
IERG6120 Coding for Distributed Storage Systems Lecture 12 - 05/11/2016

Berlekamp-Massey decoding of RS code
Lecturer: Kenneth Shum Scribe: Bowen Zhang

1 Berlekamp-Massey algorithm

We recall some notations from lecture 11. Let (S1, S2, S3, . . . , Sn) be an arbitrary sequence of elements in
a field K. We say that this sequence is described by a linear feedback shift register (LFSR) of length L if
there exists L field elements Λ1,Λ2, . . . ,ΛL, such that Si can be obtained as a linear function of the previous
L elements,

Si = −Λ1Si−1 − Λ2Si−2 − · · · − ΛLSi−L (1)

for i = L+1, L+2, . . . , n. We specify the linear feedback shift register by a pair (L,Λ(Z)), where L denotes
the length of the LFSR and Λ(Z) is the feedback polynomial defined as

Λ(Z) := 1 + Λ1Z + Λ2Z
2 + · · ·+ ΛLZ

L.

We note that the degree of Λ(Z) is less than or equal to L, and the constant term is equal to 1. (The degree
is strictly less than L if ΛL = 0.)

For notational convenience, we define Λ0 := 1, so that (1) can be written compactly as

0 =
L∑

j=0

ΛjSi−j ,

for i = L+ 1, . . . , n.

Figure 1: Example of linear feedback shift register

We want to find the shortest LFSR that generates (S1, S2, S3, . . . , Sn). The length of the shortest LFSR
that generates (S1, S2, S3, . . . , Sn) is called the linear complexity of (S1, S2, S3, . . . , Sn).

For M = 1, 2, . . . , n, let LM be the linear complexity of the first M terms (S1, S2, . . . , SM), and let

ΛM (Z) =
∑LM

j=0 Λ
M−1
j Zj be the corresponding feedback polynomial.

Caveat: There may be more than one LFSR that achieve the shortest length.

1

We have the following chain of inequalities

L1 ≤ L2 ≤ L3 ≤ · · · ≤ Ln, (2)

because, if (LM ,ΛM (Z)) is the shortest LFSR that generates the first M terms, it also generates the first
M − 1 terms. The non-decreasing sequence of integers in (2) is usually called the linear complexity profile of
(S1, S2, S3, . . . , Sn).

The M -th term produced by (LM−1,Λ
M−1(Z)),

ŜM := −
LM−1∑
j=1

ΛM−1
j SM−j

may not equal to the desired value SM . We let

∆M := SM − ŜM =

LM−1∑
j=0

ΛM−1
j SM−j ,

be the difference between SM and ŜM . If ∆M = 0, then the LFSR (LM−1,Λ
M−1(Z)) correctly computes

the M -th term SM , and we can let (LM ,ΛM (Z)) = (LM−1,Λ
M−1(Z)). When ∆M ̸= 0, we have shown in

lecture 11 that

Theorem 1. Suppose that (Li,Λ
i(Z)) is the shortest LFSR that produces (S1, S2, . . . , Si), for i = 1, 2, . . . ,M .

If ∆M ̸= 0, then
LM ≥ max(LM−1,M − LM−1).

The Berlekamp-Massey algorithm computes the linear complexity profile and the corresponding feedback
polynomials of a sequence of elements (S1, . . . , Sn) from a field K.

The algorithm computes L1, L2, . . . iteratively. In each step, we consider two cases.
If ∆M = 0, set LM = LM−1 and ΛM (Z) = ΛM−1(Z).
If ∆M ̸= 0, then the feedback polynomial ΛM (Z) is obtained by

ΛM (Z) = ΛM−1(Z) + Λµ−1(Z)Zeα,

where µ ≤M , e ∈ Z, and α ∈ K. The value of µ, e and α are obtained by the following theorem.

Theorem 2. Suppose (Li,Λ
i(Z)) is the shortest LFSR for (S1, . . . , Si), satisfying

Li =

{
Li−1 if ∆i = 0,

max(Li−1, i− Li−1) if ∆i ̸= 0,

for i = 1, 2, 3, . . . ,M − 1. If ∃µ < M , satisfying

Lµ−1 < Lµ = Lµ+1 = . . . = LM−1,

and ∆µ ̸= 0, then we can find an LFSR (LM ,ΛM (Z)) that generates (S1, . . . , SM), with length

LM =

{
LM−1 if ∆M = 0,

max(LM−1,M − LM−1) if ∆M ̸= 0.

