
DOM	Manipula+on	

Lecture	5	–	CPEN400A	
Based	on	the	book	“JavaScript:	The	
Defini+ve	Guide”,	David	Flanagan,	

O’Reilly	
	

Recap:	Last	Lecture	

•  Window	object	

•  Timeouts	and	Intervals	

•  Event	handling		

•  Event	propaga+on	through	DOM	

Outline	

•  Selec%ng	DOM	elements	

•  Traversing	the	DOM	structure	

•  Modifying	DOM	elements	

•  Adding/crea+ng	new	DOM	elements	

NOTE	

•  We’ll	be	using	the	na+ve	DOM	APIs	for	many	
of	the	tasks	in	this	lecture	

•  Though	many	of	these	can	be	simplified	using	
frameworks	such	as	jQuery,	it	is	important	to	
know	what’s	“under	the	hood”	

•  We	assume	a	standards	compliant	browser	!	

Mo+va+on:	Selec+ng	elements	
•  You	can	access	the	DOM	from	the	object	
window.document	and	traverse	it	to	any	node	

•  However,	this	is	slow	–	o\en	you	only	need	to	
manipulate	specific	nodes	in	the	DOM	

•  Further,	naviga+ng	to	nodes	this	way	can	be	
error	prone	and	fragile	
– Will	no	longer	work	if	DOM	structure	changes	
– DOM	structure	changes	from	one	browser	to	another		

Three	Methods	to	Select	DOM	
elements	

•  With	a	specified	id	

•  With	a	specified	tag	name	

•  With	a	specified	class	

•  With	generalized	CSS	selector	

Method	1:	getElementById	

•  Used	to	retrieve	a	single	element	from	DOM		
–  IDs	are	unique	in	the	DOM	(or	at	least	must	be)	
–  Returns	null	if	no	such	element	is	found	
	

•  Example:	
var	name	=	“Sec+on1”;	
var	id	=	document.getElementById(name);	
if	(id	==	null)		
	throw	new	Error(“No	element	found:	“	+	name);		

Method	2:	getElementsByTagName	

•  Retrieves	mul+ple	elements	matching	a	given	tag	
name	(‘type’)	in	the	DOM	

•  Returns	a	read-only	array-like	object	(empty	if	no	
such	elements	exist	in	the	document)	

•  Example:	Hide	all	images	in	the	document	
var	imgs	=	document.getElementsByTagName(“img”);	
for	(var	i=0;	i<images.length;	i++)	{	
	imgs[i].display	=	“none”;	

}	
	

Method	3:	getElementsByClassName	

•  Can	also	retrieve	elements	that	belong	to	a	
specific	CSS	class		
– More	than	one	element	can	belong	to	a	CSS	class	
	

•  Example:	
var	warnings	=	
document.getElementsByClassName(“warning”);	
if	(warnings.length	>	0)	{	
	 	//	do	something	with	the	warnings	list	here	

}	

Important	point:	Live	Lists	

•  Both	getElementsByClassName	and	
getElementsByTagName	return	live	lists	
– List	can	change	a\er	it	is	returned	by	the	func+on	
if	new	elements	are	added	to	the	document	

– List	cannot	be	changed	by	JavaScript	code	adding	
to	it	or	removing	from	it	directly	though	

•  Make	a	copy	if	you’re	itera+ng	thro’	the	lists	

Selec+ng	elements	by	CSS	selector	

•  Can	also	select	elements	using	generalized	CSS	
selectors	using	querySelectorAll()	method	
– Specify	a	selector	query	as	argument	
– Query	results	are	not	“live”	(unlike	earlier)	
– Can	subsume	all	the	other	methods	

•  querySelector()	returns	the	first	element	
matching	the	CSS	query	string,	null	otherwise	

CSS	selector	syntax:	Examples	(Recap)	

#nav	 	//	Any	element	with	id=nav	
div 	 	 	//	Any	<div>	element		
.warning 	//	Any	element	with	“warning”	class	
#log	span		//	Any		descendant	of	id=“log”	
#log	>	span	//	Any	span	child	element	of	id=“log”	
body>h1:first-child				//	first	<h1>	child	of	<body>	
div,	#log			//	All	div	elements,	element	with	id=“log”	

Invoca+on	on	DOM	subtrees	

•  All	of	the	above	methods	can	also	be	invoked	
on	DOM	elements	not	just	the	document	
– Search	is	confined	to	subtree	rooted	at	element	

•  Example:	Assume	element	with	id=“log”	exists	

var	log	=	document.getElementById(“log”);	
var	error	=	log.getElementsByClassName(“error”);	
if	(error.length	==0)	{	…	}	

Class	ac+vity	

•  Write	a	func+on	that	takes	two	arguments,	‘id’	
and	‘interval’	and	rotates	the	images	rooted	at	
the	node	with	ID=‘id,	and	does	this	periodically	
every	interval	milli-seconds	

func+on	changeImage(id,	interval)	{	
	
}	

Outline	

•  Selec+ng	DOM	elements	

•  Traversing	the	DOM	structure	

•  Modifying	DOM	elements	

•  Adding/crea+ng	new	DOM	elements	

Traversing	the	DOM	

•  Since	the	DOM	is	just	a	tree,	you	can	walk	it	
the	way	you’d	do	with	any	other	tree	
– Typically	using	recursion	

