
Lecture	20:	Infect	(2/2)	

	
COMS	4995-2:	Introduction	to	Social	Networks	

Thursday,	December	8th	
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How	do	epidemic	and	gossip	reach	people?	
(i.e.,	how	computer	viruses	spread?)	



* Thm:	Assuming	βρ<1,	E[	|Y(∞)|	]	≤	C	√N	/	(1-βρ)		
− ρ(G):	largest	eigenvalue	of	G’s	adjacency	matrix	
− C	=	√	#{initial	infected	population}		
*  If	βρ<1	and	C=o(√N),	negligible	fraction	removed	

* Examples:		
− G	is	d-regular	(same	degree):	ρ(G)	=	d		
− Can	be	applied	to	bound	unif.	random	graphs	
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Epidemic	model	#2:	S→I→R	



* By	counting	all	chains	of	infection	from	v	to	u	

− Because																is	#	sequences	v=u0,u1,…,ut=u	
− The	chance	that	each	sequence	succeeds	is		
− And	probability	of	union	event	≤	sum	of	probability	
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Proof:	recap	of	step1	



* Rewrite	as		

− Same	using	vector/matrix	notation	

	
− Where	 	 	 					and			
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Proof:	rewriting	



* We	introduce	norms		
− vectors	 	 	 	Note	it	implies		

− and	matrices:	

− This	implies		
− This	also	implies	
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Some	definition	on	norms	



* We	deduce	

* Note	that		

− First,	the	series	converge	as		
− Second,	we	can	verify	it	is	the	inverse	of		
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Proof:	completing		



* We	hence	have	

− From	there,	we	can	conclude	the	theorem	
− E[	|Y(∞)|	]	≤	C	√N	/	(1-βρ)	where	C=√initial	inf.	pop.	
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Conclusion	



* Thm:	Assuming	βρ<1,	E[	|Y(∞)|	]	≤	C	√N	/	(1-βρ)		
− ρ(G):	largest	eigenvalue	of	G’s	adjacency	matrix	
− C	=	√	#{initial	infected	population}		
* Examples	of	application	
− G	is	d-regular	(same	degree)?	
− G	is	a	complete	graph?	
− G	is	a	star	network?		
− G	a	uniform	random	graph?	
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Epidemic	model	#2:	S→I→R	



	
* Continuous	epidemics,	“logistic	model”	
* Discrete	epidemics,	“graph”	
− Adjacency	matrix	
− SI,	SIR	model	
− SIS	

* Epidemic	algorithms	
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Outline	



* Nodes	follow	neighbor	contamination	/	recovery	
− Node	u∈V	infectious	(Xu	=	1)	or	susceptible	(Xu	=	0)	
− Node	u	becomes	infected	with	rate	β	⋅∑v∈N(u)	Xv	

− Node	u	recovers	with	rate	γ=1	
*  In	a	finite	graph,	all	nodes	eventually	recover	
− Because	(Xu	=	0	∀u	∈V)	is	the	only	absorbing	state	
− Different	on	infinite	graphs	(e.g.	lattices,	trees)	
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Epidemic	model	#3:	S↔I		



* Can	we	recover	fast	from	an	epidemy?		
* Thm:	P[X(t)	≠	(0,..,0)]	≤	C	√N	exp(t	⋅(βρ-1)	)	
− ρ(G):	largest	eigenvalue	of	G’s	adjacency	matrix	
− C	=	√	#{initial	infected	population}		
*  Corollary:	If	βρ<1,	choosing	t=ln(n)/(1-βρ)	we	can	prove	
− E[extinction	time]	≤	(1+ln(n)	)	/	(1-βρ)	
* Bottom	line:	goes	to	zero	very	fast	if	βρ<1	
−  complete	graph:	ρ(G)=n-1		
− uniform	random	graph:	ρ(G)≈	(n-1)p	(if	np	=	ω(log	n))	
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Epidemic	model	#3:	S↔I		

The	effect	of	network	topology	on	the	spread	of	epidemics,		
A	Ganesh,	L	Massoulié,	D	Towsley,	IEEE	Infocom	(2005)	
	



* Step1:	Introduce	a	random	walk	process	Zu(t)	

	
*  Intuitively	we	have	P[X	(t)	≠	0]	≤	P[Z(t)	≠	0]		
− This	statement	can	be	made	precise	by	coupling	
− Note:	P[Z(t)	≠	0]	≤	Σv	P[Zv(t)	≠	0]	≤	Σv	E[Zv(t)]		
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Proof:		



* How	does	Z(t)	evolve?	
	