2

Proof If ∆M = 0, we set ΛM (Z) = ΛM−1(Z) and LM = LM−1.
Suppose that ∆M ̸= 0. Set

ΛM (Z) = ΛM−1(Z)− ∆M

∆µ
ZM−µΛµ−1(Z). (3)

We remark that we do not have division by zero in (3), because ∆µ is non-zero by the assumption in the
theorem. Let

D = degΛM (Z) ≤ max(LM−1,M − µ+ Lµ−1)

be the degree of ΛM (Z) defined in (3).
We check that the LFSR specified by feedback polynomial ΛM (Z) can generate (S1, . . . , SM). By the

assumptions in the theorem, we have

Lµ−1∑
i=0

Λµ−1
i Sj−i =

{
0 if j = Lµ−1 + 1, Lµ−1 + 2, . . . , µ− 1,

∆µ if j = µ,

and
LM−1∑
i=0

ΛM−1
i Sj−i =

{
0 if j = LM−1 + 1, LM−1 + 2, . . . ,M − 1,

∆M if j = M.

With the notations ΛM−1
i = 0 for i = LM−1+1, LM−1+2, . . . , D and Λµ−1

i = 0 for i = Lµ−1+1, Lµ−1+
2, . . . , D, we can write the recursion as

D∑
i=0

ΛM
i Sj−i =

D∑
i=0

ΛM−1
i Sj−i −

∆M

∆µ

D∑
i=0

Λµ−1
i Sj−M+µ−i. (4)

If j = M , then the two summations on the right-hand side of (4) are equal to
∑D

i=0 Λ
M−1
i SM−i = ∆M

and
D∑
i=0

Λµ−1
i SM−M+µ−i =

D∑
i=0

Λµ−1
i Sµ−i = ∆µ,

respectively. Therefore, the right-hand side of (4) is equal to zero.
Now suppose that j < M . The first summation on the right-hand side of (4) is equal to zero for j > LM−1,

and the second summation is equal to zero if

j −M + µ > Lµ−1,

By the hypothesis that ∆µ ̸= 0, we have Lµ = µ − Lµ−1. Hence the second summation in (4) is equal to
zero when

j > M − µ+ Lµ−1 = M − Lµ = M − Lµ+1 = · · · = M − LM−1.

We conclude that
∑D

i=0 Λ
M
i Sj−i is equal to zero for

max(LM−1,M − LM−1) < j ≤M.

We can set LM = max(LM−1,M − LM−1). The degree of ΛM is no more than

max(LM−1,M − µ+ Lµ−1) = max(LM−1,M − LM−1) = LM .

The polynomial ΛM (Z) specifies an LFSR with length no more than LM . The LFSR (LM ,ΛM (Z)) generates
(S1, S2, . . . , SM).

3

Given a sequence (S1, S2, . . . , SN), we find the smallest index m such that Sm ̸= 0. We initialize the
algorithm by

Lj = 0, Λj(Z) = 1,

for j = 0, 1, . . . ,m− 1, and

Lm = m, Λm(Z) = 1.

The LFSR (Li,Λ
i(Z)) satisfy the conditions in Theorem 1 with

∆m−1 = Sm ̸= 0.

The algorithm continues with repeated applications of Theorem 1 for M = m,m+ 1,m+ 2, . . . , n.

Example. Determine the linear complexity profile of the sequence

S1 = 0, S2 = 1, S3 = 0, and Si = 1 for i ≥ 4,

over F2. This sequence is ultimately periodic.

Initialization. The first non-zero element occurs at S2 = 1. Let (L0,Λ
0(Z)) = (L1,Λ

1(Z)) = (0, 1), and
(L2,Λ

2(Z)) = (2, 1). We have ∆2 = 1.

M = 3. As ∆3 = 0, we set L3 = L2 and Λ3(Z) = Λ2(Z).

M = 4. ∆4 = 1. Set L4 = max(L3, 4− L3) = max(2, 4− 2) = 2, and

Λ4(Z) = Λ3(Z) + Z2Λ1(Z) = 1 + Z2.

