
Programming Fundamentals- I

Rao Muhammad Umer
Lecturer,

Web: raoumer.github.io
Department of Computer Science & IT,

The University of Lahore.

http://raoumer.github.io/

Qualification

 MS Computer Science (2014-2016)
 Pakistan Institute of Engineering & Applied Sciences

(PIEAS), Nilore, Islamabad, Pakistan.

 BSc. Computer Systems Engineering (2010-2014)
 The Islamia University of Bahawalpur (IUB), Bahawalpur,

Pakistan.

 Visit my personal website for more information
about me on following link:

raoumer.github.io

http://raoumer.github.io/

Administrative Stuff

 Course related stuff will be available soon on
“PIAZZA” discussion forum

 We will use MS Visual Studio 2010

 I will provide you demo on MS Visual Studio
2010

Course Contents

 Basic components of a computer

 Programming languages

 Introduction to operating system

 Programming in C with examples and applications

Text Books

1. The ‘C’ Programming Language

 By: Kernighan and Ritchie

2. Let Us ‘C’

 By: Yashwant Kanitkar

Objective of the Course

• To learn computer fundamentals

• To learn C language.

Why Learn C?

• C is the base language of any other programming
language.

• To be a Good Programmer, one must know
fundamentals of C programming language.

• Simulations ----- lets us apply maths to the real
world.

Let us Write First C Program

Data Type

• Integer variables (int)
– For example:

• Number of students

• Number of tables

• Floating point variables (float)
– For quantities which may contain decimal point

such as distance, area, and temperature.

• Character variables (char)

• At this stage, we will focus only on integers.

Approach To Our First C Program

 x = 5;

 y = 7;

 z = x + y;

 x, y and z are integer variables

Our First C Program
#include <stdio.h>
#include “stdafx.h”
int main()
{
 int x, y, z;
 x = 5;
 y = 7;
 z = x + y;
 printf(“%d", z);
 getchar();
 return 0;
}

Output of Program

 12

Our First C Program
#include <stdio.h>
#include "stdafx.h“
int main()
{
 int x, y, z;
 x = 5;
 y = 7;
 z = x + y;
 printf(“Sum is %d", z);
 getchar();
 return 0;
}

Output of Program

 Sum is 12

Our First C Program
#include <stdio.h>
#include "stdafx.h“
int main()
{
 int x, y, z, m;
 x = 5;
 y = 7;
 z = x + y;
 m = x - y;
 printf("Sum is %d\n", z);
 printf("Difference is %d", m);
 getchar();
 return 0;
}

Output of Program

 Sum is 12

 Difference is -2

Escape Sequences

 Sequence Meaning

 \a Bell (alert)

 \b Backspace

 \n Newline

 \t Horizontal tab

 \\ Backslash

 \' Single quote

 \" Double quotation

Escape Sequences

• The name reflects the fact that the
backslash causes an “ escape” from the
normal way characters are interpreted.

• In this case the n is interpreted not as the
character ‘n’ but as the new line character.

“Hello World”

//Most of the people write this program first
#include <stdio.h>
#include "stdafx.h“
int main ()
{
 printf ("Hello, World!\n");
 getchar();
 return 0;
}

More about printf()

• The printf function is used to output information
(both data from variables and text) to standard
output.

• It takes a format string and parameters for
output.

• e.g. printf("The result is %d \n", b);

• printf("The result is %d and %d\n", a, b);

• printf("The result is %d and %d\n", a, b*6);

More about printf()

The format string contains:

– Literal text: is printed as is without variation

– Escaped sequences: special characters preceeded by \

– Conversion specifiers: % followed by a single
character

• Indicates (usually) that a variable is to be printed
at this location in the output stream.

• The variables to be printed must appear in the
parameters to printf following the format string, in
the order that they appear in the format string.

C doesn’t care much about spaces

C doesn’t care much about spaces

• In the most general sense, a statement is a part of your program that
can be executed.

• An expression is a statement.

 a=a+1;

• A function call is also a statement.

 printf("%d“, a);

• Other statements ……

• C is a free form language, so you may type the statements in any style
you feel comfortable:

 a=

 a+

 1;

• a = a + 1; a = 6; //line breaks can be anywhere

Punctuation

• Punctuations as semicolons, colons, commas,
apostrophes, quotation marks, braces, brackets,
and parentheses will also be used in C code.

• ; : , ‘ “ [] { } ()

Compound Statements

• Sequences of statements can be combined

into one with {...}

{

 printf ("Hello, ");

 printf ("world! \n");

}

C Statements

Some Suggestions

• DO: Use block braces on their own line.

 – This makes the code easier to read.

• DO: line up block braces so that it is easy to

 find the beginning and end of a block.

• AVOID: spreading a single statement across

 multiple lines if there is no need.

 – Try to keep it on one line.

Names of C Variables

Names of C Variables

• A good name for your variables is important

• Variables in C can be given any name made from numbers, letters
and underscores which is not a keyword and does not
begin with a number.

• Names may contain letters, digits and underscores

• The first character must be a letter or an underscore.

• First 31 characters are significant

 (too long name is as bad as too short).

• Are case sensitive:

– abc is different from ABC

• Must begin with a letter or underscore and the rest can be letters,
digits, and underscores.

