
Threads

Fall 2016

Based on Lecture Slides by Andrew Tanenbaum

Operating SystemsFall 2016 Operating Systems

Reading

• Chapter 2, Sec 2.2, “Modern Operating Systems,
Fourth Ed.”, Andrew S. Tanenbaum
• You can skip 2.2.7, 2.2.8, 2.2.9

2

Operating SystemsFall 2016 Operating Systems

Outline
• Why Threads?
• The Thread Model
• Threads in User Space
• Threads in the Kernel
• Hybrid Threads
• Threads in Unix/Linux

3

Operating SystemsFall 2016 Operating Systems

Processes and Threads

• Process
• Single address space
• Single execution path

• Threads within a process
• Share same address space
• Multiple execution paths

4

Operating SystemsFall 2016

Single-Threaded and
Multithreaded Processes

5

Operating SystemsFall 2016 Operating Systems

Why Threads?

• In many applications, multiple activities are
going on at once
• Some activities may block from time to time
• They need to share the address space
• Decomposing these applications into multiple threads

(execution paths) makes the programming model
simpler

• Lighter weight than a process
• Easier (Faster) to create and destroy than a process

6

Operating SystemsFall 2016 Operating Systems

Why Threads? (cont’d)

• For applications performing both CPU and I/O
• CPU and I/O activities can overlap
• Therefore, speedup the application

• Parallelism can be achieved if there are
multiple CPUs in the system

7

Operating SystemsFall 2016

Types of Parallelism

• Data parallelism:
• divide the data among multiple threads
• each thread does the same task on the

subset of data assigned to it
• Task parallelism:

• divide different tasks to be performed
by different threads

• tasks are preformed simultaneously

8

Operating SystemsFall 2016 Operating Systems

Examples

• Word processor, Spreadsheet
• A computation thread, an interactive thread, a backup

thread
• Web server

• A thread to process each client’s request
• Applications that must process very large

amounts of data
• An input thread, a processing thread, and an output

thread

9

Operating SystemsFall 2016

Example: Multithreaded Server

10

Operating SystemsFall 2016

Web Server Example

11

Dispatcher Thread Worker Thread

Operating SystemsFall 2016 Operating Systems

Outline
• Why Threads?
• The Thread Model
• Threads in User Space
• Threads in the Kernel
• Hybrid Threads
• Threads in Unix/Linux

12

Operating SystemsFall 2016 Operating Systems

Address Space and Execution

• Shared resources by a process:
• Address space containing code and data
• Opened Files
• Child processes

• Path of Execution (Thread) — multiple per
process
• Program counter to identify next instruction to

execute
• Registers containing current working variables
• Stack

13

Operating SystemsFall 2016

Multithreaded Processes

14

Shared resources by all
threads in a process

Per each thread in a
process

Operating SystemsFall 2016

Therefore, ….

• Processes are used to group resources together
• Threads are the entities that are scheduled on

the processor

15

Operating SystemsFall 2016

Thread Model

• Threads allow multiple execution paths within
the same process

• Threads share the same resources of the process
that they work within

• Threads are sometimes called light weight
processes

• Multithreading refers to allowing multiple
threads within a process

16

Operating SystemsFall 2016

Multithreading

17

Operating SystemsFall 2016

Resources for Processes and
Threads

18

Per Process Items Per Thread Items

Address space
Global variables
Open files
Child processes
Pending alarms
Signals and signal handlers
Accounting information

Program counter
Registers
Stack
State

Operating SystemsFall 2016

Stack Per Thread

19

Operating SystemsFall 2016

Thread Lifecycle

• A process starts with a single thread
• That thread can create multiple threads using

the procedure: thread…create
• input: the procedure to run
• no information about the address space
• output: identifier of the created thread

• When a thread finishes, it terminates by calling
the procedure: thread…exit

• Other: thread…join and thread…yield

20

Operating SystemsFall 2016 Operating Systems

Outline
• Why Threads?
• The Thread Model
• Threads in User Space
• Threads in the Kernel
• Hybrid Threads
• Threads in Unix/Linux

21

Operating SystemsFall 2016

Implementing Threads in User
Space

• AKA User-Level Thread (ULT)
• Thread management is done by the application
• The kernel knows nothing about the threads
• Each process has its own thread table (similar to

the process table kept by the kernel)
• A thread scheduler to schedule threads within a

process
• Thread switching is at least an order of

magnitude faster than process switching

22

Operating SystemsFall 2016

User Level Threads

23

Operating SystemsFall 2016

User Level Thread States and
Process States

24

Process B
Th1
Th2

Operating SystemsFall 2016

Advantages of User Level
Threads

25

Thread
switching does

not require
kernel mode

privileges

Scheduling can
be application

specific

ULTs can run on
any OS

Operating SystemsFall 2016

Disadvantages of User Level
Threads

26

• In a typical OS many system calls are blocking
• as a result, when a ULT executes a system

call, not only is that thread blocked, but all
of the threads within the process are
blocked

• Switching to another thread can only be done
through “yielding” of the running thread

• In a pure ULT strategy, a multithreaded
application cannot take advantage of
multiprocessing