M = 5. ∆5 = 1. Set L5 = max(L4, 5− L4) = max(2, 5− 2) = 3, and

Λ5(Z) = Λ4(Z) + Z4Λ1(Z) = 1 + Z2 + Z3.

M = 6. Because ∆6 = 0, (L6,Λ
6(Z)) = (L5,Λ

5(Z)).

M = 7. ∆7 = 1. Set L7 = max(L6, 7− L6) = max(3, 7− 3) = 4, and

Λ7(Z) = Λ6(Z) + Z2Λ4(Z) = (1 + Z2 + Z3) + Z2(1 + Z2) = 1 + Z3 + Z4.

M = 8. ∆8 = 1. Set L8 = max(L7, 8− L7) = max(4, 8− 4) = 4, and

Λ8(Z) = Λ7(Z) + ZΛ6(Z) = (1 + Z4 + Z3) + Z(1 + Z2 + Z3) = 1 + Z.

M ≥ 9. ∆M = 0, (LM ,ΛM (Z)) = (L8,Λ
8(Z)) = (4, 1 + Z).

The calculations are summarized in the following table.

i 0 1 2 3 4 5 6 7 8 9
Si 0 1 0 1 1 1 1 1 1

∆i 0 1 0 1 1 0 1 1 0
Li 0 0 2 2 2 3 3 4 4 4

Λi(z) 1 1 1 1 1 + Z2 1 + Z2 + Z3 1 + Z2 + Z3 1 + Z3 + Z4 1 + Z 1 + Z

The linear complexity profile is 0,2,2,2,3,3,4,4,4,....

4

2 Decoding RS Codes

First we define some notations. Fix n distinct elements α1, . . . , αn in Fq. Let

g(Z) := (Z − α1)(Z − α2) · · · (Z − αn)

gi(Z) :=
g(Z)

Z − αi
= (Z − α1)(Z − α2) · · · (Z − αi−1)(Z − αi+1)(Z − αi+2) · · · (Z − αn).

We first prove the following useful lemma.

Lemma 3. We have
n∑

i=1

αj
i

gi(αi)
=

{
0 if j = 0, 1, . . . , n− 2

1 if j = n− 1.

Proof We use the notation

V (α1, . . . , αn) :=


1 1 · · · 1
α1 α2 · · · αn

...
...

. . .
...

αn−1
1 αn−1

2 · · · αn−1
n

 =
∏
j>i

(αj − αi)

for the determinant of a Vandermonde matrix.
Suppose that we replace the last row of the above Vandermonde matrix by [αj

i]i=1,...,n, for some j between
1 and n− 1,

δj :=

∣∣∣∣∣∣∣∣∣∣∣

1 1 · · · 1
α1 α2 · · · αn

...
...

. . .
...

αn−2
1 αn−2

2 · · · αn−2
n

αj
1 αj

2 · · · αj
n

∣∣∣∣∣∣∣∣∣∣∣
Expand the determinant on the last row. We get

δj =
n∑

i=1

(−1)n+iαj
i · V (α1, α2, . . . , α̂i, . . . , αn)

=

n∑
i=1

(−1)n+iαj
i ·

V (α1, α2, . . . , αn)

(αn − αi) . . . (αi+1 − αi) · (αi − αi−1) · · · (αi − α1)

= V (α1, α2, . . . , αn)

n∑
i=1

αj
i

gi(αi)
.

∴ If j = n − 1, then the determinant δj is equal to V (α1, . . . , αn), and we get
∑n

i=1 α
n−1
i /gi(αi) = 1.

For j = 0, 1, 2, . . . , n− 2, we have δj = 0, because there are two repeated rows in the determinant δj . Hence∑n
i=1 α

j
i/gi(αi) = 0 for j = 0, 1, 2, . . . , n− 2.

We consider an (n, k) Reed-Solomon codes with the following k × n generator matrix

G =


1 1 · · · 1
α1 α2 · · · αn

...
...

. . .
...

αk−1
1 αk−1

2 · · · αk−1
n

 (5)

5

where αi’s are distinct nonzero elements in a finite field Fq. In the following, we need the assumption that
all αi’s are non-zero, so that α−1

i exists in Fq for all i. A list of k message symbols, m1 to mk, are encoded
to a codeword by multiplying

(m1, . . . ,mk) ·G.

