
Web	Databases	(SQL	and	NoSQL)	

Lecture	9	(CPEN	400A)	
Some	slides	based	on	CS498RK	at	UIUC	

(used	with	permission),	and	the	
MongoDB	tutorial	(docs.mongodb.)		

Outline	

•  What’s	a	Database	?	

•  RelaMonal	Databases	(SQL-based)	

•  Non-tradiMonal	Databases	(NoSQL)	

•  MongoDB	Primer	

What’s	a	Database	?	

•  In	its	simplest	form,	it’s	a	collecMon	of	data	
– Allows	applicaMons	to	modify/access	data	through	
standard	interfaces	

–  Separate	data	storage	from	logical	organizaMon	

•  Many	types	of	databases	
– Hierarchical	
– Object	oriented	
–  RelaMonal	
– Document-based	

History	of	Databases	
•  1960s:	Hierarchical	databases	

•  1970s	and	80s:	RelaMonal	Databases	

•  1990s:	OO	Databases	

•  2000s:	Key-value	stores	(e.g.,	Cassandra)	

•  2000s:	Document	stores	(e.g.,	MongoDB)	

Hierarchical	Databases	

•  Store	data	in	a	hierarchical	fashion	(i.e.,	tree)	

•  Can	result	in	fast	access	Mmes	on	disks	
– But	bri^le	to	modificaMons	
– Tree	structure	does	not	work	well	on	modern	
devices	such	as	non-volaMle	memory	

– Fell	out	of	favour	in	the	1980s	

•  Popularized	by	IBM’s	IMS	system	

RelaMonal	Databases	

•  By	far	the	most	popular	database	model	
– Proposed	by	E.F.	Codd	in	the	early	1970s	
– Open	source	implementaMon:	PostgreSQL,	MySQL	
– Commercial	products:	IBM	DB2,Oracle,	SQL	Server	

•  Main	idea:	Organize	data	into	tables	–	schema	
(relaMons).	Queries	answered	by	performing	
table	joins	in	a	declaraMve	language	(SQL).	

OO	Databases	

•  Coincided	with	the	rise	of	OO	languages	in	80s	

•  Allowed	objects	to	be	stored	without	a	
schema	in	the	database	
– Objects	could	be	read/wri^en	directly	to	DB	

•  Mostly	faded	away	in	the	late	90s.	Used	today	
in	some	niche	domains	(e.g.,	spaMal	database)	

Key-Value	Stores	(No-SQL	DBs)	
•  Reduced	the	database	to	a	giant	hash	table	
–  Given	a	key,	retrieve	a	value	from	the	DB	
–  GoogleFS	was	one	of	the	earliest	examples	
–  Popularized	by	Amazon	with	the	Dynamo	project	
–  Cassandra	was	developed	by	Facebook,	but	is	part	of	and	
supported	by	the	Apache	foundaMon	today	

•  NoMon	of	eventual	consistency	(we’ll	see	what	this	is	
later	in	this	lecture)	

•  No	single	point	of	failure	as	database	is	distributed	
across	mulMple	replicas	

Document	Databases	(No-SQL)	
•  A^empt	to	combine	the	advantages	of	relaMonal	
databases	and	key-value	stores	

•  Have	a	schema	at	the	top	level,	but	allow	flexibility	to	
modify	it	as	needed	

•  Also	provide	eventual	consistency,	but	not	as	failure	
tolerant	as	Key-value	stores	

•  MongoDB	is	one	of	the	most	popular	ones	as	it	has	
naMve	support	for	JSON	and	JavaScript	intergraMon	

Outline	

•  What’s	a	Database	?	

