
JavaScript	– 2	(Functions)

CPEN	400A	– Lecture	3
(Loosely	based	on	the	book	“JavaScript:	
The	Good	Parts”	by	Doug	Crockford,	

O’Reilly	Press



Recap:	Previous	lecture

• In	JavaScript,	everything	is	an	object
– Objects	are	simply	hash-tables	of	key-value	pairs

• Objects	can	be	created	using	either	
constructor	functions	or	Object.create
– Possible	to	support	inheritance	through	prototype

• Reflection	is	permitted	on	JavaScript	Objects



This	lecture
• Functions	in	JavaScript:	Creation

• Invoking	a	function

• Arguments	and	Exceptions

• Nested	functions	and	closures

• Higher-order	functions	and	Currying



Note	about	Functions

• Functions	are	one	of	the	most	powerful	
features	in	JavaScript,	and	it	is	here	that	JS	
really	shines	(for	the	most	part)

• However,	there	are	some	important	
differences	between	functions	in	JS	and	other	
imperative	languages,	such	as	Java
–We’ll	touch	upon	some	of	these	differences	here



Important	differences	with	Java	
• In	JavaScript,	functions	are	(Data)	objects
– Can	be	assigned	to	variables	and	invoked
– Can	be	properties	of	an	object	(methods)
– Can	be	passed	around	to	other	functions

• Functions	can	be	nested	inside	other	functions
– Can	be	used	to	create	what	are	known	as	closures

• Functions	can	be	called	with	fewer	or	more	
arguments	than	they	take	in	their	parameter	lists
– Can	be	used	to	create	curried	functions



Creating	a	function

var add	=	function	(	a,	b	)	{
return	a	+	b;

}

Variable	to	which	
function	 is	assigned

Function	has	no	
name	– anonymous.	
Can	specify	name.

Parameters	of	the	
function	– set	to	
arguments	passed	in,	
undefined	 if	none



Functions	are	Objects	too	!

• Every	function	is	an	instance	of	a	Function	
object,	which	is	itself	derived	from	Object

• A	function	object	has	two	prototype	fields:
– A	hidden	prototype	field	to	Function.prototype,	
which	in	turn	links	to	Object.prototype

– A	visible	prototype	field	(Function.prototype)	
which	points	to	an	Object	whose	constructor	
function	points	to	the	function	itself	!



What’s	really	going	on	?

Function	Object	(foo)

hidden	prototype

visible	prototype

Function	prototype	
Object

Dummy	Object

Constructor

Why	is	it	done	in	this	convoluted	way	?



Reason:	Constructors

• In	JavaScript,	Functions	can	be	used	as	
constructors	for	Object	creation	(new	
operator)
– However,	JS	engine	does	not	know	ahead	of	time	
which	functions	are	constructors	and	which	aren’t

– For	the	constructor	functions,	the	(visible)	
prototype	is	copied	to	the	new	object’s	prototype

– New	object’s	prototype’s	constructor	is	thus	set	to	
the	constructor	function	that	created	the	object	



Example
function	Point(	x,	y)	{

this.x =	x;	this.y =	y;

};
…
…
var p1	=	new	Point(2,3);
var p2	=	new	Point(5,7);
…
console.log(Object.getPrototypeOf(p1)	==	
Object.getPrototypeOf(p2));
console.log(Object.getPrototypeOf(p1).constructor);



Methods
• Functions	can	be	properties	of	an	Object
– Analogous	to	Methods	in	classical	languages
– Need	to	explicitly	reference	this	in	their	bodies

this.dist =	function(point)	 {

return	Math.sqrt(	(this.x – point.x)	*	(this.x – point.x)
+	(this.y – point.y)	*	(this.y – point.y)	);

}

NOTE:	this	is	bound	to	the	object	on	which	it	is	invoked



Adding	functions	to	Prototype

• Functions	can	also	be	added	to	the	Prototype	
object	of	an	object
– These	will	be	applied	to	all	instances	of	the	object	
– Can	be	overridden	by	individual	objects	if	needed

Point.prototype.toString =	function(	)	{
return	“(“	+	this.x +	“	,	“	+	this.y +	“)”;

}



This	lecture
• Functions	in	JavaScript:	Creation

• Invoking	a	function

• Arguments	and	Exceptions

• Nested	functions	and	closures

• Higher-order	functions	and	Currying



Invoking	Functions

• There	are	four	ways	to	invoke	functions	in	JS
– Using	function	name	(for	standalone	functions)
– Method	calls	(for	functions	in	Objects)	
– Constructors	(we	have	seen	this	earlier)
– Using	Function.apply

• Each	of	these	methods	has	different	bindings	
of	the	this	parameter



Calling	a	method

• Simply	say	object.methodName(	parameters	)

• Example:
p1.dist(	p2	);

this	is	bound	to	the	object	on	which	it	is	called.	
In	the	example,	this	=	p1.	This	binding	occurs	at	
invocation	time	(late	binding).



