
IERG6120 Coding for Distributed Storage Systems Lecture 13 - 01/11/2016

Windows Azure LRC and Maximally Recoverable Codes
Lecturer: Kenneth Shum Scribe: Qiaoqiao Zhou

In this lecture, we go through the construction of a (6,2,2) Local Reconstruction Codes (LRC) in [1].
LRC is a new set of erasure codes designed for Windows Azure Storage system. The important benefits
of LRC are that it reduces the bandwidth required for repair, while still allowing a significant reduction in
storage overhead.

1 LRC

Definition 1. We say that a linear (n, k) code C is a (k, l, r) LRC if the following conditions are satisfied:

• n = k + l + r and the normalized storage overhead is n
k = 1 + l+r

k ;

• The k information symbols are divided into l groups of size k
l . For each such group there is one local

parity-check symbol computed within group;

• There are r global parity-check symbols computed from all the information symbols.

From the definition, we have the following observation

Observation 2. The key properties of a (k, l, r) LRC are

• single information failure can be decoded from k
l symbols;

• arbitrary failures up to r + 1 can be decoded.

X0 Y2Y1Y0X2X1

P0 P1

PX PY

Figure 1: A (6,2,2) LRC Example

Consider a (6,2,2) LRC example shown in Fig 1 with 6 information symbols X0,X1,X2,Y0,Y1,Y2 and 4
parity-check symbols P0,P1,PX and PY. Symbols P0 and P1 are called global parity-check symbols and can
be computed from all the information symbols as

P0 = α0X0 + α1X1 + α2X2 + β0Y0 + β1Y1 + β2Y2 (1)

P1 = α2
0X0 + α2

1X1 + α2
2X2 + β2

0Y0 + β2
1Y1 + β2

2Y2, (2)

1



Symbols PX and PY are called local parity-check symbols. They are generated by dividing the message
symbols into two equal size groups and computing one for each group as

PX = X0 + X1 + X2 (3)

PY = Y0 + Y1 + Y2 (4)

Therefore, the generating matrix is

G =


1 0 0 0 0 0 1 0 α0 α2

0

0 1 0 0 0 0 1 0 α1 α2
1

0 0 1 0 0 0 1 0 α2 α2
2

0 0 0 1 0 0 0 1 β0 β2
0

0 0 0 0 1 0 0 1 β1 β2
1

0 0 0 0 0 1 0 1 β2 β2
2

 (5)

From (5), we know that this is a code with minimum Hamming distance 4, which means it is capable to
recover any 3 symbol erasures. Next, we will show that if we choose the values of α’s and β’s appropriately,
we can also tolerate some, but not all, erasure patterns consisting of 4 symbol erasures.

Before proceeding, we introduce some definitions.

Definition 3. For a LRC, due to the special encoding structure, there are some erasure patterns that are
inherently unrecoverable. They are called information-theoretically non-decodable. These are unre-
coverable no matter how you pick the coefficients of the parity-check symbols. The other erasure patterns
are information-theoretically decodable. These patterns are potentially recoverable, provided that the
coefficients are chosen appropriately.

For instance, say X0,X1,X2,PX fails. This failure is non-decodable because there are only two parity-
check symbols (global parity-check symbols) that can help to decode the 3 missing information symbols.
The other local parity-check symbol PY is useless in this failure. It is impossible to decode 3 information
symbols from merely 2 parity-check symbols, regardless of the coding equations. Therefore, this kind of
failure is information-theoretically non-decodable. However, if X0,X1,Y0,Y1 fails, for this failure pattern, it
is possible to construct coding equations such that it is equivalent to solving 4 unknowns using 4 linearly
independent equations. Thus, information-theoretically decodable.

Definition 4. If all information-theoretically decodable erasure patterns are indeed decodable, then the code
is called a maximally recoverable codes.

In the remaining, we determine the values of α’s and β’s so that the (6, 2, 2) LRC can decode all
information-theoretically decodable 4 failure patterns, i.e., achieves the Maximally Recoverable property.
We focus on non-trivial cases as follows:

1. None of the four parity-check symbols fails. The four failures are equally divided between group X
and Y. Consider X0,X1,Y0,Y1 fails. To maintain the recoverable property, we need the remaining

2



submatrix invertible.∣∣∣∣∣∣∣∣∣∣∣∣

0 0 1 0 α0 α2
0

0 0 1 0 α1 α2
1

1 0 1 0 α2 α2
2

0 0 0 1 β0 β2
0

0 0 0 1 β1 β2
1

0 1 0 1 β2 β2
2

∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
1 0 α0 α2

0

1 0 α1 α2
1

0 1 β0 β2
0

0 1 β1 β2
1

∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣
1 0 α0 α2

0

0 0 α1 − α0 α2
1 − α2

0

0 1 β0 β2
0

0 0 β1 − β0 β2
1 − β2

0

∣∣∣∣∣∣∣∣
= −

∣∣∣∣α1 − α0 α2
1 − α2

0

β1 − β0 β2
1 − β2

0

∣∣∣∣
= −(α1 − α0)(β1 − β0)

∣∣∣∣1 α1 + α0

1 β1 + β0

∣∣∣∣
= −(α1 − α0)(β1 − β0)(α0 + α1 + β0 + β1) (6)