	
− This	is	a	linear	evolution!	
*  In	expectation,	it	is	
− This	is	a	linear	deterministic	evolution	(N	dimension)	
− Which	is		
* So	that	P[Z(t)	≠	0]	≤	||e1||	||exp(t⋅(βA-I)	)	X(o)	||	
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Proof:		



*  Finally,	we	can	apply	the	same	bounding	technique	
− P[X(t)	≠	0]	≤	||e1||	||exp(t⋅(βA-I)	)	X(o)	||	
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Proof:		



Discrete	epidemics:	summary	
Follow	processes	of	infection	
−  Initial	conditions:		
						small	set	infected	nodes	
Outcomes	generally	trivial	
−  Speed	or	span	depend	on	

graph	topology	
(e.g.	spectral	analysis)	
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Type	 Outcomes	

S→I	 Everyone	infected	

S↔I	 No	infectious	nodes	

S→I→R	 No	infectious	node	



	
* Continuous	epidemics,	“logistic	model”	
* Discrete	epidemics,	“graph”	
* Epidemic	algorithms	
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Outline	



* Replicated	database	maintenance	
− Different	versions,	many	locations	
− How	to	handle	communication?	failures	?	
*  1987	“Epidemic	alg.,	rumor	spreading,	gossip”	
− Do	not	maintain	fixed	communication	topology	
− Contact	a	node	unif.,	spread	if	one	node	has	a	copy	
* How	many	rounds	Sn	before	rumor	spreads	to	all	
− Sn	=	(1+1/ln(2))	log(n)	+	O(1)	in	probability	
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Epidemic	Algorithms		

On	spreading	a	rumor,	B.	Pittel,	SIAM	J.	Appl.	Math.	(1987)	
	Epidemic	algorithms	for	replicated	database	maintenance,		

A	Demers	et.	al,	ACM	PODC.	(1987)	
	



* What	about	using	simply	a	fixed	binary	tree:	
− Also	takes	time	O(log(n)),	using	O(n)	messages	
− Seems	optimal	in	both	ways,	but	prone	to	failure	
* Gossip:	
− Time	O(log(n))	(optimal)	and	O(n	log	n)	messages	
−  In	fact,	unif.	gossip	requires	at	least	ω(n)	messages,	
and	Ω(n	loglog(n))	if	no	addresses	are	kept	(the	latter	
can	be	attained)	
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How	gossip	compares	to	optimal?	

Randomized	rumor	spreading,		
R	Karp	and	C	Schindelhauer	and	S	Shenker	and	B	Vocking,	FOCS.	(2000)	
	



* What	if	communication	is	constrained?	
− Draw	a	graph	between	gossiping	nodes	G=(V,E)	
− A	node	u	can	contact	v	only	if	(u,v)	is	an	edge	in	E	
− Let	Pu,v	be	the	communication	matrix	between	nodes	
*  (u,v)	not	in	E	implies	Pu,v	=	0	

* Main	questions:		
− Which	P	ensures	fast	gossip	dissemination?	
− How	does	gossip	dissemination	compares	to	optimal?	
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Effect	of	network	topology	



* Main	result:	If	P	irreducible,	symmetric	
− Let	

− We	have	

− Where			
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Effect	of	network	topology	



* Depending	on	graph	topology	
− Let	ε	=	Ω(1/na)	for	a	given	a>0	
− Complete	graph:	Pu,v	=1/n;	Φ(P)=1/2	

Already	seen	that	Tone
spr(ε)	is	O(log	n),	which	is	optimal	

− Ring:	Pu,u+1	=1/4,	Pu,u-1	=1/4	,	Pu,u	=1/2;			Φ(P)∝1/n	
Tone

spr(ε)	=	O(n	log	n),	optimal	uses	at	least	n	steps	

− α_expander,	d	regular:	Pu,v=1/2d,	Pu,u	=1/2;	Φ(P)=α/2d	
Tone

spr(ε)	=	O(log	n),	which	is	optimal	
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How	gossip	compares	to	optimal?	



* Two	phases:	
1.  From	S(t)	=	{v}	to	L-1	
2.  From	L=	inf{	t	|	#S(t)	>	n/2	}	to	#S(t)	=	n	
*  Ingredients	of	the	proof:	Phase	2	
a.  Assume	L	is	attained	and	hence	#S(L)>n/2	
b.  Study	evolution	of	conditional	expectation	

E[	#S(t+1)	-	#S(t)	|	S(t)	]		
c.  Uses	Markov	inequality	(X≥0	⇒	P[X≥a]	≤	E[X]/a	)	
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Proof	



* Two	phases:	
1.  From	S(t)	=	{v}	to	L-1	
2.  From	L=	inf{	t	|	#S(t)	>	n/2	}	to	#S(t)	=	n	
*  Ingredients	of	the	proof:		
a.  Study	evolution	of	conditional	expectation	

E[	#S(t+1)	-	#S(t)	|	S(t)	]		
b.  Uses	Markov	inequality	(X≥0	⇒	P[X≥a]	≤	E[X]/a	)	
c.  For	phase	1,	need	to	rewrite	as	super-martingale	
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Proof	



* Not	far	from	SI	epidemic	spread	
− With	emphasis	on	communications	constraints	

* Key	property:	graph	conductance	
* Many	extensions:	
− Send	a	message	from	each	node	
− Send	a	stream	of	messages	
− Compute	average	value	
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Epidemic	algorithm:	Summary	