Calling	a	standalone	function

• If	the	function	is	a	Standalone	one,	then	the	
object	is	called	with	the	global	context	as	this
– Can	lead	to	some	strange	situations	(later)
– A	mistake	in	the	language	according	to	Crockford !

var add	=	function(	p1,	p2)	{
return	new	Point(p1.x	+	p2.x,	p1.y	+	p2.y);

}

add(	p1,	p2	);



Constructors

• Using	the	new	operator	as	we’ve	seen

• this	is	set	to	the	new	object	that	was	created
– Automatically	returned	unless	the	constructor	
chooses	to	return	another	object	(non-primitive)

• Bad	things	can	happen	if	you	forget	the	‘new’	
before	the	call	to	the	constructor	(Why	?)	



Function.apply

• Most	general	way	to	call	a	function
– Can	set	this	to	any	arbitrary	object	in	program
– Can	emulate	the	other	three	ways	of	invocation
– Can	also	use	call	with	the	arguments	specified
Example:	add.apply(	null,	arguments	);

function	
name	to	
invoke

can	be	any	
object,	
including	 null

array	for	passing	
the	arguments



Function.apply example

var Points	=	[	p1,	p2	];
var p	=	add2.apply(	Object.getPrototypeOf(p1),		Points);
document.writeln(p);

var add2	=	function(	point1,	point2	)	{
var p	=	Object.create(this);
p.x =	point1.x	+	point2.x;
p.y =	point1.y	+	point2.y;
return	p;

}

this	is	bound	 to	the	
prototype	of	p1,	
which	is	Point



Function.call

• Call	is	similar	to	apply	except	that	the	
arguments	are	specified	directly	as	part	of	the	
function	parameters	rather	than	in	an	array

• We	used	call	before	for	calling	the		super-
class’s	constructor	(for	inheritance)

Example:

var p	=	add2.call(	Object.getPrototypeOf(p1),		p1,	p2);
document.writeln(p);



Class	Activity

• Emulate	the	new	operator	through	a	function	
new	using	Object.create and	Function.apply.	Add	
this	function	to	the	‘Point’.	This	should	not	
duplicate	the	constructor’s	code,	but	invoke	it.

• You	can	access	arguments	of	a	function	in	the	
array	arguments from	within	the	function.

• To	call	this	function,	you’d	write	code	like:
var p1	=	Point.new(2,	5);
var p2	=	Point.new(3,	7);



This	lecture
• Functions	in	JavaScript:	Creation

• Invoking	a	function

• Arguments	and	Exceptions

• Nested	functions	and	closures

• Higher-order	functions	and	Currying



Arguments

• JavaScript	does	not	enforce	any	rules	about	
function	parameters	matching	their	
arguments	in	number	(or	type	for	that	matter)

• Any	additional	arguments	are	simply	
disregarded	(unless	function	accesses	them)

• Fewer	arguments	mean	the	remaining	
parameters	are	set	to	undefined



Variadic Functions

• Functions	can	access	their	arguments	using	the	
arguments	array
– Excess	parameters	are	also	stored	in	the	array

var addAll =	function(	)	{
var p	=	Object.create(this);
p.x =	0;	p.y =	0
for	(var i=0;	i<arguments.length;	i++)	{

point	=	arguments[i];
p.x =	p.x +	point.x;
p.y =	p.y +	point.y;

}
return	p;

}



Return	Values

• Functions	can	return	anything	they	like
– Objects,	including	other	functions	(for	closures)
– Primitive	types	including	null

• If	the	function	returns	nothing,	it’s	default	return	
value	becomes	undefined

• The	only	exception	is	if	it’s	a	constructor
– Returning	object	will	cause	the	new	object	to	be	lost	!



