Lecture 20: Infect (2/2)

How do epidemic and gossip reach people?
(i.e., how computer viruses spread?)

COMS 4995-2: Introduction to Social Networks
Thursday, December 8t




Epidemic model #2: S—1—R

\

* Thm: Assuming Bp<1, E[ |[Y(e)| ] < CVN [/ (1-Bp)
— p(G): largest eigenvalue of G’s adjacency matrix
— C =V #{initial infected population}
* If Bp<1 and C=0(VN), negligible fraction removed

* Examples:
— Gis d-regular (same degree): p(G) = d
— Can be applied to bound unif. random graphs
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Proof: recap of step1

\

* By counting all chains of infection from v to u

E[[Y (c0)[] = ) P[Yu(oo) =11 < ) > Xu(0)- > B'A5,

uEV u€V vev t>0
— Because Av u IS # sequences v=u,,U.,...,U.= ut
— The chance that each sequence succeeds is ﬂ

— And probability of union event < sum of probability
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Proof: rewriting

\
E[|Y(c0)[] = ) P[Yu(oo) =11 < ) > X, (0)- ) AL,

ueV u€V vev t>0
* Rewrite as E[|Y (00)|] < <61,Z(5A)tX(O)>
t>0

— Same using vector/matrix notation

1
1
— Where (z,y) sz y; and e; = ()

1
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Some definition on norms

—

* We introduce norms
— vectors i, = zn:vz_z Note it implies (z,y) < ||z|l2 - ||yl|2

1=1

A.x
— and matrices: ||A||2 = max 14-2]],
z€R™  |[|z2

~ This implies [|4 - z|[2 < [[A]l2 - [|z]]2
— This also implies ||A]| = p(A)
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Proof: completing
T ——

E[|Y (00)|] < <61, > (BAX (0)>

t>0

* We deduce E[|Y (co)] < [leal x || Y (8A)I| x [IX(0)]

t>0

+ Note that » _(BA)" = (Id — BA)™!

t>0

— First, the series convergeas Gp(A) < 1
— Second, we can verify it is the inverse of
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* We hence have
E[]Y (c0)]] < |lex]| x ||(Id — BA) || x [| X (0)]]

— From there, we can conclude the theorem
— E[ [Y(e)| ] £ CVN [ (1-Bp) where C=Vinitial inf. pop.
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Epidemic model #2: S—1—R

—

* Thm: Assuming Bp<1, E[ |[Y(e)| ] < CVN [/ (1-Bp)
— p(G): largest eigenvalue of G’s adjacency matrix
— C =V #{initial infected population}

* Examples of application
— Gis d-regular (same degree)?
— Gis a complete graph?
— G is a star network?
— G a uniform random graph?
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* Continuous epidemics, “logistic model”
* Discrete epidemics, “graph”

— Adjacency matrix

— SI, SIR model

— SIS

* Epidemic algorithms
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Epidemic model #3: S©|

\A

* Nodes follow neighbor contamination / recovery
— Node u€V infectious (X, = 1) or susceptible (X, = 0)
— Node u becomes infected withrate 8 - >, <y X,
— Node u recovers with rate y=1

* In a finite graph, all nodes eventually recover
— Because (X, =0 Yu €V)is the only absorbing state
— Different on infinite graphs (e.g. lattices, trees)
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Epidemic model #3: Sl

T ———

* Can we recover fast from an epidemy?
* Thm: P[X(t) # (0,..,0)] < CVN exp(t - (Bp-1))
— p(G): largest eigenvalue of G’s adjacency matrix
— C =V #{initial infected population}
* Corollary: If Bp<1, choosing t=In(n)/(1-Bp) we can prove
— E[extinction time] < (1+In(n) ) / (1-Bp)
* Bottom line: goes to zero very fast if Pp<1
— complete graph: p(G)=n-1
— uniform random graph: p(G)= (n-1)p (if np = w(log n))

The effect of network topology on the spread of epidemics,
A Ganesh, L Massoulié, D Towsley, IEEE Infogom (2005) CS@
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* Step1: Introduce a random walk process Z (t)

* Intuitively we have P[X(t) # 0] < P[Z(t) £ 0]
— This statement can be made precise by coupling
— Note: P[Z(t)20] <X, P[Z(t) 0] <X, E[Z(t)]



—

* How does Z(t) evolve?

%Zu(t) — ;ﬂAu,va(t) — Zu(t)

— This is a linear evolution!

