Programming Fundamentals- |

Rao Muhammad Umer
Lecturer,
Web: raoumer.github.io
Department of Computer Science & IT,
The University of Lahore.

http://raoumer.github.io/

Qualification

= MS Computer Science (2014-2016)

= Pakistan Institute of Engineering & Applied Sciences
(PIEAS), Nilore, Islamabad, Pakistan.

= BSc. Computer Systems Engineering (2010-2014)

* The Islamia University of Bahawalpur (IUB), Bahawalpur,
Pakistan.

" Visit my personal website for more information
about me on following link:

raoumer.github.io

http://raoumer.github.io/

Administrative Stuff

= Course related stuff will be available soon on
“PIAZZA” discussion forum

= \We will use MS Visual Studio 2010

" | will provide you demo on MS Visual Studio
2010

Course Contents

Basic components of a computer
Programming languages
ntroduction to operating system

Programming in C with examples and applications

Text Books

1. The ‘C’ Programming Language
By: Kernighan and Ritchie

2. Let Us ‘'C’
By: Yashwant Kanitkar

Objective of the Course

* To learn computer fundamentals
* To learn C language.
Why Learn C?

 Cisthe base language of any other programming
language.

* To be a Good Programmer, one must know
fundamentals of C programming language.

e Simulations ----- lets us apply maths to the real
world.

Let us Write First C Program

Data Type

Integer variables (int)

— For example:
* Number of students
* Number of tables

Floating point variables (float)

— For quantities which may contain decimal point
such as distance, area, and temperature.

Character variables (char)
At this stage, we will focus only on integers.

Approach To Our First C Program

X =5;
y=17,

Z=X+t1Y,

X, Y and z are integer variables

Our First C Program

#include <stdio.h>

#include “stdafx.h”

int main()

{
intx,vy, z;
X=05;
y=17;
Z=X+Y;
printf(“%d", z);
getchar();
return O;

Output of Program

12

Our First C Program

#include <stdio.h>

#include "stdafx.h“

int main()

{
intx,vy, z;
X =5;
y=17;
Z=X+Y;
printf(“Sum is %d", z);
getchar();
return O;

Output of Program

Sumis 12

Our First C Program

#include <stdio.h>
#include "stdafx.h”

int main()

{
intx,y, z, m;
X =5;
y=17;
Z=X+YV;
m=X-Yy,

printf("Sum is %d\n", z);
printf("Difference is %d", m);
getchar();

return O;

Output of Program

Sumis 12
Difference is -2

Escape Sequences

Sequence Meaning

\a Bell (alert)

\b Backspace

\n Newline

\t Horizontal tab
\\ Backslash

\ Single quote

\" Double quotation

Escape Sequences

* The name reflects the fact that the
backslash causes an “ escape” from the
normal way characters are interpreted.

* |n this case the n is interpreted not as the
character ‘n’ but as the new line character.

#include <stdio.h>
#include "stdafx.h”
int main()
{
intx,y, z, m;
X=D5;
y=17,
Z=X+Y;
m=x-y,

Exercise

Try out various escape
sequences in this
program.

printf("Sum is %d\n Difference is %d", z, m);

getchar();
return O;

}
What's output?

“Hello World”

//Most of the people write this program first
#include <stdio.h>

#include "stdafx.h”

int main ()

{
printf ("Hello, World!\n");
getchar();
return O;

More about printf()

The printf function is used to output information
(both data from variables and text) to standard
output.

It takes a format string and parameters for
output.

e.g. printf("The result is %d \n", b);
printf("The result is %d and %d\n", a, b);
printf("The result is %d and %d\n", a, b*6);

More about printf()

The format string contains:
— Literal text: is printed as is without variation
— Escaped sequences: special characters preceeded by \

— Conversion specifiers: % followed by a single
character

* Indicates (usually) that a variable is to be printed
at this location in the output stream.

* The variables to be printed must appear in the
parameters to printf following the format string, in
the order that they appear in the format string.