Exceptions

• Functions	may	also	throw	exceptions
– Exception	can	be	any	object,	but	it’s	customary	to	
have	an	exception	name	and	an	error	message

– Other	fields	may	be	added	based	on	context

• Exceptions	are	caught	using	try…catch
– Single	catch	block	for	the	try
– Catch	can	do	whatever	it	wants	with	the	
exception,	including	throwing	it	again



Exception:	Example
var addAll =	function(	)	{

var p	=	Object.create(this);
p.x =	0;	p.y =	0
for	(var i=0;	i<arguments.length;	i++)	{

var		point	=	arguments[i];		
if	(	Object.getPrototypeOf(point)	!=	this )

throw	{	name:	TypeError,	
message:	"Object	"	+	point	+	"	is	not	of	type	Point	“

};
p.x =	p.x +	point.x;
p.y =	p.y +	point.y;

}
return	p;

}



Class	Activity

• Modify	the	addAll code	to	make	sure	you	
return	the	sum	so	far	if	the	exception	is	
thrown,	i.e.,	sum	of	elements	till	the	faulty	
element	(you	may	modify	the	exception	
object	as	you	see	fit).

• Write	code	to	invoke	the	addAll function	
correctly,	and	to	handle	the	exception	
appropriately.	



This	lecture
• Functions	in	JavaScript:	Creation

• Invoking	a	function

• Arguments	and	Exceptions

• Nested	functions	and	closures

• Higher-order	functions	and	Currying



Nested	Functions:	Closures

• In	JavaScript,	functions	can	nest	inside	other	
functions,	unlike	in	languages	like	Java

• Nested	functions	can	access	their	enclosing	
function’s	properties	(this	is	a	good	thing)

• However,	nested	functions	cannot	access	the	
parent	function’s	this	and	arguments	(bad)	



Closures

• A	closure	is	a	nested	function	that	
“remembers”	the	value	of	it’s	enclosing	
function’s	variables

• Can	be	used	for	implementing	simple,	stateful
objects
– Allow	variables	to	be	hidden	from	other	objects
– Can	allow	objects	to	be	constructed	in	parts



Closures:	Example
function	Adder(val)	{

var value	=	val;

return function(inc)	 {
value	=	value	+	inc;
return	value;

}
};

var f	=	Adder(5);
document.writeln(	f(3)	);
document.writeln(	f(2)	);

Can	access	parent	
function’s	 local	variable	

Returns	a	function	 that	
needs	to	be	invoked	 to	get	it	
to	perform	 operation

Prints	8

Prints	10



Another	Example	of	Closures
function	Counter(	initial	)	{

var val =	initial;
return	{

increment:	function()	{	val +=	1;	}	,
reset:	function()	{	val =	initial;	}
get:	function()	{	return	val;	}

}
};

var f	=	Counter(5),	g	=	Counter(10);	
f.increment();		f.reset();	f.increment();
g.increment();	g.increment();
console.log(	f.get()	+	“	,	“	+	g.get()	);



Why	closures	are	useful	?

• Allow	you	to	remember	state	in	Web	Applications
– Especially	when	you	have	many	different	handlers	
construct	parts	of	an	object	(e.g.,	AJAX	messages)

– Very	useful	for	callbacks	in	JavaScript:	return	the	
callback	function	from	the	parent	function

– Way	to	emulate	private	variables	(JS	has	none)

• Closures	are	extensively	used	in	frameworks	such	
as	jquery to	protect	the	integrity	of	internal	state



Closures:	Referencing	Parent	Object

• In	a	closure,	what	does	this	refer	to	?
– The	nested	function	scope

• But	what	if	you	wanted	to	access	the	parent	
function’s	context	(e.g.,	to	invoke	a	method)	?
– You	no	longer	get	access	to	parent’s	this
– Store	the	parent	context	in	a	local	variable	that

Caution:	Can	lead	to	high	memory	consumption



Referencing	Parent	Object:	Example
//	Implements	a	closure	with	multiple	counters
function	MultiCounter(	initial	)	{

var that	=	this; //	Keep	track	of	the	this	variable	for	nested	functions
var val =	[]; //		Empty	array	of	counter	values
this.init =	function()	{	

//	Initialize	the	values	of		val from	the	initial	array
val =	[];
for	(var i=0;	i<initial.length;	i++)	

val.push(	initial[i]	);
};
this.init();
return	{

increment:	function(i)	{	val[i]	+=	1;	},
resetAll:	function()	{	that.init();	},
getValues:	function()	{	return	val;	}

}
};



Class	Activity- 1

• Assume	that	you	want	to	maintain	an	array	of	
N	Counter	closures	(see	Slide	32),	each	
starting	from	a	different	number	1,	2,	3	etc.	
Why	would	the	following	code	(see	next	slide)	
not	work.	Explain	why	not.