# In expectation, it is g EIZu()] = 3 4u.E{Z,(0)] - Bz
— This is a linear deterministic evolution (N dimension)
— Which is E[Z(t)] = e'P471d) Z(0) = £!P4~1d) X (0)

# So that P[Z(t) # 0] < [|e,]| [lexp(t- (BA-) ) X(0) |
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* Finally, we can apply the same bounding technique

— P[X(t) # o] <|le,[| [lexp(t- (BA-1) ) X(0)
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Discrete epidemics: summary

Follow processes of infection

. VR — Initial conditions:
small set infected nodes
MRUES L Outcomes generally trivial

— Speed or span depend on

graph topology
(e.g. spectral analysis)

S—I—R Noinfectious node




\‘

* Continuous epidemics, “logistic model”
* Discrete epidemics, “graph”
* Epidemic algorithms
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Epidemic Algorithms

T ———

* Replicated database maintenance
— Different versions, many locations
— How to handle communication? failures ?
* 1987 “Epidemic alg., rumor spreading, gossip”
— Do not maintain fixed communication topology
— Contact a node unif., spread if one node has a copy
* How many rounds S_ before rumor spreads to all
— S, = (1+1/In(2)) log(n) + O(1) in probability

On spreading a rumor, B. Pittel, SIAM J. Appl. Math. (1987)

Epidemic algorithms for replicated database maintenance, CS@
A Demers et. al, ACM PODC. (1987) eCU



How gossip compares to optimal?

T ———

* What about using simply a fixed binary tree:
— Also takes time O(log(n)), using O(n) messages
— Seems optimal in both ways, but prone to failure
* Gossip:
— Time O(log(n)) (optimal) and O(n log n) messages
— In fact, unif. gossip requires at least w(n) messages,

and Q(n loglog(n)) if no addresses are kept (the latter
can be attained)

Randomized rumor spreading,
R Karp and C Schindelhauer and S Shenker gnd B Vocking, FOCS. (2000) CS@
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Effect of network topology

\A

* What if communication is constrained?
— Draw a graph between gossiping nodes G=(V,E)
— Anode u can contact v only if (u,v) is an edge in E
— Let P, be the communication matrix between nodes
* (u,v) notin Eimplies P, =0
* Main questions:
— Which P ensures fast gossip dissemination?
— How does gossip dissemination compares to optimal?
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Effect of network topology
.‘

* Main result: If P irreducible, symmetric

- Let  Tif(e) = supinf {: Pr(S(t) £ V| S(0) = {v}) <<}

~1
~Wehave T°"(s ):O(IC’g”HOg8 )

Spr @(P)
i ce Py
— Where @(P) — mln ZZGSJES J
SCV:|S|<n/2 S|
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How gossip compares to optimal?

\A

* Depending on graph topology
— Let € = Q(1/n?) for a given a>0
— Complete graph: P, =1/n; O(P)=1/2
Already seen that T°"¢_ (€) is O(log n), which is optimal
- Ring: P, ,,,=1/4, P, ,.=1/4, P, ,=1/2; ®(P)oc1/n
Tore  (€) = O(n log n), optimal uses at least n steps

- a_expander, d regular: P, =1/2d, P ,=1/2; ®(P)=a/2d
Tore . (€) = O(log n), which is optimal
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* Two phases:
1. From S(t) = {v} to L-1
2. From L=inf{ t|#S(t) >n/2 }to #S(t) = n
* Ingredients of the proof: Phase 2
a. Assume L is attained and hence #S(L)>n/2

b. Study evolution of conditional expectation
E[ #S(t+1) - #S(t) | S(t) ]
c. Uses Markov inequality (X=0 = P[X=za] < E[X]/a)
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* Two phases:
1. From S(t) = {v} to L-1
2. From L=inf{ t|#S(t) >n/2 }to #S(t) = n
* Ingredients of the proof:
a. Study evolution of conditional expectation
E[ #S(t+1) - #S(t) | S(t) ]
b. Uses Markov inequality (X>=0 = P[X>a] < E[X]/a)
c. For phase 1, need to rewrite as super-martingale
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Epidemic algorithm: Summary

<Ll

* Not far from Sl epidemic spread

— With emphasis on communications constraints
* Key property: graph conductance
* Many extensions:

— Send a message from each node

— Send a stream of messages
— Compute average value
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