MATH 1115 - Fundamental Mathematics for the General Sciences I

ASSIGNMENT 3 (GROUP 1)¹

- To be submitted by **4 p.m**. on **Thursday, 13th. October, 2016** in the Department of Mathematics and Statistics (**BOX labelled MATH 1115 G1**). Late assignments will be deducted 50% of achieved mark. Assignments submitted more than 24 hours late will be awarded a mark of zero.
- On your script, please include in the following order: Course code and Group number, Assignment number, Name, ID number and Instructor's name (Ms. L. Addison). For example, Math 1115 G4, Assignment #3, Jane Doe, 81009672, Ms. L. Addison.
- Please ensure that you submit your script in the appropriate box in the department, labelled FOR YOUR GROUP of Math 1115.
- Attempt ALL questions, showing ALL working where applicable.
- Note that a selection of the questions will be marked, not necessarily all. A markscheme is shown for each question in the right hand corner.

Determine (a) fg(x) and (b) gf(x) for each of the following.

1. $f(x) = 2x - 1, g(x) = -x$	[6]
2. $f(x) = x + 2$, $g(x) = x^2$	[6]
3. $f(x) = 3x - 1$, $g(x) = x^2 + 2x - 1$	[7]
4. $f(x) = \frac{1}{2x}$, $g(x) = 2x + 3$. Specify the domain of each composite function.	[8]
5. $f(x) = \frac{1}{x-1}$, $g(x) = \frac{1}{x}$. Specify the domain of each composite function.	[8]

6. Given that f(x) = 2x - 3 and $g(x) = (x + 1)^2$, determine:

(a)
$$f(-3)$$
 (b) $g(-4)$ (c) $fg(x)$ (d) $gf(x)$ (e) $f^{-1}(x)$ and $f^{-1}(15)$ (f) $gf^{-1}(x)$ and $gf^{-1}(15)$ [16]

[9]

- 7. Given that $f(x) = \frac{2x-1}{2}$, g(x) = 1 2x and $h(x) = 2x^2 1$, determine fgh(x).
- 8. For the functions in f(x) and g(x) in Question 7, show that (i) $(fg)^{-1}(x) = g^{-1}f^{-1}(x)$ and ii) $(gf)^{-1}(x) = f^{-1}g^{-1}(x)$ [8] Note: In the above questions, $f^{-1}(x)$ denotes the inverse function of f, $g^{-1}(x)$ denotes the inverse function of g, $(fg)^{-1}(x)$ denotes the inverse of the composite function (fg)(x) and $(gf)^{-1}(x)$ denotes the inverse of the composite function (fg)(x) and $(gf)^{-1}(x)$ denotes the inverse of the composite function (gf)(x).

9. Express
$$\frac{1-\sqrt{3}}{2+\sqrt{3}}$$
 in the form $x + y\sqrt{3}$, where $x, y \in \mathbb{Q}$. [5]

10. Show that:

(a)
$$\frac{\sqrt{7} - \sqrt{2}}{\sqrt{7} + \sqrt{2}} = \frac{1}{5} \left(9 - 2\sqrt{14}\right)$$
 [4]
(b) $\frac{\sqrt{7} - \sqrt{2}}{\sqrt{7} + \sqrt{2}} - \frac{\sqrt{7} + \sqrt{2}}{\sqrt{7} - \sqrt{2}} = -\frac{4\sqrt{14}}{5}$ [7]

11. Express the following, in the form $k\sqrt{7}$, where *k* is an integer.

(a)
$$\sqrt{28} + \sqrt{252}$$
. (b) $\sqrt{175} - \sqrt{63}$ [6]

END OF ASSIGNMENT

¹For soft-copy of this assignment visit: <u>http://tinyurl.com/js44qrv</u> (check the 'Resources' tab)