•  Every	browser	has	minor	varia+ons	in	
implemen+ng	the	DOM,	so	should	not	be	
sensi+ve	to	such	changes	
– Traversing	DOM	this	way	can	be	fragile	

Proper+es	for	DOM	traversal	

•  parentNode:	Parent	node	of	this	one,	or	null	
•  childNodes:	A	read	only	array-like	object	
containing	all	the	(live)	child	nodes	of	this	one		

•  firstChild,	lastChild:	The	first	and	lastChild	of	a	
node,	or	null	if	it	has	no	children	

•  nextSibling,	previousSibling:	The	next	and	
previous	siblings	of	a	node	(in	the	order	in	
which	they	appear	in	the	document)	

Other	node	proper+es	

•  nodeType:	‘kind	of	node’	
– Document	nodes:	9	
– Element	nodes:	1	
– Text	nodes:	3	
– Comment	node:	8	

•  nodeValue	
–  textual	content	of	Text	of	comment	node	

•  nodeName	
– Tag	name	of	a	node,	converted	to	upper-case	

Example:	Find	a	text	node	

•  We	want	to	find	the	DOM	node	that	has	a	
certain	piece	of	text,	say	‘text’		

•  Return	true	if	text	is	found,	false	otherwise	

•  We	need	to	recursively	walk	the	DOM	looking	
for	the	text	in	all	text	nodes		

Code	of	the	example	
func+on	search(node,	text)	{	

	var	found	=	false;	
	if	(node.nodeType==3)	{	
	 	 	if	(node.nodeValue	===	text)	found	=	true;	
	}	else	{	//	textNodes	cannot	have	children	
	 	var	cn	=	node.childNodes;	
	 	if	(cn)	{	
	 	 	for	(var	i=0;	i	<	cn.length;	i++)	{	
	 	 	 	found	=	found	||	search(cn[i],	text);	
	 	 	}	
	 	}	
	}	
	return	found;	

};	
	 		

var	result	=	search(window.document,	“Hello	world!”);		

Class	ac+vity	

•  Write	a	func+on	that	will	traverse	the	DOM	
tree	rooted	at	a	node	with	a	specific	‘id’,	and	
checks	if	any	of	its	sibling	nodes	and	itself	in	
the	document	is	a	text	node,	and	if	so,	
concatenates	their	text	content	and	returns	it.	

•  Can	you	generalize	it	so	that	it	works	for	the	
en+re	subtree	rooted	at	the	sibling	nodes	?	

Outline	

•  Selec+ng	DOM	elements	

•  Traversing	the	DOM	structure	

•  Modifying	DOM	elements	

•  Adding/crea+ng	new	DOM	elements	

Modifying	DOM	elements	

•  DOM	elements	are	also	JavaScript	Objects	(in	
most	browsers)	and	consequently	can	have	
their	proper+es	read	and	wrixen	to	
– Can	extend	DOM	elements	by	modifying	their	
prototype	objects	

– Can	add	fields	to	the	elements	for	keeping	track	of	
state	(E.g.,	visited	node	during	traversals)	

– Can	modify	HTML	axributes	of	the	node	such	as	
width	etc.	–	changes	reflected	in	browser	display	

Element	interface	

•  It	is	bad	prac+ce	to	modify	the	Node	object	
directly,	so	instead	JavaScript	exposes	an	
Element	interface.	Objects	that	implement	the	
Element	interface	can	be	modified	
– Hierarchy	of	Element	objects	e.g.,	
HTMLTextElement,	HTMLdivElement	

– Element	object	derives	from	Node	object	and	has	
access	to	its	proper+es	

	

Example:	Changing	visible	elements	of	
a	node	

•  Assume	that	you	want	to	change	the	URL	of	an	
image	object	in	the	DOM	with	id=“myimage”	
a\er	a	5	second	delay	to	“newImage.jpg”	

	
var	myImage	=	
document.getElementById(“myimage”);	
setTimeout(func+on()	{	
	 	 	 	 	 	myImage.src	=“newImage.jpg”;	
	 	 	},	5000);	

Example:	Extending	DOM	element’s	
prototype	

•  Let’s	add	a	new	print	method	to	Node	that	prints	
the	text	to	console	if	it’s	a	text/comment	node	
–  This	may	break	some	frameworks,	so	proceed	with	
cau+on	!	

