Lecture 20: lnfect(2/2)

How do epidemic and gossip reach people? (i.e., how computer viruses spread?)

> COMS 4995-2: Introduction to Social Networks Thursday, December 8th

> > 1

Epidemic model #2: $S \rightarrow I \rightarrow R$

- * Thm: Assuming $\beta \rho < 1$, $E[|Y(\infty)|] \le C \sqrt{N} / (1-\beta \rho)$
 - $\rho(G)$: largest eigenvalue of G's adjacency matrix
 - C = √ #{initial infected population}
- * If $\beta \rho < 1$ and C=o(\sqrt{N}), negligible fraction removed

* Examples:

- G is d-regular (same degree): $\rho(G) = d$
- Can be applied to bound unif. random graphs

Proof: recap of step1

* By counting all chains of infection from v to u

$$\mathbb{E}[|Y(\infty)|] = \sum_{u \in V} P[Y_u(\infty) = 1] \le \sum_{u \in V} \sum_{v \in v} X_v(0) \cdot \sum_{t \ge 0} \beta^t A_{v,u}^t$$

- Because
$$A_{v,u}^{\iota}$$
 is # sequences v=u_o,u₁,...,u_t=u

- The chance that each sequence succeeds is $eta^{m{ au}}$
- And probability of union event ≤ sum of probability

Proof: rewriting

$$\begin{split} \mathbb{E}[|Y(\infty)|] &= \sum_{u \in V} P[Y_u(\infty) = 1] \le \sum_{u \in V} \sum_{v \in v} X_v(0) \cdot \sum_{t \ge 0} \beta^t A_{v,u}^t \\ & * \text{Rewrite as } \mathbb{E}[|Y(\infty)|] \le \left\langle e_1, \sum_{t \ge 0} (\beta A)^t X(0) \right\rangle \end{split}$$

Same using vector/matrix notation

- Where
$$\langle x,y
angle = \sum_{i=1}^{N} x_i \cdot y_i$$
 and $e_1 = \begin{pmatrix} 1\\1\\\vdots\\1 \end{pmatrix}$

Some definition on norms

* We introduce norms
- vectors
$$||v||_2 = \sqrt{\sum_{i=1}^n v_i^2}$$
 Note it implies $\langle x, y \rangle \le ||x||_2 \cdot ||y||_2$
- and matrices: $||A||_2 = \max_{x \in \mathbb{R}^n} \frac{||A.x||_2}{||x||_2}$
- This implies $||A \cdot x||_2 \le ||A||_2 \cdot ||x||_2$

– This also implies $||A|| = \rho(A)$

Proof: completing

$$\mathbb{E}[|Y(\infty)|] \le \left\langle e_1, \sum_{t \ge 0} (\beta A)^t X(0) \right\rangle$$

* We deduce $\mathbb{E}[|Y(\infty)|] \le ||e_1|| \times ||\sum_{t \ge 0} (\beta A)^t|| \times ||X(0)||$

* Note that
$$\sum_{t\geq 0} (\beta A)^t = (\mathrm{Id} - \beta A)^{-1}$$

- First, the series converge as $\beta
 ho(A) < 1$
- Second, we can verify it is the inverse of

Conclusion

* We hence have $\mathbb{E}[|Y(\infty)|] \le ||e_1|| \times ||(\mathrm{Id} - \beta A)^{-1}|| \times ||X(0)||$

- From there, we can conclude the theorem
- E[$|Y(\infty)|$] ≤ C \sqrt{N} / (1-βρ) where C=√initial inf. pop.

Epidemic model #2: $S \rightarrow I \rightarrow R$

- * Thm: Assuming $\beta \rho < 1$, $E[|Y(\infty)|] \le C \sqrt{N} / (1-\beta \rho)$
 - $\rho(G)$: largest eigenvalue of G's adjacency matrix
 - C = √ #{initial infected population}
- * Examples of application
 - G is d-regular (same degree)?
 - G is a complete graph?
 - G is a star network?
 - G a uniform random graph?

- * Continuous epidemics, "logistic model"
- * Discrete epidemics, "graph"
 - Adjacency matrix
 - SI, SIR model
 - SIS
- * Epidemic algorithms

Epidemic model #3: S↔I

* Nodes follow neighbor contamination / recovery

- Node $u \in V$ infectious $(X_u = 1)$ or susceptible $(X_u = 0)$
- Node u becomes infected with rate $\beta \cdot \sum_{v \in N(u)} X_v$
- Node u recovers with rate γ =1
- * In a finite graph, all nodes eventually recover
 - Because $(X_u = o \forall u \in V)$ is the only absorbing state
 - Different on infinite graphs (e.g. lattices, trees)

Epidemic model #3: S↔I

- * Can we recover fast from an epidemy?
- * Thm: $P[X(t) \neq (0,..,0)] \leq C \sqrt{N} \exp(t (\beta \rho 1))$
 - $\rho(G)$: largest eigenvalue of G's adjacency matrix
 - C = √ #{initial infected population}
- * Corollary: If $\beta \rho < 1$, choosing t=ln(n)/(1- $\beta \rho$) we can prove
 - $E[extinction time] \le (1+ln(n))/(1-\beta\rho)$
- * Bottom line: goes to zero very fast if $\beta \rho < 1$
 - complete graph: $\rho(G)=n-1$
 - uniform random graph: $\rho(G)$ ≈ (n-1)p (if np = ω(log n))

The effect of network topology on the spread of epidemics, A Ganesh, L Massoulié, D Towsley, IEEE Infocom (2005)

* Step1: Introduce a random walk process Z_u(t)

* Intuitively we have $P[X(t) \neq 0] \leq P[Z(t) \neq 0]$

- This statement can be made precise by coupling
- Note: $P[Z(t) \neq 0] \leq \Sigma_v P[Z_v(t) \neq 0] \leq \Sigma_v E[Z_v(t)]$

Proof:

* How does Z(t) evolve?

$$\frac{d}{dt}Z_u(t) = \sum_v \beta A_{u,v} Z_v(t) - Z_u(t)$$

– This is a linear evolution!

