DOM Manipulation

Lecture 5 — CPEN40OA

Based on the book “JavaScript: The
Definitive Guide”, David Flanagan,
O’Reilly

Recap: Last Lecture

Window object
Timeouts and Intervals
Event handling

Event propagation through DOM

Outline

Selecting DOM elements

Traversing the DOM structure

Modifying DOM elements

Adding/creating new DOM elements

NOTE

« We'll be using the native DOM APIs for many
of the tasks in this lecture

 Though many of these can be simplified using
frameworks such as jQuery, it is important to
know what’s “under the hood”

 We assume a standards compliant browser |

Motivation: Selecting elements

* You can access the DOM from the object
window.document and traverse it to any node

* However, this is slow — often you only need to
manipulate specific nodes in the DOM

* Further, navigating to nodes this way can be
error prone and fragile

— Will no longer work if DOM structure changes
— DOM structure changes from one browser to another

Three Methods to Select DOM
elements

With a specified id

With a specified tag name

With a specified class

With generalized CSS selector

Method 1: getElementByld

* Used to retrieve a single element from DOM
— |IDs are unique in the DOM (or at least must be)
— Returns null if no such element is found

 Example:
var name = “Section1”;
var id = document.getElementByld(name);
if (id == null)
throw new Error(“No element found: “ + name);

Method 2: getElementsByTagName

* Retrieves multiple elements matching a given tag
name (‘type’) in the DOM

e Returns a read-only array-like object (empty if no
such elements exist in the document)

 Example: Hide all images in the document
var imgs = document.getElementsByTagName(“img”);
for (var i=0; i<images.length; i++) {

imgsJi].display = “none”;

Method 3: getElementsByClassName

* Can also retrieve elements that belong to a
specific CSS class

— More than one element can belong to a CSS class

 Example:

var warnings =
document.getElementsByClassName(“warning”);

if (warnings.length > 0) {
// do something with the warnings list here

J

Important point: Live Lists

* Both getElementsByClassName and
getElementsByTagName return live lists

— List can change after it is returned by the function
if new elements are added to the document

— List cannot be changed by JavaScript code adding
to it or removing from it directly though

 Make a copy if you’'re iterating thro’ the lists

Selecting elements by CSS selector

* Can also select elements using generalized CSS
selectors using querySelectorAll() method

— Specify a selector query as argument
— Query results are not “live” (unlike earlier)
— Can subsume all the other methods

e querySelector() returns the first element
matching the CSS query string, null otherwise

CSS selector syntax: Examples (Recap)

#tnav // Any element with id=nav

div // Any <div> element

.warning // Any element with “warning” class
#log span // Any descendant of id="log”
#log > span // Any span child element of id=“log”
body>h1:first-child // first <h1> child of <body>
div, #log // All div elements, element with id=“log”

Invocation on DOM subtrees

e All of the above methods can also be invoked
on DOM elements not just the document

— Search is confined to subtree rooted at element

* Example: Assume element with id=“log” exists

var log = document.getElementByld(“log”);
var error = log.getElementsByClassName(“error”);
if (error.length ==0) { ... }

Class activity

* Write a function that takes two arguments, ‘id’
and ‘interval’ and rotates the images rooted at
the node with ID=‘id, and does this periodically
every interval milli-seconds

function changelmage(id, interval) {

Outline

Selecting DOM elements

Traversing the DOM structure

Modifying DOM elements

Adding/creating new DOM elements

Traversing the DOM

* Since the DOM is just a tree, you can walk it
the way you’d do with any other tree

— Typically using recursion

* Every browser has minor variations in
implementing the DOM, so should not be
sensitive to such changes

— Traversing DOM this way can be fragile

Properties for DOM traversal

parentNode: Parent node of this one, or null

childNodes: A read only array-like object
containing all the (live) child nodes of this one

firstChild, lastChild: The first and lastChild of a
node, or null if it has no children

nextSibling, previousSibling: The next and
previous siblings of a node (in the order in
which they appear in the document)

Other node properties

* nodeType: ‘kind of node’
— Document nodes: 9
— Element nodes: 1
— Text nodes: 3
— Comment node: 8

e nodeValue
— textual content of Text of comment node

* nhodeName
— Tag name of a node, converted to upper-case

Example: Find a text node

 We want to find the DOM node that has a
certain piece of text, say ‘text’

 Return true if text is found, false otherwise

 We need to recursively walk the DOM looking
for the text in all text nodes

Code of the example

function search(node, text) {
var found = false;
if (node.nodeType==3) {
if (node.nodeValue === text) found = true;
} else { // textNodes cannot have children
var cn = node.childNodes;
if (cn) {
for (var i=0; i < cn.length; i++) {
found = found | | search(cn[i], text);
}
}
}

return found;

I

var result = search(window.document, “Hello world!”);

Class activity

 Write a function that will traverse the DOM
tree rooted at a node with a specific ‘id’, and
checks if any of its sibling nodes and itself in
the document is a text node, and if so,
concatenates their text content and returns it.