	
Element.prototype.print	=	func+on()	{	
	if	(this.nodeType==3	||	this.nodeType==8)	
	 	 	console.log(this.nodeText);	

}	

Example:	Adding	new	axributes	to	
DOM	elements	

•  You	can	also	add	new	axributes	to	DOM	
nodes,	but	these	will	not	be	rendered	by	the	
web	browser	(unless	they’re	HTML	axributes)	
– Cau+on:	may	break	frameworks	such	as	jquery	!	

var	e	=	document.getElementById(“myelement”);	
e.accessed	=	true;	
//	accessed	is	a	non-standard	HTML	axribute	

Accessing	the	raw	HTML	of	a	node	

•  You	can	retrieve	the	raw	HTML	of	a	DOM	
node	using	it’s	innerHTML	property	
– can	modify	it	from	within	JavaScript	code,	though	
this	is	considered	bad	prac+ce	and	is	deprecated	

HTML:	<p	id="myP">I	am	a	paragraph.</p>	
JS	code:	var	e	=	document.getElementById(“myP”);	

	 					console.log(e.innerHTML);	
	 					e.innerHTML	=	“Don’t	do	this	!”;	

document.write	

•  This	also	deprecated	
•  Quick	and	dirty	method	to	insert	a	string	into	
the	document	at	the	loca+on	of	the	script	that	
invoked	it	while	parsing	the	document	

•  Cannot	be	used	within	callback	func+ons	or	
event	handlers	–	will	replace	the	page’s	DOM	

Class	ac+vity	

•  Add	a	field	to	each	DOM	element	of	type	‘div’	
that	keeps	track	of	how	many	+mes	the	div	is	
accessed	through	the	
document.getElementById	method,	and	make	
sure	to	ini+alize	the	value	of	this	field	for	all	
div’s	in	the	document	to	0	when	the	
document	is	ini+ally	loaded.		

Outline	

•  Selec+ng	DOM	elements	

•  Traversing	the	DOM	structure	

•  Modifying	DOM	elements	

•  Adding/crea%ng	new	DOM	elements	

Crea+ng	New	DOM	Nodes 		

•  You	can	create	a	new	DOM	node	using	either	
document.createElement(“element”)	OR	
document.createTextNode(“text	content”)	

var	newNode	=	document.createTextNode(“hello”);	
var	elNode	=	document.createElement(“h1”);		
	

Copying	exis+ng	DOM	nodes	

•  To	copy	an	exis+ng	DOM	node,	use	cloneNode	
– Single	argument	can	be	true	or	false	
– True	means	make	a	deep	copy	(i.e.,	recursively	copy	
all	the	descendants)	

– new	node	can	be	inserted	into	a	different	document	

var	exis+ngNode	=	document.getElementByid(“my”);	
var	newNode	=	exis+ngNode.cloneNode(true);	

Inser+ng	nodes	

•  appendChild	adds	a	new	node	as	a	child	of	the	
node	it	is	invoked	on.	node	becomes	lastChild	

•  insertBefore	is	similar,	except	that	it	inserts	
the	node	before	the	one	that	is	specified	as	
the	second	argument	(lastChild	if	it’s	null)	

var	s	=	document.getElementByID(“my”);	
s.appendChild(newNode);				
s.insertBefore(newNode,		s.firstChild);	

Removing	and	replacing	nodes	

•  Removing	a	node	is	done	by	removeChild.	To	
remove	a	node	n,	you’ve	got	to	call	

n.parentNode.removeChild(n);		
	
To	replace	a	node	‘n’	with	a	new	node,	do	
n.parentNode.replaceChild(
	 	document.createTextNode(“[redacted]”),	
	 	n);	

Example	to	put	it	all	together	

//	func+on	to	replace	a	node	n	by	making	it	a	
child	of	a	new	‘div’	element	with	id	=	“id”	
func+on	newdiv(n,	id)	{	
	var	div	=	document.createElement(‘div’);	
	div.id	=	id;	
	n.parentNode.replaceChild(div,	n);	
	div.appendChild(n);	

};	

Using	Document	Fragments	
•  A	document	fragment	is	a	container	for	other	
nodes	
–  Parent	node	of	a	fragment	is	always	null	
–  Can	have	children	like	regular	DOM	nodes	

•  Can	be	passed	in	place	of	node	to	insertBefore,	
appendChild,	replaceChild	etc.	for	opera+ng	on	the	
children	of	the	fragment	(not	the	fragment	itself)	

var	frag	=	document.createDocumentFragment();	

Example	of	using	Fragments	
•  Func+on	to	reverse	order	of	children	of	node	‘n’	
	
func+on	reverse(n)	{	

	var	f	=	document.createDocumentFragment();	
	while	(n.lastChild)	{		
	 	 	var	c		=n.lastChild;	
	 	 	n.removeChild(c);	
	 	 	f.appendChild(c);	
	}	
	n.appendChild(f);		//	move	children	of	f	back	to	n	

}	

Class	Ac+vity	

•  Write	a	method	to	collect	all	elements	that	
match	a	specific	critereon	in	the	DOM	subtree	
rooted	at	a	node	‘n’	determined	by	a	func+on	
f	–	move	these	nodes	en-masse	as	children	of	
the	parent	node	of	‘n’	(i.e.,	as	siblings	of	n)	

Outline	

•  Selec+ng	DOM	elements	

•  Traversing	the	DOM	structure	

•  Modifying	DOM	elements	

•  Adding/crea%ng	new	DOM	elements	

