MATH 1115 - Fundamental Mathematics for the General Sciences I ASSIGNMENT 2 (GROUP 1) ¹

- To be submitted by 4 p.m. on Thursday, 6th. October, 2016 in the Department of Mathematics and Statistics (BOX labelled MATH 1115 G1). Late assignments will be deducted 50% of achieved mark. Assignments submitted more than 24 hours late will be awarded a mark of zero.
- On your script, please include in the following order: Course code and Group number, Assignment number, Name, ID number and Instructor's name (Ms. L Addison). For example, Math 1115 G4, Assignment #2, Jane Doe, 81009672, Ms. L. Addison.
- Please ensure that you submit your script in the appropriate box FOR YOUR GROUP labelled Math 1115 in the department.
- Attempt ALL questions, showing ALL working where applicable.
- Note that a selection of questions will be marked.

For questions 1-2, answer each question with ONE appropriate choice.

1. Simplify as much as possible: $\left(\frac{25}{4}\right)^{-\frac{1}{2}}$

(a) $\frac{2}{5}$

(b)
$$\frac{5}{2}$$

(c) $-\frac{5}{4}$ (d) $\left(\frac{25}{4}\right)^2$

2. Which of the following is a surd?

(a)
$$\sqrt{\frac{9}{4}}$$

(b) $\sqrt{\frac{3}{2}}$
(c) $\sqrt{4}$
(d) $\sqrt{25}$

¹For soft-copy of this assignment visit: http://tinyurl.com/js44qrv

⁽check the 'Resources' tab)

3. Simplify the following showing relevant working:

(a)
$$\left(-\frac{5}{6} \div \left(\frac{216}{25}\right)^{\frac{1}{3}}\right) \times \left(\frac{5}{6}\right)^{-1}$$

(b) $\left(-\frac{22}{9} \times \left(\frac{9}{4}\right)^{\frac{3}{2}}\right) \div \frac{11}{2}$

4. Solve for x in the following equations:

(a)
$$9^{(1-2x)} = 27^{-(\frac{x}{3})}$$

(b) $\frac{2^{3x+7}}{4^{2x-2}} = \frac{8^{x-3}}{32^{5-x}}$

5. Use the method of "rationalising" the denominator in the following: [i.e. Remove the surds from the denominator]:

(a)
$$\frac{5+\sqrt{6}}{\sqrt{3}-\sqrt{2}}$$

(b) $\frac{1}{2+\sqrt{2}}$

Interesting fact: Surds assist in improving operations in careers which require very accurate numbers, for instance, a heart surgeon may require a patient to have surgery exactly $10+\sqrt{2}$ cm from the heart. $\sqrt{2}$ would be approximately 1.41421356... Without surds, rounding this number to 1 or 1.4 can cause problems in the surgery.

- 6. The World Health Organization reduced its maximum recommended concentration for arsenic in drinking water from $50 \mu g L^{-1}$ to $10 \mu g L^{-1}$ in 1993. Convert $10 \mu g L^{-1}$ into a value:
 - a) $\mu g\,m L^{-1}$
 - b) $mg \, cm^{-3}$

Hint: 1 ml is equivalent to $1 cm^3$

- 7. Convert a density of $10.49 g \, cm^{-3}$ (the density of silver) into a value in the SI units of $kg \, m^{-3}$.
- 8. Convert the following measurements into m^3 and then express in scientific notation:
 - (a) $350 \ cm^3$
 - (b) 25 $\times 10^{-6}\,\mu L$ Hint: 1 mL is equivalent to $1\,cm^3$
 - (c) $12.2 \times 10^7 mm^3$

END OF ASSIGNMENT