 Can you generalize it so that it works for the
entire subtree rooted at the sibling nodes ?

Outline

Selecting DOM elements

Traversing the DOM structure

Modifying DOM elements

Adding/creating new DOM elements

Modifying DOM elements

e DOM elements are also JavaScript Objects (in
most browsers) and consequently can have
their properties read and written to

— Can extend DOM elements by modifying their
prototype objects

— Can add fields to the elements for keeping track of
state (E.g., visited node during traversals)

— Can modify HTML attributes of the node such as
width etc. — changes reflected in browser display

Element interface

* |tis bad practice to modify the Node object
directly, so instead JavaScript exposes an
Element interface. Objects that implement the
Element interface can be modified

— Hierarchy of Element objects e.g.,
HTMLTextElement, HTMLdivElement

— Element object derives from Node object and has
access to its properties

Example: Changing visible elements of
a hode

* Assume that you want to change the URL of an
image object in the DOM with id=“myimage”
after a 5 second delay to “newlmage.jpg”

var mylmage =
document.getElementByld(“myimage”);

setTimeout(function() {
mylmage.src =“newlmage.jpg”;
}, 5000);

Example: Extending DOM element’s
prototype

* Let’s add a new print method to Node that prints
the text to console if it’s a text/comment node

— This may break some frameworks, so proceed with
caution !

Element.prototype.print = function() {
if (this.nodeType==3 || this.nodeType==8)
console.log(this.nodeText);

Example: Adding new attributes to
DOM elements

* You can also add new attributes to DOM
nodes, but these will not be rendered by the
web browser (unless they’'re HTML attributes)

— Caution: may break frameworks such as jquery |

var e = document.getElementByld(“myelement”);
e.accessed = true;

// accessed is a non-standard HTML attribute

Accessing the raw HTML of a node

* You can retrieve the raw HTML of a DOM
node using it’s innerHTML property

— can modify it from within JavaScript code, though
this is considered bad practice and is deprecated

HTML: <p id="myP">l am a paragraph.</p>

JS code: var e = document.getElementByld(“myP”);
console.log(e.innerHTML);
e.innerHTML = “Don’t do this ”;

document.write

* This also deprecated

e Quick and dirty method to insert a string into
the document at the location of the script that
invoked it while parsing the document

e Cannot be used within callback functions or
event handlers — will replace the page’s DOM

Class activity

 Add a field to each DOM element of type ‘div’
that keeps track of how many times the div is
accessed through the
document.getElementByld method, and make
sure to initialize the value of this field for all
div’s in the document to O when the
document is initially loaded.

Outline

Selecting DOM elements

Traversing the DOM structure

Modifying DOM elements

Adding/creating new DOM elements

Creating New DOM Nodes

* You can create a new DOM node using either
document.createElement(“element”) OR
document.createTextNode(“text content”)

var newNode = document.createTextNode(“hello”);
var eINode = document.createElement(“h1”);

Copying existing DOM nodes

* To copy an existing DOM node, use cloneNode
— Single argument can be true or false

— True means make a deep copy (i.e., recursively copy
all the descendants)

— new node can be inserted into a different document

var existingNode = document.getElementByid(“my”);
var newNode = existingNode.cloneNode(true);

Inserting nodes

* appendChild adds a new node as a child of the
node it is invoked on. node becomes lastChild

* jnsertBefore is similar, except that it inserts
the node before the one that is specified as
the second argument (lastChild if it’s null)

var s = document.getElementByID(“my”),
s.appendChild(newNode);
s.insertBefore(newNode, s.firstChild);

Removing and replacing nodes

* Removing a node is done by removeChild. To
remove a node n, you’'ve got to call

n.parentNode.removeChild(n);

To replace a node ‘n” with a new node, do
n.parentNode.replaceChild(
document.createTextNode(“[redacted]”),

n);

Example to put it all together

// function to replace a node n by making it a
child of a new ‘div’ element with id = “id”

function newdiv(n, id) {
var div = document.createElement(‘div’);
div.id = id;
n.parentNode.replaceChild(div, n);
div.appendChild(n);

Using Document Fragments

A document fragment is a container for other
nodes

— Parent node of a fragment is always null
— Can have children like regular DOM nodes

* Can be passed in place of node to insertBefore,
appendChild, replaceChild etc. for operating on the
children of the fragment (not the fragment itself)

var frag = document.createDocumentFragment();

Example of using Fragments

* Function to reverse order of children of node ‘n’

function reverse(n) {
var f = document.createDocumentFragment();
while (n.lastChild) {
var ¢ =n.lastChild;
n.removeChild(c);
f.appendChild(c);

}
n.appendChild(f); // move children of f back to n

}

Class Activity

* Write a method to collect all elements that
match a specific critereon in the DOM subtree
rooted at a node ‘n” determined by a function
f —move these nodes en-masse as children of
the parent node of ‘n’ (i.e., as siblings of n)

Outline

Selecting DOM elements

Traversing the DOM structure

Modifying DOM elements

Adding/creating new DOM elements