Operating SystemsFall 2016

Overcoming Process Blocking
User Level Threads

• Making all system calls as non-blocking
• >>> need to change the OS :(

• Writing a process as multiple processes rather
than multiple threads

• Jacketing/wrapping: rewriting a blocking system
call into a non-blocking system call

27

Operating SystemsFall 2016 Operating Systems

Outline
• Why Threads?
• The Thread Model
• Threads in User Space
• Threads in the Kernel
• Hybrid Threads
• Threads in Unix/Linux

Spring 2015
28

Operating SystemsFall 2016

Implementing Threads in the
Kernel

• AKA Kernel Level Threads (KLT)
• The kernel maintains a thread table to keep

track of all threads in the system
• The thread table keeps the same information

kept for ULT in the thread table
• A system (kernel) call is needed to create a new

thread or to destroy an existing one
• When a thread blocks, the kernel selects another

thread from the same process or another process

29

Operating SystemsFall 2016

Kernel Level Threads

30

Operating SystemsFall 2016

Advantages of KLT

• The kernel can simultaneously schedule multiple
threads from the same process on multiple processors

• If one thread in a process is blocked, the kernel can
schedule another thread of the same process

• Kernel routines can be multithreaded

31

Operating SystemsFall 2016

Disadvantages of KLT (1)

• Switching between kernel level threads is now
expensive since it requires mode switch to the
kernel.

32

•Null fork latency is calculated as the time to create, schedule, execute, and complete a process/
thread that invokes null procedure.
•Signal wait latency is calculated as the time for a process/thread to signal a waiting process/
thread and then wait on a condition.

Operating SystemsFall 2016

Disadvantages of KLT (2)

• Greater cost for creating and destroying threads
• Solution: applications recycle threads

• When a thread is destroyed, it is marked as
not runnable, but still exist in the kernel

• When a new thread must be created, an old
thread is reactivated

33

Operating SystemsFall 2016

User Level Threads vs Kernel
Level Threads

34

Operating SystemsFall 2016 Operating Systems

Outline
• Why Threads?
• The Thread Model
• Threads in User Space
• Threads in the Kernel
• Hybrid Threads
• Threads in Unix/Linux

Spring 2015
35

Operating SystemsFall 2016

Hybrid Implementation of
Threads

• Threads are created and destroyed similar to
user-level threads

• Kernel-level threads are used and then user-
level threads are multiplexed onto some or all
of them

• The programmer determines how many kernel
threads to use and how many user-level threads
to multiplex on each one

• The kernel is aware of only the kernel-level
threads and schedules those

36

Operating SystemsFall 2016

Combining User-Level Threads
and Kernel-Level Threads

37

Operating SystemsFall 2016 Operating Systems

Outline
• Why Threads?
• The Thread Model
• Threads in User Space
• Threads in the Kernel
• Hybrid Threads
• Threads in Unix/Linux

Spring 2015
38

Operating SystemsFall 2016

Linux Threads

• Traditional UNIX systems support a single thread
of execution per process

• Modern UNIX systems typically provide support
for multiple kernel-level threads per process

• POSIX Thread (pThread) library was used to
allow users to create threads that are mapped
to one process

39

Operating SystemsFall 2016

POSIX Threads

• 60 function calls.

40

Operating SystemsFall 2016

POSIX Thread: Creation

• A new thread is created using the
pthread_create call

• The thread identifier of the newly created
thread is returned as the function value

41

Operating SystemsFall 2016

POSIX Thread: Termination

• When a thread has finished the work it has been
assigned, it can terminate by calling
pthread_exit

• The thread is stopped and its stack is released
• If a thread needs to wait for another thread to

terminate, it needs to call pthread_join

42

Operating SystemsFall 2016

POSIX Thread: Yielding

• A running thread will run forever until it
voluntarily yields to another thread from the
same process

• The thread can call pthread_yield to allow
another thread to run

43

Operating SystemsFall 2016

POSIX Thread: Attributes

• Pthread_attr_init creates the attribute
structure associated with a thread and
initializes it to the default values

• Pthread_attr_destroy removes a thread’s
attribute structure, freeing up its memory

44

Operating SystemsFall 2016

Pthread Example

45

Operating SystemsFall 2016 Operating Systems

Outline
• Why Threads?
• The Thread Model
• Threads in User Space
• Threads in the Kernel
• Hybrid Threads
• Threads in Unix/Linux
• Notes

Spring 2015
46

Operating SystemsFall 2016

Parallelism vs Concurrency

• A system is parallel if it can perform more than
one task simultaneously
• multicore, multiprocessor, GPU

• A concurrent system supports more than one
task by allowing all the tasks to make progress
• one processor

• Hyper-threading: supporting multiple threads
per core
• E.g. Intel supports 2 threads per core
• Multiple threads loaded to the same core for faster

switching
47

Operating SystemsFall 2016

More on Thread Libraries
• Common libraries: POSIX Pthreads, Windows,

and Java
• Pthread: provided as either a user-level or a

kernel-level library
• Windows thread library: a kernel-level library

available on Windows systems
• Java thread library: allows threads to be

created and managed directly in Java programs
• However, JVM is running on top of a host operating

system, the Java thread API is generally
implemented using a thread library available on the
host system

48

Operating SystemsFall 2016

 

Thank You !

49