Therefore, we need α1 6= α0, β1 6= β0, α0 + α1 6= β0 + β1. Due to symmetry, the remaining cases can
be handled similarly. To maintain the recoverable property, we require α’s and β’s satisfy

αi 6= αj , βi 6= βj ∀i 6= j

αi + αj 6= βs + βt ∀i 6= j,∀s 6= t (7)

2. Only one of PX and PY fails. Assume PX fails, For the remaining three failures, two are in group Y and
one in group X. For example, X0,Y1,Y2 and PX fail. The remaining submatrix must be full-rank∣∣∣∣∣∣∣∣∣∣∣∣

0 0 0 0 α0 α2
0

1 0 0 0 α1 α2
1

0 1 0 0 α2 α2
2

0 0 1 1 β0 β2
0

0 0 0 1 β1 β2
1

0 0 0 1 β2 β2
2

∣∣∣∣∣∣∣∣∣∣∣∣
= −

∣∣∣∣∣∣
0 α0 α2

0

1 β1 β2
1

1 β2 β2
1

∣∣∣∣∣∣ = −

∣∣∣∣∣∣
0 α0 α2

0

1 β1 β2
1

0 β2 − β1 β2
2 − β2

1

∣∣∣∣∣∣
=

∣∣∣∣ α0 α2
0

β2 − β1 β2
2 − β2

1

∣∣∣∣ = α0(β2 − β1)

∣∣∣∣1 α0

1 β2 + β1

∣∣∣∣
= α0(β2 − β1)(α0 + β1 + β2) (8)

which require α0 6= 0, β1 6= β2, β1 + β2 6= α0. Due to symmetry, the remaining cases can be handled
similarly. To maintain the recoverable property, we require α’s and β’s satisfy

αi 6= 0, βi 6= 0 ∀i
αi 6= αj , βi 6= βj ∀i 6= j

αi + αj 6= βs ∀i 6= j,∀s
αi 6= βs + βt ∀i,∀s 6= t (9)

3. Both PX and PY fail. In addition, the remaining two failures are divided between group X and Y. For

3



example, X0,Y0,PX,PY fail, the remaining submatrix∣∣∣∣∣∣∣∣∣∣∣∣

0 0 0 0 α0 α2
0

1 0 0 0 α1 α2
1

0 1 0 0 α2 α2
2

0 0 0 0 β0 β2
0

0 0 1 0 β1 β2
1

0 0 0 1 β2 β2
2

∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣α0 α2
0

β0 β2
0

∣∣∣∣ = α0β0(α0 + β0) (10)

which implies α0 6= β0 6= 0. Due to symmetry, the remaining cases can be handled similarly. To
maintain the recoverable property, we require α’s and β’s satisfy

αi 6= 0, βi 6= 0 ∀i and αi 6= βj , ∀i, j (11)

To ensure all the cases are recoverable, α’s and β’s should satisfy the following conditions:

αi 6= 0, βi 6= 0 ∀i
αi 6= βj , ∀i, j

αi + αj 6= βs + βt ∀i 6= j,∀s 6= t (12)

One way to fulfill these conditions (12) is to assign to α’s and β’s the element from a finite field GF(24),
which is produced by an irreducible polynomial (e.g. f(x) = x4 + x + 1). Suppose the finite field elements
can be represented by polynomials of the form c0 + c1γ + c2γ

2 + c3γ
3. Then, pick α0, α1, α2 ∈ {1, γ, 1 + γ}

and β0, β1, β2 ∈ {γ2, γ3, γ2 + γ3} will satisfy the requirement (12).

Exercise. Consider a linear (8,5)-code over a finite field F, defined by the following encoding structure:
Symbols x0, x1, x2, y0, y1 are information symbols. ph is a parity-check symbol computed by

ph := ax0 + bx1 + cx2 + dy0 + ey1

where a, b, c, d, e are elements in F. (The subscript “h” stands for “heavy”. ph is a heavy parity-check symbol
that depends on all information symbols, in contrast to local parity-check symbols to be defined next.)

px and py are local parity-check symbols computed by

px := x0 + x1 + x2, py := y0 + y1 + ph

The coded symbol can be presented in an array format:
x0 x1 x2 px
y0 y1 ph py

This is a codes with locality 3. The code symbols in the first (resp. second) row belong to a simple
parity-check code. If there is an erasure in the first (resp. second) row, we can recover the erased symbol
by reading the other three symbols in the same row. Furthermore, if we choose the coefficients a to e
appropriately, we are able to recover one more erasure on top of the two local erasures.

• Show that if there are three erasures in the same row, then it is not possible to recover the original
information symbols.

• Show how to pick the coefficients a to e in order to correct any erasure pattern consisting of one erasure
in a row and two erasures in the another row. (You need to specify the finite field F, and explicitly
write down the coefficients a to e.)

References

[1] C. Huang, H. Simitci, Y. Xu, A. Ogus, B. Calder, P. Gopalan, J. Li and S. Yekhanin, “Erasure decoding
in Windows Azure Storage,” in USENIX Annual Technical Conference, Boston 2012.

[2] M. Blaum, J. L. Hafner and S. Hetzler, “Partial-MDS codes and their application to RAID type of
architectures,” in IEEE Trans. on Inform. Theory, vol. 59, no. 7, pp.4510–4519, Jul. 2013.

4