•  Rela2onal	Databases	(SQL-based)	

•  Non-tradiMonal	Databases	(NoSQL)	

•  MongoDB	Primer	

RelaMonal	Database	

•  Stores	the	data	in	the	form	of	tables	
(RelaMons)	to	map	one	kind	of	data	to	another	

•  Why	tables	?	
– Separate	data	storage	from	logical	view	of	data	
– Easy	to	express	relaMonships	between	data	
– Aggregate	data	from	mulMple	tables	on	demand	
(table	joins)	

– Allow	declaraMve	queries	to	be	executed	

Example	of	a	Table	
•  Much	like	a	spreadsheet,	except	the	columns	
are	of	fixed	type	and	rows	are	idenMfied	by	a	
unique	key	(known	as	primary	key)	

Source:	h^p://archive.oreilly.com/pub/a/ruby/excerpts/
ruby-learning-rails/intro-ruby-relaMonal-db.html	

Database	schema	

•  A	logical	representaMon	of	the	tables’	
structure	lisMng	each	column	name	and	type	

Column	Name	 Type	

id	 Integer	

given_name	 String	

middle_name	 String	

family_name	 String	

date_of_birth	 Date	

grade_point_average	 FloaMng	Point	

start_date	 Date	

MulMple	Unconnected	Tables	

Source:	h^p://archive.oreilly.com/pub/a/ruby/excerpts/
ruby-learning-rails/intro-ruby-relaMonal-db.html	

Connected	Tables	

•  The	problem	with	having	mulMple	
unconnected	tables	is	that	it’s	difficult	to	tell	if	
the	same	record	is	present	in	both	tables	
– Solu2on	1	(Ugly):	Duplicate	the	relevant	data	in	
each	table.	Complicates	data	management,	
updates	and	need	to	anMcipate	queries	in	advance	

– Solu2on	2	(Preferred):	Keep	a	pointer	(foreign	
key)	to	the	other	table	so	that	you	can	access	the	
data	by	following	the	pointer.	No	need	to	
anMcipate	queries	in	advance,	easy	to	modify		

Connected	Tables	

Each	table	has	what	is	known	as	primary	key	to	uniquely	
idenMfy	records	in	it.		
	
Tables	keep	foreign	keys	to	link	to	records	in	other	tables.	A	
foreign	key	is	the	primary	key	of	the	table	being	linked	to.	

Source:	h^p://archive.oreilly.com/pub/a/ruby/excerpts/
ruby-learning-rails/intro-ruby-relaMonal-db.html	

Table	Joins	

•  Can	be	used	to	combine	informaMon	from	
mulMple	tables	together	(e.g.,	through	SQL)	
– Produces	a	single	table	containing	the	informaMon	
in	both	tables,	without	duplica2on	

–  Joins	can	involve	more	than	one	table	

•  For	example,	we	can	produce	a	single	join	
table	having	the	award	name	and	the	student	
details	from	the	previous	slide	

Example	of	a	Join	in	SQL	

•  SELECT	*	from	Employees,	Departments	
where	employee.deptID=department.deptID	

	

The	problem	with	Joins	

•  Joins	are	expensive	as	they	need	to	straddle	
mulMple	tables	

•  CombinaMon	of	fields	from	different	tables	
can	result	in	losing	cache	locality	

•  	Join	performance	is	poor	for	large	tables,	
though	databases	are	very	good	at	opMmizing	
them	(and	there	are	tricks	for	doing	so)	
– Will	not	cover	these	in	this	course	

SQL	supports	TransacMons	

•  TransacMon	is	a	sequence	of	operaMons	which	
are	executed	all	at	once	or	not	at	all	
(Atomicity)	

•  If	failures	occur,	roll-back	to	the	beginning		
•  Example:	Transfer	$1000	from	Accts.	A	to	B	
– Step	1:	Locate	Account	A	and	check	balance	
– Step	2:	Subtract	1000	dollars	from	Acct	A	
– Step	3:	Credit	1000	dollars	to	Acct	B	

SQL	Databases	have	ACID	SemanMcs	

Consistency	

•  Can	check	one	or	more	constraints	on	the	
resulMng	data,	and	abort	if	not	saMsfied	