C doesn’t care much about spaces

#include <stdio.h>
#include "stdafx.h”
int main ()

{
printf ("Hello World!\n");

return 0;

}

#include <stdio.h>
#include "stdafx.h”
int

main

(

)

{
printf
(
"Hello

World!\n"

Both of these
programs are
the same as the
original as far as
your compiler 1s
concerned.

We SHOULD lay
out our C program
to make them look
nice.

C doesn’t care much about spaces

* Inthe most general sense, a statement is a part of your program that
can be executed.

* An expression is a statement.
a=a+1;

* A function call is also a statement.
printf("%d"“ a);

* Other statements

 Cis afree form language, so you may type the statements in any style
you feel comfortable:

a=
a+
1;

e a=a+1;a=6; //line breaks can be anywhere

Punctuation

 Punctuations as semicolons, colons, commas,
apostrophes, quotation marks, braces, brackets,
and parentheses will also be used in C code.

o5 THH)

Compound Statements

* Sequences of statements can be combined
into one with {...}

printf ("Hello, ");
printf ("world! \n");

C Statements

Some Suggestions
e DO: Use block braces on their own line.
— This makes the code easier to read.
e DO: line up block braces so that it is easy to
find the beginning and end of a block.
e AVOID: spreading a single statement across
multiple lines if there is no need.
— Try to keep it on one line.

Names of C Variables

Names of C Variables

A good name for your variables is important

Variables in C can be given any name made from numbers, letters
and underscores which is not a keyword and does not
begin with a number.

Names may contain letters, digits and underscores
The first character must be a letter or an underscore.
First 31 characters are significant
(too long name is as bad as too short).
Are case sensitive:
— abc is different from ABC

Must begin with a letter or underscore and the rest can be letters,
digits, and underscores.

Names of C Variables

present, hello, y2x3, r2d3, ... /* OK */
1993 tar_return /* OK but not good */
Hello#there /*illegal */

int /* shouldn’t work */

2fartogo /¥ illegal */

Names of C Variables

int a,b; int start_time;
double d; int no_students;
/* It is like cryptic */ double course_mark;

/* Itis better */

Names of C Variables

Suggestions regarding variable names
e DO: use variable names that are descriptive
e DO: adopt and stick to a standard naming convention

— sometimes it is useful to do this consistently for
the entire software development site

e AVOID: variable names starting with an underscore

— often used by the operating system and easy to
miss

e AVOID: using uppercase only variable names
— generally these are pre-processor macros (later)

Names of C Variables

C keywords cannot be used as variable names.
Sometimes called reserved words.
Are defined as a part of the C language.
Can not be used for anything else!

Examples:
— Int

— while

— for

Keywords of C

Flow control (6)—if, else, return, switch,
case, default

Loops (5)— for, do, while, break, continue
Common types (5)—int, float, double, char,
void

structures (3) —struct, typedef, union
Counting and sizing things (2) —enum, sizeof

Rare but still useful types (7) —extern, signed,
unsigned, long, short, static, const

Evil keywords which we avoid (1) —goto
Wierdies (3) —auto, register, volatile

Comments

Comments

* Can be used to write title of the program,
author details etc.

* To guide a programmer. To write a note for
function, operation, logic etc. in between a
program.

e Non-executable statement

Comments

Comments: /* This is a comment */
Use them!
Comments should explain:

— special cases

— the use of functions (parameters, return values,
purpose)

explain WHY your code does things the what it
does.

Can’t be nested.
e.g:- /* Hello /* abc */ Hi */ ERROR.

Comments

deally, a comment with each variable name
nelps people know what they do.

n Assignments and paper, | like to see well
chosen variable names and comments on
variables.

More on Comments

A few examples of comments

/* This program calculates area of a rectangle
This program is developed by Mr. XYZ */
length =5; // in km

width=3; //in km

Scanf()

Reading Numeric Data with scanf

e Reading input from console
e scanf can be used like printf but to read instead of write.
e The scanf function is the input equivalent of printf
— A Clibrary function in the <stdio.h> library
— Takes a format string and parameters, much like printf
— The format string specifiers are nearly the same as those used in
printf
e Examples:
scanf ("%d", &x); /* reads a decimal integer */
e The ampersand (&) is used to get the “address” of the
variable
— If we used scanf("%d",x) instead, the value of x is passed. As a
result, scanf will not know where to put the number it reads

