
Deadlocks
Fall 2016

Operating SystemsFall 2016

Reading

• Chapter 6, Sec: 6.1,6.2, 6.4.1, 6.4.3, 6.5.2, 6.6, “Modern
Operating Systems, Fourth Ed.”, Andrew S. Tanenbaum

2

Operating SystemsFall 2016

Outline

• Introduction
• Resources
• Conditions for Deadlocks
• Deadlock Prevention
• Deadlock Avoidance
• Deadlock Detection and Recovery

3

Operating SystemsFall 2016

Potential Deadlock

4

I need quad
A and B

I need quad
B and C

I need quad
C and D

I need quad
D and A

William Stallings, “Operating Systems: Internals and Design Principles”, 7th Edition

Operating SystemsFall 2016

Actual Deadlock

5

HALT until
B is free

HALT until
C is free

HALT until
D is free

HALT until
A is free

William Stallings, “Operating Systems: Internals and Design Principles”, 7th Edition

Operating SystemsFall 2016

Outline

• Introduction
• Resources
• Conditions for Deadlocks
• Deadlock Prevention
• Deadlock Avoidance
• Deadlock Detection and Recovery

6

Operating SystemsFall 2016

Preemptable and Nonpreemptable
Resources

• Preemptable resource: one that can be taken away from
the process owning it with no ill effects
• Example: memory in PCs

• Nonpreemptable resource: one that cannot be taken away
from its current owner without potentially causing failure
• Example: blu-ray, printer

• Deadlocks involve nonpreemptable resources

7

Operating SystemsFall 2016

Using Resources

• Abstract sequence of events required to use a resource

1. Request the resource

2. Use the resource

3. Release the resource

• If resource request fails, the process will block or keep
trying to acquire the resource

8

Operating SystemsFall 2016

Deadlock Example

• Threads needs exclusive access to multiple resources at the same
time

• Example: scanner (RX) and DVD burner (RY)

9

Thread A Thread B

Lock (RX) Lock (RY)

Lock (RY) Lock (RX)

…………… ……………

UnLock(RY) UnLock(RX)

UnLock(RX) UnLock(RY)

Deadlock

Operating SystemsFall 2016

Revisiting the Example

• Example: scanner (RX) and DVD burner (RY)
• Note: order of acquiring locks is important

10

Thread A Thread B

Lock (RX) Lock (RX)

Lock (RY) Lock (RY)

…………… ……………

UnLock(RY) UnLock(RY)

UnLock(RX) UnLock(RX)

Operating SystemsFall 2016

Outline

• Introduction
• Resources
• Conditions for Deadlocks
• Deadlock Prevention
• Deadlock Avoidance
• Deadlock Detection and Recovery

11

Operating SystemsFall 2016

Deadlocks

• A set of processes is deadlocked if each process in the set
is waiting for an event that only another process in the set
can cause

• Notes:
• All the processes in the set are blocked, therefore any of them

will not initiate the event that wakes other processes in the set

• Blocking is permanent

• None of the processes in the set can release the resources it
already have

12

Operating SystemsFall 2016

Conditions for Resource Deadlocks

• Four conditions must be present for a resource deadlock to
occur
• Mutual exclusion condition. Each resource is either currently

assigned to exactly one process or is available.

• Hold-and-wait condition. Processes currently holding resources
that were granted earlier can request new resources.

• No-preemption condition. Resources previously granted cannot be
forcibly taken away from a process. They must be explicitly
released by the process holding them.

• Circular wait condition. There must be a circular list of two or more
processes, each of which is waiting for a resource held by the next
member of the chain

13

ne
ce

ss
ar

y
ev

id
en

ce

Operating SystemsFall 2016

Resource Allocation Graph

14

Operating SystemsFall 2016

Resource Allocation Graph - Example(1)

15

Operating SystemsFall 2016

Resource Allocation Graph - Example(2)

16

Operating SystemsFall 2016

Resource Allocation Graph - Example(3)

17

Operating SystemsFall 2016

Dealing with Deadlocks

• Three Strategies:
• Detection and recovery. Let them occur, detect them, and take

action.

• Dynamic avoidance by careful resource allocation.

• Prevention, by structurally negating one of the four conditions.