IsolaMon	

•  TransacMons	are	isolated	from	one	another	

Durability	

•  TransacMons	are	permanent	when	commi^ed	

ACID:	Pros	and	Cons	

•  Pros	
– Simplifies	reasoning	about	acMons	of	the	system	
– Guarantees	correctness	in	presence	of	failures	

•  Cons	
– Guarantees	come	with	huge	performance	cost	
– Cannot	guarantee	availability	when	network	fails	

•  This	is	due	to	something	called	the	CAP	theorem	

Class	AcMvity	

•  Consider	the	following	transacMons	T1	and	T2	
which	execute	on	a	bank	account	database.	
Which	of	the	four	ACID	rules,	if	any,	(Atomicity,	
Consistency,	IsolaMon,	Durability)	are	violated	?	

•  Assume	iniMal	balance	is	$100.	T1	a^empts	to	
deposit	$900	to	the	account.	At	the	same	Mme,	
T2	checks	if	the	account	balance	>=	500	and	
returns	true.		However,	T1	aborts	and	the	
account	balance	becomes	$100	again.	

Outline	

•  What’s	a	Database	?	

•  RelaMonal	Databases	(SQL-based)	

•  Non-tradi2onal	Databases	(NoSQL)	

•  MongoDB	Primer	

NoSQL	Databases	

•  Do	not	perform	or	naMvely	support	Table	joins	
– Are	much	more	scalable	and	failure	tolerant	
– Must	do	joins	explicitly	using	program	code	

•  Do	not	typically	support	ACID	semanMcs	
– So	data	may	be	inconsistent	or	out	of	sync	
(provide	what	is	known	as	eventual	consistency)	

– When	failures	occur,	data	may	be	lost	or	incorrect	

CAP	Theorem	[Brewer’99]	

•  You	can	achieve	only	two	of	the	following	
three	properMes	in	any	database	system	

CAP	theorem	conMnued.. 		

•  During	a	network	parMMon,	a	system	must	
choose	either	consistency	or	availability	for	it	
to	work	through	the	parMMon	
– TradiMonal	SQL-based	databases	choose	
consistency	and	may	hence	not	be	available	

– NoSQL	databases	choose	availability	and	hence	
may	not	be	consistent	

–  In	web	applicaMons,	availability	ouen	trumps	
consistency	

Example	of	Network	ParMMoning	

Eventual	Consistency	

•  NoSQL	databases	provide	a	guarantee	that	
they	will	eventually	be	consistent	(e.g.,	when	
the	network	parMMon	heals)	
– Eventually	can	be	a	very	long	Mme	….	
– Consistent	does	not	mean	correct….	

SQL	Vs	NoSQL	-	1	

SQL	Vs.	NoSQL	-	2	

SQL	Vs.	NoSQL	-	3	

SQL	Vs.	NoSQL	-	4	

Class	AcMvity	

•  For	each	of	the	following	scenarios,	will	you	
use	a	tradiMonal	database	or	non-SQL	
database.	JusMfy	your	answer	using	CAP	thrm.	
– Online	photo	gallery	to	browse	photos	and	upload	
photos	occasionally	from	mulMple	locaMons	

– Large	ecommerce	store	in	which	the	inventory	
needs	to	reflect	any	purchases	made	instantly	in	
all	locaMons	

– Shopping	cart	of	customers	in	an	online	store	in	
which	users	can	login	from	different	locaMons		

	

Outline	

•  What’s	a	Database	?	