Example

#include <stdio.h>
#include "stdafx.h”
int main ()
{
int num1, result_square;
printf ("Enter an integer value please: ");
scanf ("%d", &num1l);
result_square = numl*numil;
printf ("\n = Square of your entered number is %d\n\n"
result_square);
getchar();
return O;

-

Reading Numeric Data with scanf

e Reading more than one variable at a time:
— For example:
int nl, n2, n3;
scanf("%d%d%d",&n1,&n2,&n3);
— Use white spaces to separate numbers when input.
510 22
e In the format string:
— You can use other characters to separate the numbers
int no_students, no_chairs;

scanf(“Number of Students=%d, Number of Chairs=% d",
&no_students, &no_chairs);

e You must provide input like:
Number of Students= 30, Number of Chairs= 35

Example

#include <stdio.h>
#include "stdafx.h”
int main(void)
{
int valuel, value2, sum, product;
printf(“Enter two integer values: “) ;
scanf(“Value 1 = %d, Value 2 = %d”, &valuel, &value2) ;
sum = valuel + value2 ;
product = valuel * value2 ;
printf(“Sum is = %d \n\n Product = %d\n”, sum, product) ;
getchar();
return O ;

The scanf statement

int number, check;
check= scanf ("%d",&number);

//Error

int number, check;
scanf ("%d",&number);
check= number;
//Correct

Expressions and Operators

Expressions and Operators

e |n the most general sense, a statement is a part of
your program that can be executed.
e An expression is a statement.
e Examples:

X =4;

X=X+1;

printf("%d",x);
e TWo types:

— Function calls

— The expressions formed by data and operators
e An expression in C usually has a value

— except for the function call that returns void.

Arithmetic Operators

Operator Symbol Action
Addition + Adds operands
Subtraction - Subtracts from first
Negation - Negates operand
Multiplication * Multiplies operands
Division / Divides first by second
(integer quotient)
Modulus % Remainder of divide op

* (x % vy) givestheremainder when x is divided by vy

* remainder= x%vy; (ints only)

X+y

X%y

Assignment Operator

e The assighment operator =
X=3

— It assigns the value of the right hand side
(rhs) to the left hand side (lhs).

— The value is the value of the rhs.
e For example:

x=(y=3)+1; /*yisassigned 3 */

/* the value of (y=3) is 3 */

/* xis assighed 4 */

Compound Assignment Operator

e Often we use “update” forms of operators
— x=xX+1, x=x*2, ...
e C offers a short form for this:

Operator Equivalent to
X+=y X=X+Yy

X *= X=x%*y
y-=z+1 y=y-(z+1)
a/=b a=a/b
X+=y/8 x=x+(y/8)

Vv %=3 V=y%3

// demonstrates arithmetic assignement operators
#include <stdio.h>
int main()

{

int ans =27;

ans += 10; //same as: ans = ans + 10;
printf(" %d, ",ans);

ans-=7; //same as:ans =ans-7;
printf(" %d, ",ans);

ans *=2: //same as: ans=ans * 2;
printf(" %d, ",ans);

ans /=3: //same as:ans=ans/ 3;
printf(" %d, ",ans);

ans %= 3; //same as: ans =ans % 3;
printf(" %d, \n",ans);

return O;

Increment and Decrement
Operators

Increment and Decrement

e Increment and decrement operators.
— Increment: ++

e ++x isthesameas: (x=x+1orx
+ =1). It increases the value of x by
1

— Decrement: -- (similar to ++)

e --xisthesameas:(x=x—1orx-=
1). It decreases the value of x by 1

Increment and Decrement

Pre-fix and Post-fix
* ++i means increment i then use it

* i++ means use i then increment it

int 1= 6;
printf ("%d\n",i++); /* Prints 6 sets 1 to 7 */

Note this important difterence

int i= 6;
printf ("%d\n",++1); /* prints 7 and sets i to 7 */

It 1s easy to confuse yourself and others with the difference
between ++1 and i++ - 1t 1s best to use them only 1n simple ways.

All of the above also applies to ——.