18

Operating SystemsFall 2016

Outline

• Introduction
• Resources
• Conditions for Deadlocks
• Deadlock Prevention
• Deadlock Avoidance
• Deadlock Detection and Recovery

19

Operating SystemsFall 2016

Prevention - Eliminating Mutual Exclusion

• No resources are assigned exclusively to a single process
• If data can be read only, and therefore shared by many

processes

• Not realistic. Example: printer

• Applicable idea:
• Avoid assigning a resource unless absolutely necessary

• Try to make sure that as few processes as possible may
actually claim the resource

20

Operating SystemsFall 2016

Prevention - Eliminating Hold-and-Wait

• This goal can be achieved by enforcing that a process
needs to acquire all of its resources before starting
execution

• Cons:
• Not all the processes know all the resources they will need

before starting

• Not optimal usage of resources

• Another alternative: temporarily release all the resources a
process currently holds to request a new resource

21

Operating SystemsFall 2016

Prevention - Eliminating No-Preemption

• A process can release a resource if needed by another
process

• Cons:
• Not possible in some cases. Example, a process is in the

middle of printing a file

• Suitable for resources that can be virtualized. Example
memory, printer spooler

22

Operating SystemsFall 2016

Prevention - Eliminating Circular Wait

• Eliminating circular wait:
• A process is entitled only to a single resource at any moment. If

it needs a second one, it must release the first one

• Provide a global numbering of all the resources. Resources can
only be acquired in that order

• Cons:
• What order is suitable for all applications?

• There can be a very large number of resources, and numbering
them might not be straightforward

23

Operating SystemsFall 2016

Outline

• Introduction
• Resources
• Conditions for Deadlocks
• Deadlock Prevention
• Deadlock Avoidance
• Deadlock Detection and Recovery

24

Operating SystemsFall 2016

Deadlock Avoidance

• The system dynamically decide whether granting a
resource is safe or not and make the allocation only when
it is safe

25

Operating SystemsFall 2016

Safe and Unsafe States

• A state is said to be safe if there is some scheduling order
in which every process can run to completion even if all of
them suddenly request their maximum number of
resources immediately

• An unsafe state is not a deadlock state
• It means that there is a potential of deadlock

26

Operating SystemsFall 2016

Safe and Unsafe States - Example

• E=[10]: there are 10 instances of the resource

• Safe state example, a is safe

• Unsafe state example, b is unsafe

27

Operating SystemsFall 2016

Banker’s Algorithm

• Proposed by Dijkestra in 1965

• Based on how banks worked at that time: do not grant money to a
customer unless he/she can repay it

• Algorithm:

• Find row, R, whose unmet resource needs are all smaller than or
equal to A. If no such row is found, “unsafe”

• Assume the process of the chosen row requests all the resources.
Mark that process as terminated and add all of its resources to the
A vector.

• Repeat steps 1 and 2 until either all processes are marked
terminated (“safe”), some processes are cannot terminate
(“unsafe”)

28

Operating SystemsFall 2016

Banker’s Algorithm - Example 1 - Step 1

• D can get its resources and terminate

29

A 3 0 1 1

B 0 1 0 0

C 1 1 1 0

D 1 1 0 1

E 0 0 0 0

A 1 1 0 0

B 0 1 1 2

C 3 1 0 0

D 0 0 1 0

E 2 1 1 0

6 3 4 2

5 3 2 2

1 0 2 0

Resources assigned Resources needed

Max resources

Total assigned

Available

Operating SystemsFall 2016

Banker’s Algorithm - Example 1 - Step 2

• A or E can get all its resources and terminate

30

A 3 0 1 1

B 0 1 0 0

C 1 1 1 0

D 0 0 0 1

E 0 0 0 0

A 1 1 0 0

B 0 1 1 2

C 3 1 0 0

D

E 2 1 1 0

6 3 4 2

4 2 2 1

2 1 2 1

Resources assigned Resources needed

Max resources

Total assigned

Available

Operating SystemsFall 2016

Banker’s Algorithm - Example 1 - Step 3

• All remaining processes can get their resources and terminate

31

A 0 0 0 0

B 0 1 0 0

C 1 1 1 0

D 0 0 0 1

E 0 0 0 0

A

B 0 1 1 2

C 3 1 0 0

D

E 2 1 1 0

6 3 4 2

1 2 1 0

5 1 3 2

Resources assigned Resources needed

Max resources

Total assigned

Available

Safe

Operating SystemsFall 2016

Banker’s Algorithm - Example 2 - Step 1

• D can complete

• A or E can complete

• Other processes can complete

• Now, E requests one item from third resource (is it safe?)