Names of C Variables

Names of C Variables

int a,b;

double d;

/* It is like cryptic */

int start_time;

int no_students;

double course_mark;

/* It is better */

Names of C Variables

Suggestions regarding variable names

• DO: use variable names that are descriptive

• DO: adopt and stick to a standard naming convention

 – sometimes it is useful to do this consistently for
 the entire software development site

• AVOID: variable names starting with an underscore

 – often used by the operating system and easy to
 miss

• AVOID: using uppercase only variable names

 – generally these are pre-processor macros (later)

Names of C Variables

• C keywords cannot be used as variable names.

• Sometimes called reserved words.

• Are defined as a part of the C language.

• Can not be used for anything else!

• Examples:

– int

– while

– for

Keywords of C

Comments

Comments

• Can be used to write title of the program,
author details etc.

• To guide a programmer. To write a note for
function, operation, logic etc. in between a
program.

• Non-executable statement

Comments

• Comments: /* This is a comment */
• Use them!
• Comments should explain:

– special cases
– the use of functions (parameters, return values,

purpose)

• explain WHY your code does things the what it
does.

• Can’t be nested.
 e.g:- /* Hello /* abc */ Hi */ ERROR.

Comments

• Ideally, a comment with each variable name
helps people know what they do.

• In Assignments and paper, I like to see well
chosen variable names and comments on
variables.

More on Comments

A few examples of comments

/* This program calculates area of a rectangle

This program is developed by Mr. XYZ */

length = 5; // in km

width = 3; // in km

Scanf()

Reading Numeric Data with scanf

• Reading input from console
• scanf can be used like printf but to read instead of write.
• The scanf function is the input equivalent of printf
 – A C library function in the <stdio.h> library
 – Takes a format string and parameters, much like printf
 – The format string specifiers are nearly the same as those used in
 printf
• Examples:
 scanf ("%d", &x); /* reads a decimal integer */
• The ampersand (&) is used to get the “address” of the
 variable
 – If we used scanf("%d",x) instead, the value of x is passed. As a
 result, scanf will not know where to put the number it reads

Example

#include <stdio.h>

#include "stdafx.h“

int main ()

{

int num1, result_square;

printf ("Enter an integer value please: ");

scanf ("%d", &num1);

result_square = num1*num1;

printf ("\n = Square of your entered number is %d\n\n",

result_square);

getchar();

return 0;

}

Reading Numeric Data with scanf

• Reading more than one variable at a time:

 – For example:

 int n1, n2, n3;

 scanf("%d%d%d",&n1,&n2,&n3);

 – Use white spaces to separate numbers when input.

 5 10 22

• In the format string:

 – You can use other characters to separate the numbers

 int no_students, no_chairs;

 scanf(“Number of Students=%d, Number of Chairs=% d",
 &no_students, &no_chairs);

 • You must provide input like:

 Number of Students= 30, Number of Chairs= 35

Example

#include <stdio.h>

#include "stdafx.h“

int main(void)

{

int value1, value2, sum, product ;

printf(“Enter two integer values: “) ;

scanf(“Value 1 = %d, Value 2 = %d”, &value1, &value2) ;

sum = value1 + value2 ;

product = value1 * value2 ;

printf(“Sum is = %d \n\n Product = %d\n”, sum, product) ;

getchar();

return 0 ;

}

The scanf statement

int number, check;
check= scanf ("%d",&number);
//Error

int number, check;
scanf ("%d",&number);
check= number;
//Correct

Expressions and Operators

Expressions and Operators
• In the most general sense, a statement is a part of
your program that can be executed.
• An expression is a statement.
• Examples:
 x = 4;
 x = x + 1;
 printf("%d",x);
• Two types:
 – Function calls
 – The expressions formed by data and operators
• An expression in C usually has a value
 – except for the function call that returns void.

Arithmetic Operators

Assignment Operator

• The assignment operator =

 x = 3

 – It assigns the value of the right hand side
 (rhs) to the left hand side (lhs).

 – The value is the value of the rhs.

• For example:

 x = (y = 3) +1; /* y is assigned 3 */

 /* the value of (y=3) is 3 */

 /* x is assigned 4 */

Compound Assignment Operator

• Often we use “update” forms of operators
 – x=x+1, x=x*2, ...
• C offers a short form for this:
 Operator Equivalent to
 x + = y x = x + y
 x *= y x = x * y
 y -= z + 1 y = y - (z + 1)
 a /= b a = a / b
 x += y / 8 x = x + (y / 8)
 y %= 3 y = y % 3

// demonstrates arithmetic assignement operators
#include <stdio.h>
int main()
{

int ans = 27;
ans += 10; //same as: ans = ans + 10;
printf(" %d, ",ans);
ans -= 7; //same as: ans = ans - 7;
printf(" %d, ",ans);
ans *= 2; //same as: ans = ans * 2;
printf(" %d, ",ans);
ans /= 3; //same as: ans = ans / 3;
printf(" %d, ",ans);
ans %= 3; //same as: ans = ans % 3;
printf(" %d, \n",ans);
return 0;

}

Increment and Decrement
Operators

Increment and Decrement

• Increment and decrement operators.

 – Increment: ++

 • ++x is the same as : (x = x + 1 or x
 + = 1). It increases the value of x by
 1

 – Decrement: -- (similar to ++)

 • --x is the same as : (x = x – 1 or x - =
 1). It decreases the value of x by 1

Increment and Decrement
Pre-fix and Post-fix