•  RelaMonal	Databases	(SQL-based)	

•  Non-tradiMonal	Databases	(NoSQL)	

•  MongoDB	Primer	

MongoDB	

•  Document-oriented	NoSQL	database	
– Documents	are	the	equivalent	of	tables	
–  Stored	in	JSON	format	(technically	BSON,	or	binary	
JSON)	

– Must	be	smaller	than	16	MB	in	size	

•  No	apriori	schema	needed,	or	rather	schema	can	
be	modified	dynamically	
–  Can	store	dissimilar	objects	in	same	document		
– Documents	can	be	embedded	in	other	documennts	

MongoDB:	Data	types	

MongoDB:	Example	Dataset	

Databases	and	CollecMons	

•  A	MongoDB	database	consists	of	mulMple	
databases.	Specify	db	to	use	by	“use	test”	

•  A	database	can	have	mulMple	collecMons.	
Specify	collecMon	as	db.collecMonName.op	

•  A	collecMon	can	have	one	or	more	documents	
– Each	record	is	called	a	document	

Insert	into	a	Database	

•  db.collectName.insert(document	in	JSON)	

Finding	objects	

•  db.collectName.find()	–	shows	all	documents	

•  db.collectName.find(JSON	object)	–	shows	
documents	saMsfying	the	given	JSON	object	
– Finds	all	docs	with	the	fields	and	values	equal	to	
the	JSON	object	passed	as	an	argument	

– Can	also	specify	condiMonal	operaMons	such	as	
$lt,	$gt,	or	logical	combinaMons	(using	AND,	OR)	

	

Examples	of	queries	

•  db.restaurants.find({“boroguh”:	
“Manha^an”})	
– Finds	all	restaurants	with	the	
borough==manha^an	

•  db.restaurants.find({	“grades.score”:		
																																											{	$gt:30}	})	

Object_id	

•  Every	document	is	given	a	unique	‘_id’	value	–	
automaMcally	assigned	by	the	MongoDB	

•  Object	IDs	must	be	unique	in	a	document,	and	
should	be	of	type	ObjectID	

•  Can	be	used	to	remove	or	update	specific	
objects	

Update	

•  db.collectName.update(objects	to	be	
matched,	object	fields	to	be	updated)	

	

Update	operator	(full	list	of	operators	can	be	found	at:		
h^ps://docs.mongodb.org/manual/reference/operator/update/)	

Remove	

•  Can	remove	documents	from	a	collecMon	
using	the	remove	method	

	
db.collectName.remove(matching	condiMon)	
	
example:	db.restaurants.remove({	“borough”:		
	 	 	 	 	 	 	 	 	 	“Manha^an”	})	
		

OperaMons	on	each	record	

Example:	Print	the	grades	of	all	restaurants	that	
have	more	than	one	grade	associated	with	them.	
	
db.restaurants.find().forEach(
	 	 	funcMon(Object)	{	
	 	 	 	if	(Object.grades.length	>	1)	
	 	 	 	 	 	printjson(Object.grades);	
	 	 	}	

)	

Class	AcMvity	

•  You	have	two	collecMons	in	a	MongoDB	
database.	marks	contains	the	list	of	students	
in	a	course	with	their	marks	and	student	
number,	and	students	contains	the	student	
number	along	with	details	such	as	first	name,	
last	name	etc.	How	will	you	compute	the	join	
of	these	two	collecMons	(in	JS	code)	from	the	
Mongdb	shell	to	list	the	student	details	along	
with	the	marks.	You	can	assume	the	database	
is	already	loaded	into	the	shell.	

One	SoluMon	to	the	acMvity	
db.marks.find().forEach(

	 	funcMon(Object)	{	
	 	 	var	st	=	db.students.find({“student	no”:	
	 	 	 	 	 	 	 	 	Object.studentNo});	
	 	 	if	(st!=null)	{	
	 	 	 	 	printjson(st);	
	 	 	 	 	printjson(Object.marks);	
	 	 	}	
	 	 	else	{	
	 	 	 	print(“No	match	found	for	“	+	Object.studentno);	
	 	 	}	
	}	

)	

Outline	

•  What’s	a	Database	?	

•  RelaMonal	Databases	(SQL-based)	

•  Non-tradiMonal	Databases	(NoSQL)	

•  MongoDB	Primer	