- * In expectation, it is $\frac{d}{dt}\mathbb{E}[Z_u(t)] = \sum \beta A_{u,v}\mathbb{E}[Z_v(t)] \mathbb{E}[Z_u(t)]$
 - This is a linear deterministic evolution (N dimension)
 - Which is $\mathbb{E}[Z(t)] = e^{t(\beta A \mathrm{Id})}Z(0) = e^{t(\beta A \mathrm{Id})}X(0)$

* So that $P[Z(t) \neq 0] \le ||e_1|| ||exp(t \cdot (\beta A - I)) X(0)||$

Proof:

* Finally, we can apply the same bounding technique $- P[X(t) \neq 0] \leq ||e_1|| ||exp(t \cdot (\beta A - I)) X(0)||$

Discrete epidemics: summary

Туре	Outcomes
S→I	Everyone infected
S⇔I	No infectious nodes
S→I→R	No infectious node

Follow processes of infection
Initial conditions: small set infected nodes
Outcomes generally trivial
Speed or span depend on graph topology (e.g. spectral analysis)

- * Continuous epidemics, "logistic model"
- * Discrete epidemics, "graph"
- * Epidemic algorithms

Epidemic Algorithms

* Replicated database maintenance

- Different versions, many locations
- How to handle communication? failures ?
- * 1987 "Epidemic alg., rumor spreading, gossip"
 - Do not maintain fixed communication topology
 - Contact a node unif., spread if one node has a copy
- * How many rounds S_n before rumor spreads to all
 - $-S_n = (1+1/\ln(2)) \log(n) + O(1)$ in probability

On spreading a rumor, B. Pittel, SIAM J. Appl. Math. (1987)

Epidemic algorithms for replicated database, maintenance, A Demers et. al, ACM PODC. (1987)

How gossip compares to optimal?

* What about using simply a fixed binary tree:

- Also takes time O(log(n)), using O(n) messages
- Seems optimal in both ways, but prone to failure
- * Gossip:
 - Time O(log(n)) (optimal) and O(n log n) messages
 - In fact, unif. gossip requires at least ω(n) messages, and Ω(n loglog(n)) if no addresses are kept (the latter can be attained)

Randomized rumor spreading, R Karp and C Schindelhauer and S Shenker and B Vocking, FOCS. (2000)

Effect of network topology

- * What if communication is constrained?
 - Draw a graph between gossiping nodes G=(V,E)
 - A node u can contact v only if (u,v) is an edge in E
 - Let P_{u,v} be the communication matrix between nodes
 * (u,v) not in E implies P_{u,v} = 0
- * Main questions:
 - Which P ensures fast gossip dissemination?
 - How does gossip dissemination compares to optimal?

Effect of network topology

- * Main result: If P irreducible, symmetric
 - Let $T_{\operatorname{spr}}^{\operatorname{one}}(\varepsilon) = \sup_{v \in V} \inf \left\{ t: \Pr\left(S(t) \neq V \,|\, S(0) = \{v\}\right) \le \varepsilon \right\}$

- We have
$$T_{\rm spr}^{\rm one}(\varepsilon) = O\left(\frac{\log n + \log \varepsilon^{-1}}{\Phi(P)}\right)$$

- Where
$$\Phi(P) = \min_{S \subset V : |S| \le n/2} \frac{\sum_{i \in S; j \in S^c} P_{ij}}{|S|}$$

How gossip compares to optimal?

- * Depending on graph topology
 - Let $\varepsilon = \Omega(1/n^a)$ for a given a>0
 - Complete graph: $P_{u,v} = 1/n$; $\Phi(P) = 1/2$ Already seen that $T^{one}_{spr}(\epsilon)$ is $O(\log n)$, which is optimal
 - Ring: $P_{u,u+1} = 1/4$, $P_{u,u-1} = 1/4$, $P_{u,u} = 1/2$; Φ(P)∝1/n T^{one}_{spr}(ε) = O(n log n), optimal uses at least n steps
 - α _expander, d regular: $P_{u,v}=1/2d$, $P_{u,u}=1/2$; $\Phi(P)=\alpha/2d$ $T^{one}_{spr}(\epsilon) = O(\log n)$, which is optimal

Proof

- * Two phases:
 - 1. From $S(t) = \{v\}$ to L-1
 - 2. From L= inf{ t | #S(t) > n/2 } to #S(t) = n
- * Ingredients of the proof: Phase 2
 - a. Assume L is attained and hence #S(L)>n/2
 - Study evolution of conditional expectation
 E[#S(t+1) #S(t) | S(t)]
 - c. Uses Markov inequality $(X \ge 0 \Rightarrow P[X \ge a] \le E[X]/a)$

Proof

- * Two phases:
 - 1. From $S(t) = \{v\}$ to L-1
 - 2. From L= inf{ t | #S(t) > n/2 } to #S(t) = n
- * Ingredients of the proof:
 - a. Study evolution of conditional expectation E[#S(t+1) - #S(t) | S(t)]
 - **b.** Uses Markov inequality $(X \ge 0 \Rightarrow P[X \ge a] \le E[X]/a)$
 - c. For phase 1, need to rewrite as super-martingale

Epidemic algorithm: Summary

- * Not far from SI epidemic spread
 - With emphasis on communications constraints
- * Key property: graph conductance
- * Many extensions:
 - Send a message from each node
 - Send a stream of messages
 - Compute average value