• How	would	you	change	the	code	in	the	next	
slide	to	maintain	an	array	of	counters	the	right	
way	(with	distinct	values	from	1	to	n)



Class	Activity	- 2
varMakeCounters=	function(n)	{

var counters	=	[];
for	(var i=0;	i<n;	i++)	{

var val =	i;
counters[i]	=	{

increment:	function()	{	val++;	},
get:	function()	{	return	val;	},
reset:	function()	{	val =	i;	}

}
}
return	counters;

}	
var m	=	MakeCounters(10);
for	(var	i=0;	i<10;	i++)	{

document.writeln("Counter[	"	+	i +	"]	=	"	+	m[i].get());
}



Gotchas	with	Closures

• Remember,	the	closure	stores	a	link	to	the	
variables	of	the	original	function,	not	a	copy
– Any	changes	to	the	enclosing	variable	are	
reflected	in	the	closure,	even	after	it	was	created

• Keep	the	amount	of	state	you	want	to	save	in	
the	closure	to	the	minimum	necessary	state
– Otherwise,	garbage	collector	cannot	release	it	and	
you	will	get	memory	leaks,	and	run	out	of	memory	



This	lecture
• Functions	in	JavaScript:	Creation

• Invoking	a	function

• Arguments	and	Exceptions

• Nested	functions	and	closures

• Higher-Order	Functions	and	Currying



Higher-order	functions

• Passing	functions	as	arguments	to	other	functions	
to	perform	some	task
– No	need	to	wrap	the	function	in	some	weird	object	as	
C++	or	Java	require

– Function	can	take	any	arguments	– use	apply

• This	is	very	useful	for	creating	generic	objects	
that	have	‘plug-and-play’	functionality

• Can	also	return	functions	in	JS	(we	just	saw	this)



Higher	Order	Function:	Example	- 1
var map	=	function(	array,	fn )	{

//	Applies	fn to	each	element	of	list,	returns	a	new	list
var result	=	[];
for	(var i =	0;	i <	array.length;	i++)	{

var element	=	array[i];
var args =	[	element	];
result.push(	fn.apply(	null,	args)	);

}
return	result;

}

map(	[3,	1,	5,	7,	2],	function(num)	{	return	num +	10;	}	);			



Currying

• Currying	is	when	you	want	to	bind	some	
arguments	of	a	function,	so	that	only	the	
remaining	arguments	need	to	be	filled	in
– Use	function.bind to	bind	some	arguments

• Very	useful	when	used	in	combination	with	
higher-order	functions	for	specifying	
arguments	of	functions	being	passed	in



Example	of	using	bind

• Assume	that	you	have	a	function	called	foo	that	
takes	two	arguments

function	foo(a,	b	)	{	…	}

You	can	bind	the	first	argument	to	a	constant	value	
(or	anything	else)	to	return	a	function	goo	that	
takes	a	single	argument	as	follows.

var goo	=	foo.bind(	null,	<value>	);

specifies	the	calling	context	to	bind	 to



Using	currying

• Now	you	can	pass	the	bound	function	to	the	map	
higher-order	function	we	defined	earlier..	

function	add(a,	b)	{	return	a	+	b;	}
var add10	=	add.bind(null,	10);
//	add10	takes	a	single	argument	and	adds	10	to	
//	it	as	the	other	argument	is	bound	to	the	value	10
map(	[1,	3,	5,	2,	10,	11],	add10	);	



Class	Activity	- 1

• Write	an	implementation	of	filter	using	
JavaScript.	filter	takes	2	parameters,	an	array	
arr and	a	function	f	that	takes	a	single	
parameter	and	returns	true	or	false.	It	then	
creates	another	array	with	only	the	elements	
in	arr for	which	f	returns	true.



Class	Activity	- 2

• Consider	a	function	lesserThan that	compares	
two	numbers	and	returns	true	if	the	first	
number	is	smaller	than	the	second	number.	
Create	a	curried	version	of	this	function	to	
pass	to	the	filter	function	with	the	first	
argument	set	to	a	user-specified	threshold.

• What’s	the	effect	of	the	filter	operation	here	?



Class	Activity:	Solution
var filter	=	function(	 array,	fn )	{

var	result	=	[];
for	(var	i	=	0;	i	<	array.length;	i++)	{

var	element	=	array[i];
var	args =	[	element	];
if (fn.apply(null,	 args)	)	result.push(element);	

}
return result;

};

var lesserThan =	function(a,	 b)	{	return	(a	<	b)	?	true:false;	};	
var greaterThan5	=	lesserThan.bind(null,	 5);

var	a	=	[	1,	3,	10,	8,	2,	7,	6	];
var c	=	filter(	a,	greaterThan5);
console.log(c);



This	lecture
• Functions	in	JavaScript:	Creation

• Invoking	a	function

• Arguments	and	Exceptions

• Nested	functions	and	closures

• Higher-Order	Functions	and	Currying