From Lemma 3, we can write down a parity-check matrix as

H =


1

g1(α1)
1

g2(α2)
· · · 1

gn(αn)
α1

g1(α1)
α2

g2(α2)
· · · αn

gn(αn)

...
...

. . .
...

αn−k−1
1

g1(α1)
αn−k−1

2

g2(α2)
· · · αn−k−1

n

gn(αn)

 =


1 1 · · · 1
α1 α2 · · · αn

...
...

. . .
...

αn−k−1
1 αn−k−1

2 · · · αn−k−1
n

 ·diag(1

g1(α1)
, . . . ,

1

gn(αn)
).

(6)

We note that gi(αi) are nonzero for all i, because the elements α1, . . . , αn are distinct.
The following is a syndrome-based method for decoding RS code.

Step(1). Calculate syndromes by multiplying the received vector Y and the transpose of parity-check
matrix in (6).

The syndromes are the components of yHT = (s1, s2, ..., sd−1), where d = n − k + 1 is the minimum
distance.

Step(2). Obtain the shortest linear feedback shift register (L,Λ(Z)) that generates the syndrome sequence
s1, s2, . . . , sd−1.

Step(3). If the number of errors t is less than or equal to
⌊
(d−1)

2

⌋
, then the feedback polynomial Λ(Z)

has degree t and t distinct roots. There is an error at location i if and only if Λ(α−1
i) = 0. In the case when

Λ(Z) has no root in Fq or the number distinct roots of Λ(Z) is strictly less than the degree of Λ(Z), then

we can declare that there are more than
⌊
(d−1)

2

⌋
errors, and stop the decoding procedure.

Step(4). After locating the errors, then error values can be calculated by solving a system of linear
equations.

Exercise.

1. In the last step of the decoding procedure of RS code, we need to determine the error values. Suppose
that we have already determined the location of the errors, and they are i1 < i2 < · · · < it for some integer

t less than or equal to
⌊
(d−1)

2

⌋
.

Let e be the error vector, defined as the difference between the received vector and the transmitted
codeword. Let the ij-th component of e be eij , for j = 1, 2 . . . , t. Show that the error values eij satisfy the
following system of linear equations:

s1
s2
...
st

 =


1 1 · · · 1
αi1 αi2 · · · αit
...

...
. . .

...
αt−1
i1

αt−1
i2

· · · αt−1
it




1
gi1(αi1

)

1
gi2(αi2

)

...
1

git(αit
)



ei1
ei2
...
eit

 .

2. After obtaining the correct codeword, we also need to decode the message symbols m1, . . . ,mk. A
naive method is to solve a system of k × k system of linear equations. Since RS code is MDS, we can
arbitrarily pick k coded symbols and solve for the k message symbols. This requires O(k3) steps. Show that
the following procedure can also produce the message symbols.

6

Input: a valid codeword c = (c1, c2, . . . , cn) in the row-space of matrix G in (5).
Output: a message vector (m1, . . . ,mk) such that (m1, . . . ,mk) ·G = c.
Step 0. Let x← c.
Step 1. ℓ← k.
Step 2. Compute the ℓ-th message symbol mℓ by taking the inner product

mℓ ← x ·
(αn−ℓ

1

g1(α1)
,
αn−ℓ
2

g2(α2)
, . . . ,

αn−ℓ
n

gn(αn)

)
.

Step 3. x← x−mℓ(α
ℓ−1
1 , αℓ−1

2 , . . . , αℓ−1
n).

Step 4. ℓ← ℓ− 1.
Step 5. While ℓ ≥ 1, go back to step 2, otherwise return (m1, . . . ,mk) and stop.

This method computes the message symbols in the order ofmk, mk−1, . . . ,m1. The while-loop is repeated
k times, and we need to perform O(n) field operations in steps 2 and 3. The overall computational complexity
is O(kn).

References

[1] J. L. Massey, “Shift-register synthesis and BCH decoding,” IEEE Trans. Inf. Theory, vol. 15, no. 122–127,
pp., Jan. 1969.

[2] E. Berlekamp, Algebraic coding theory, revised edition, World Scientific Publishing, 2015.

7

