N'| =k — 1.
We have already found an index set I = U’ UAN” such that |C;| < ¢*, so we have

k—1
mIax{|I| CH <"y > UUN | =k -1+ LTJ

Thus we can obtain

k—1, (a k
dz”*?&%ﬂf\1\CI|<qk}§n*(k*1+LTJ)(:)n*k*[;1+2,
where (a) follows from that 1+ Lk;1J = [é] 0



FEzxercises

1. [3] We say that a code symbol with index i has t disjoint repair sets if we can find ¢ disjoint index sets
I, for j =1,2,...,t, such that (i) I C [n]\ {i} for all j, (ii) I NI} = @ for all j # ¢, and (iii) for each

j=1,2,...,t, we can recover the code symbol at location ¢ from the code symbols indexed by IZ For
an (n,k,r)-LRC C in which all code symbols have ¢ distinct repair sets of size less than or equal to r,
prove that
t
k 1
Z< | |
— 1>

n j=1 1+ gr

and

t

d(C)gn—ZVf;l

; T
Jj=0

|

2. This exercise is the analog of Theorem 4 for undirected graph. For an undirected graph G on vertex
set V', a subset U of the vertex set is called an independent set if no two vertices in U are adjacent in
G. The size of the largest independent set of an undirected graph G is called the independence number
of G, and is commonly denoted by a(G).

If G is an directed graph in which the vertices has maximal degree D, then it is easy to show that

n
1+D

al(G) >

where n is the number of vertices. Indeed, we can iteratively create an independence set. The procedure
is: (i) arbitrarily select a vertex v in G, (ii) remove v and its adjacent vertices from G, repeat (i) and
(ii) until we obtain an empty graph. In each iteration we remove at most

1+D

vertices, and hence at least n/(1 + D) vertices are selected in the process.

If the degrees of all vertices are known, then we can have a better bound. Suppose that the degrees of
the n vertices in graph G are dy, ds, ..., d,, which may or may not be equal to each other. Prove that

n 1 n
> >
a(G)*;Hdi Tl (di+dat .t dn)/n

See the “The probabilistic lens: Turdn’s theorem” in [4].

References

[1] P. Gopalan, C. Huang, H. Simitci and S. Yekhanin, “On the locality of codeword symbols,” IEEE Trans.
Inf. Theory, vol. 58, no. 11, pp.6925-6934, Nov. 2012.

[2] . Tamo and A. Barg, “A family of optimal locally recoverable codes,” IEEE Trans. Inf. Theory, vol. 60,
no. 8, pp.4661-4676, Aug. 2014.

[3] I. Tamo, A. Barg and A. Frolov, “Bounds on the parameters of locally repairable codes,” IEEE Trans.
Inf. Theory, vol. 62, no. 6, pp.3070-3083, Jun. 2016.

[4] N. Alon and J. H. Spencer, The probabilistic method, 2nd edition, John Wiley & Son, New York, 2004.