32

A 3 0 1 1

B 0 1 0 0

C 1 1 1 0

D 1 1 0 1

E 0 0 0 0

A 1 1 0 0

B 0 1 2 2

C 3 1 0 0

D 0 0 1 0

E 2 1 1 0

6 3 4 2

5 3 3 2

1 0 1 0

Resources assigned Resources needed

Max resources

Total assigned

Available

Therefore, this is a safe state

Operating SystemsFall 2016

Banker’s Algorithm - Example 2 - Step 2

• No process can complete

• Therefore, this is a unsafe state

33

A 3 0 1 1

B 0 1 0 0

C 1 1 1 0

D 1 1 0 1

E 0 0 1 0

A 1 1 0 0

B 0 1 2 2

C 3 1 0 0

D 0 0 1 0

E 2 1 0 0

6 3 4 2

5 3 4 2

1 0 0 0

Resources assigned Resources needed

Max resources

Total assigned

Available

Operating SystemsFall 2016

Evaluating Banker’s Algorithm

• In theory the algorithm is wonderful, in practice it is
essentially useless
• Processes usually do not know in advance the maximum

resources they will need

• The number of processes is not fixed

• The number of available resources is not fixed (a DVD can
break or we plug a new resource)

• In reality, use heuristics based on Banker’s algorithm
• Example: throttle network traffic when buffer utilization reaches

higher than, say, 70%

34

Operating SystemsFall 2016

Outline

• Introduction
• Resources
• Conditions for Deadlocks
• Deadlock Prevention
• Deadlock Avoidance
• Deadlock Detection and Recovery

35

Operating SystemsFall 2016

Deadlock Detection and Recovery

• Steps:
• No ahead of time steps, deadlocks can occur

• Detect when a deadlock occurs

• Take an action to recover from this deadlock

36

Operating SystemsFall 2016

Deadlock Detection Using Resource
Allocation Graphs

1. Process A holds R and wants S.
2. Process B holds nothing but wants T.
3. Process C holds nothing but wants S.
4. Process D holds U and wants S and T.

5. Process E holds T and wants V.
6. Process F holds W and wants S.
7. Process G holds V and wants U.

37

Deadlock

Operating SystemsFall 2016

Deadlock Detection with Multiple
Resources of Each Type - Data Structures

38

Operating SystemsFall 2016

Deadlock Detection with Multiple
Resources of Each Type

• Overview:

• Each process is initially unmarked

• As the algorithm progresses, processes will be marked, indicating that they can
complete and are not deadlocked

• Deadlock detection algorithm

• Look for an unmarked process, Pi, for which the ith row of R is less than or equal
to A

• If such a process is found, add the ith row of C to A, mark the process, and go
back to step 1

• If no such process exists, the algorithm terminates

• When the algorithm finishes, all the unmarked processes, if any, are
deadlocked

39

Operating SystemsFall 2016

Deadlock Detection - Example 1

• P3 can complete, A = (2 2 2 0)

• P2 can complete, A = (2 2 2 0)

• P1 can complete, therefore, no deadlock

40

Operating SystemsFall 2016

Deadlock Detection - Example 1

• P3 can complete, A = (2 2 2 0)

• P2 can complete, A = (2 2 2 0)

• P1 can complete, therefore, no deadlock

41

0 0 1 0

2 0 0 1

0 1 2 0

2 0 0 1

1 0 1 0

2 1 0 0

4 2 3 1

2 1 0 0
C, Resources assigned R, Resources needed

E, Max resources

A, Available

Operating SystemsFall 2016

Deadlock Detection - Example 2

• None of the processes can complete

• Deadlock

42

0 0 1 0

2 0 0 1

0 1 2 0

2 0 0 1

1 0 1 0

2 1 1 0

4 2 3 1

2 1 0 0
C, Resources assigned R, Resources needed

E, Max resources

A, Available

Operating SystemsFall 2016

Recovery from Deadlock

• Preemption: reallocate resources
• Difficult or impossible

• Rollback: process is reset to an earlier moment when it did
not have the resource undoing any completed operations
• Checkpointing might be used: a process state is written to a file

so that it can be restarted later

• Killing processes: kill one or more processes involved in
the circular wait
• Choose process with fewer resources, can easily be restarted,

fewer computations

43

Discussion

Operating SystemsFall 2016

Communication Deadlocks

• Processes communication by sending/receiving messages
can deadlock

• Example,
• A sends a request to B, and blocks waiting for B’s reply

• The message got lost

• A is waiting for B’s reply and B is waiting for A’s request

• Timeouts are used

45

Operating SystemsFall 2016

Starvation

• Some processes never get service

• There is no forward progress in both deadlock and
starvation
• Progress can eventually be made in case of starvation

• In the deadlock case, all processes involved are blocked

46

Thank You!

